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Abstract— We study the long-term behavior of the logit
learning rule in multiplayer repeated extensive-form games.
Our model involves the possibility of simultaneous moves by
multiple players as well as chance moves by nature in every
node of the game tree. The logit learning rule considered in this
paper is based on average payoff valuations. In certain class
of extensive-form games with simultaneous moves, we show
that player strategies converge to a perturbed subgame perfect
equilibrium of the stage game when every player uses the logit
learning rule in the repeated game. In extensive-form games
with perfect information, we also show that the long run average
payoff of a player using the logit learning rule is guaranteed
to be nearly as high as the player’s maxmin payoff in the stage
game.

I. INTRODUCTION

There is currently a substantial body of literature on
learning in multiplayer games; see the books [1], [2] and
the references therein. By and large, the existing work in
this area is concentrated on repeated normal-form games. For
example, well-known learning rules, fictitious play [3], [4],
reinforcement learning [5], no-regret learning [6], Bayesian
learning [7], hypothesis testing [8], and their variants have
been well studied in the context of normal-form games.
Typical results in this literature include convergence to
equilibria under self play when all players employ the
same learning rule. In comparison with the normal-form
games, the extensive-form games have received much smaller
attention in terms of learning in repeated play [9], [10], [11],
[12], [13]. The main objective of this paper is to advance
the state of the art on learning in repeated extensive-form
games, in particular, in the case of imperfect information. We
are ultimately interested in developing simple and effective
learning rules that can be used in large extensive-form games.
A valuation for a player is a mapping from all of the
player’s possible moves to R. As such, we are interested in
valuation-based learning rules where players form valuations
for possible moves, or sets of possible moves that are
considered similar in some (possibly adaptive)1 way, at each
node as opposed to forming valuations for possible game
strategies, that is typically a much larger set. Valuation-based
learning, for example [12], [13] updates the valuation from
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1By adaptive is meant the sets of similar moves are recalculated each
iteration.

the game play history. The player’s strategy is calculated
directly from the updated valuation.

The reference [9] studies a fictitious playlike process
for extensive games in which each player makes moves
that maximize his/her immediate expected payoffs under the
(incorrect) assumption that the other players make moves
according to empirical frequencies of past play, and show
that the stable points of the learning process may not be Nash
equilibria. The reference [10] identifies general conditions on
valuation rules for the convergence of the repeated play to a
subgame perfect equilibrium in extensive games with perfect
information where no player is indifferent between two
outcomes without every other player being also indifferent.
In [10], each player always makes a move with maximum
valuation, i.e., no explicit exploration; however, implicit
exploration can be introduced through imperfections in the
valuation process.

The most relevant references for this work are [12]
and [11] where learning by valuation rules are studied for
extensive-form games with perfect information. At any node
visited during the repeated play, a player using “the δ-
exploratory myopic strategy with the averaging revision rule”
in [12] makes a move, with probability 1 − δ, that has
resulted in the highest average payoff in the previous rounds;
with probability δ, the player makes a random move for
exploration. When every player adheres to such a learning
rule with small δ > 0, the reference [12] shows that player
strategies would be close to an equilibrium in the long run.
It is furthermore shown in [12] that the long-term average
payoff of a player using the δ-exploratory myopic strategy
with the averaging revision rule would be nearly as high as
the player’s maxmin payoff in the stage game, provided that
the exploration rate δ > 0 is small. As expected, the role of
random exploration in obtaining such results is critical since,
without persistent exploration, players might easily get stuck
at arbitrary strategies due to the bias in their initial valuations
of possible moves.

It is also recognized in the literature that not all forms
of random exploration lead to the same outcome; see for
example [14]. As in the δ-exploratory myopic strategy with
the averaging revision rule in [12], assigning a fixed (and
a typically high) probability to moves that resulted in the
highest average payoff in the past makes a player quite
predictable in games with simultaneous moves, which can
be exploited by a sophisticated opponent leading to very
poor performance for the player. The root cause of this
vulnerability is to assign almost all of the probability mass to
a single move even when that move has only infinitesimally
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higher valuation than the other possible moves. This calls
for a form of random exploration in which moves with
comparable valuations are assigned comparable probabilities
of selection while ensuring that every possible move is al-
ways assigned a probability that is uniformly bounded above
zero to achieve persistent random exploration. The reference
[11] studies the cumulative proportional reinforcement (CPR)
learning in extensive games where the selection probabilities
for the possible moves are proportional to the corresponding
valuations. The reference [11] shows that an action-based (as
opposed to a strategy-based) CPR process converges to the
(unique) subgame equilibrium in generic extensive games
with perfect information and with positive payoffs. The
idea of comparable probabilities for comparable valuations
can also be achieved by utilizing the well-known logistic
response function to map the valuations of possible moves
to the selection probabilities of those moves.

Accordingly, in this paper, we explore the behavior of
an alternative valuation-based learning rule, and a close
variant of it, in extensive-form games with simultaneous
moves. The valuations of possible moves at possible nodes
are the average payoffs obtained in the past through those
nodes and moves; however, the probability of selection for
each possible move at each possible node is determined by
applying the logistic response function to the corresponding
valuations. This leads to what is called in this paper the logit
learning rule and the modified logit learning rule. One of the
contributions of this paper is to show that, when every player
uses the modified logit learning rule in the repeated play,
player strategies converge to a perturbed subgame-perfect
equilibrium of the stage game, which is an extensive-form
game with simultaneous moves. Our other main contribution
is to obtain a lower bound on the long-term average payoff
of a player using the logit learning rule, regardless of the
learning rules used by the other players, in an extensive-form
game with perfect information, that is the player’s maxmin
payoff in the stage game. This result is a counterpart of a
similar robustness result in [12] for the δ-exploratory myopic
strategy with the averaging revision rule. We believe that this
work contributes to the goal of developing simple learning
rules that can be deployed, with provable performance, in
repeated extensive-form games with imperfect information.

Section II introduces our repeated game model and learn-
ing rules. Our main results are presented in Section III fol-
lowed by simulation results in Section IV. Some concluding
remark are given in Section V and the proofs of the main
results are provided in Appendix.

Notation: N and N0 denote the sets of positive and non-
negative integers, respectively, whereas R denotes the set of
real numbers; |A| denotes the number of elements of a finite
set A; P(A) denotes the set of probability distributions over
a finite set A; (x)+ = max{x, 0} for any x ∈ R.

II. SETUP AND MOTIVATION

We adopt the framework of extensive-form games in which
multiple players are allowed make simultaneous moves at
each node of the game tree. Such games are referred to

as “extensive-form games with perfect information and si-
multaneous moves” or “extensive-form games with almost
perfect information”. If only one player is allowed to make
moves, then such games are referred to as “extensive-form
games with perfect information”. Our model includes a non-
strategic player, called the nature, who makes chance moves
at some nodes of the game tree according to some fixed
probability distributions. A precise model is provided below.

A. Stage Game

The stage game, denoted by G, has a finite set I =
{1, . . . , |I|} of strategic players. I0 = {0, 1, . . . , |I|} denotes
the set of players including the nature, that is a non-strategic
player referred to as player 0. The game tree consists of two
finite (disjoint) sets of nodes, called non-terminal nodes N
and terminal nodes Z, and a finite set of arcs A. One of
the nodes in N is the root node r in which the stage game
starts. Each arc in A is an ordered pair of nodes (n,m) where
m ∈ N∪Z is the immediate successor of n ∈ N . The length
of a node n is the length of a longest path starting at n and
ending at a terminal node. The length of the root node is
denoted by L ∈ N. N(k) denotes the set of nodes with
length k ∈ N0, where N(0) = Z. We denote the subgame
rooted at a node n ∈ N by G(n), and the set of terminal
nodes in G(n) by Z(n).

The set of nodes in which player i ∈ I0 makes moves is
dented by N i, where N i ⊂ N and ∪i∈I0N i = N . I0(n) :=
{i ∈ I0 : n ∈ N i} denotes the set of players who make
moves at a node n ∈ N . I(n) := {i ∈ I : n ∈ N i} denotes
the set of strategic players who make moves at a node n ∈ N .
M i(n) denotes the set of moves of a player i ∈ I0(n) at a
node n ∈ N . The set of arcs between a node n ∈ N and
its immediate successors is identified with the set of joint
moves M(n) := ×i∈I0(n)M

i(n) at n. As a result, we will
use the notation M(n) also to denote the set of nodes that are
immediate successors of n ∈ N . Starting from the root node,
at each non-terminal node n ∈ N reached during the play of
the stage game, the set of players I0(n) move simultaneously
and their joint move m ∈ M(n) determines the next node
reached. The stage game ends when a terminal node z is
reached, at which point each player i ∈ I receives a payoff
denoted by f i(z) ∈ R.

Each player i ∈ I0 makes his/her moves using a strategy
σi defined on N i such that σi(n) ∈ P(M i(n)) at each n ∈
N i. If a node n ∈ N i is reached during the play, player
i ∈ I0 makes his/her move mi at n according to σi(n)
where mi is an independent draw from σi(n). A strategy σi

is a pure if σi(n) assigns probability one to a single move
mi ∈ M i(n) at every node n ∈ N i.

We use the notation σ := (σj)j∈I to denote the joint
strategy employed by all strategic players, and σ−i :=
(σj)j∈I\{i} to denote the joint strategy employed by all
strategic players except a player i ∈ I . In general, we refer to
the set of strategic players other than player i ∈ I as −i, i.e.,
−i refers to I\{i}. We sometimes write σ as σ = (σi, σ−i)
for any i ∈ I . Throughout the paper, we suppress the
dependency of various quantities on the nature’s strategy σ0,
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which is assumed to assign non-negative probability to every
move m0 ∈ M0(n) at each node n ∈ N0.

We let Pσ denote the probability distribution induced by
σ over Z, and Pσ[z|n] denote the probability distribution
induced by σ over Z given that the node n ∈ N is reached.
f i
σ(n) denotes the expected payoff of player i ∈ I under the

joint strategy σ in G(n), n ∈ N , i.e.,

f i
σ(n) := Eσ[f

i|n] =
∑
z∈Z

Pσ[z|n]f i(z).

Definition 1: A joint strategy σ is called a subgame per-
fect equilibrium of the stage game G if

fσ(n) = max
σi

f i
(σi,σ−i)(n)

for all i ∈ I and n ∈ N .
Definition 2: The maxmin (or minmax) payoff of each

player i ∈ I in G(n), n ∈ N , is defined as

ρi(n) := max
σi

min
σ−i

f i
(σi,σ−i)(n) = min

σ−i
max
σi

f i
(σi,σ−i)(n).

We next introduce the notion of a perturbed subgame
perfect equilibrium. For this, we first introduce the logistic
response function βλ that maps any f ∈ Rd, d ∈ N, to the
probability vector

βλ(f) =
1∑d

ℓ=1 e
1
λ fℓ

(e
1
λ f1 , . . . , e

1
λ fd)

where λ > 0. It is well-known that, given f ∈ Rd, βλ(f)
assigns arbitrarily high probability to argmaxℓ∈{1,...,d} fℓ
for sufficiently small λ > 0. Consequently,

lim
λ→0

d∑
ℓ=1

fℓβ
λ
ℓ (f) = max

ℓ∈{1,...,d}
fℓ

where βλ
ℓ (f) is the ℓ-th component of βλ(f).

Definition 3: A joint strategy σλ, λ > 0, is called a λ-
perturbed subgame perfect equilibrium of the stage game G
if

σi,λ(n) = βλ(f i
σ−i,λ(n))

for all i ∈ I and n ∈ N where

f i
σ−i,λ(n) :=

(
Eσλ [f i(z)|n,mi]

)
mi∈Mi(n)

and Eσλ [f i(z)|n,mi] is player i’s expected payoff under σλ

given that the node n is reached and player i makes the move
mi ∈ M i(n) at n.

Proposition 1: Let {σλk}k∈N be such that λk → 0 and
σλk is a λk-perturbed subgame perfect equilibrium of G
for each k ∈ N. If σk → σ, then σ is a subgame perfect
equilibrium of G.

Proposition 1 implies that, for sufficiently small λ > 0,
a λ-perturbed subgame perfect equilibrium will be near a
subgame perfect equilibrium, which follows from Theorem 2
in [15].

B. Repeated Game and Learning Rules

We now introduce a repeated game in which the stage
game G is repeated over an infinite number of rounds t ∈ N.
The terminal node reached in round t ∈ N is denoted by
zt ∈ Z. At the end of each round t ∈ N, the history of the
play is ht = (z1, . . . , zt) (h0 is the null history). The strategy
σi
t used by player i ∈ I in round t ∈ N can be chosen on

the basis of ht−1 (the nature uses the same strategy σ0 in
every round t ∈ N). We use the notation f̄ i

t (n) to denote the
average payoff received by player i ∈ I in rounds prior to
round t ∈ N in which the node n ∈ N i is visited; f̄ i

1(n) ∈
R is arbitrary. Similarly, we use the notation f̄ i

t (n,m
i) to

denote the average payoff received by player i ∈ I in rounds
prior to round t ∈ N in which player has made the move
m ∈ M i(n) at a node n ∈ N i; f̄ i

1(n,m
i) ∈ R is arbitrary.

The average payoffs f̄ i
t (n) and f̄ i

t (n,m
i) are determined by

the history ht−1, t ∈ N.
In the repeated game, each player i uses a learning rule

Σi to determine his/her/her strategy σi
t for each round t ∈

N after observing the history ht−1, i.e., σi
t = Σi(ht−1).

The probability distribution induced by a joint learning rule
Σ = (Σi)i∈I over the histories of finite length is denoted by
PΣ. We are interested in analyzing the long-term behavior
of certain payoff-based learning rules, introduced next. A
simple payoff-based learning rule, called the δ-exploratory
myopic strategy and averaging revision rule where δ > 0
is a small exploration probability, is introduced in [12]. We
will refer to this learning rule as Σi,δ . Upon reaching a node
n ∈ N i in round t, a player i ∈ I using Σi,δ makes a move
mi ∈ M i(n), with probability 1 − δ, that has achieved the
highest average payoff maxmi∈Mi(n) f̄

i
t (n,m

i) in rounds in
which player i has made the move mi at n prior to t (ties
are broken by dividing the probability 1 − δ equally); and
player i makes a move mi, with probability δ, that is chosen
randomly from M i(n) with equal likelihood.

In extensive-form games with perfect information (a single
player moves at every node and there is no nature player),
the reference [12] shows that, for sufficiently small δ > 0,
player strategies almost surely converge to a strategy that is
close to the (assumed) unique perfect equilibrium of the stage
game under Σδ = (Σi,δ)i∈I . Again in the perfect information
case, the reference [12] also shows that, for sufficiently small
δ > 0, the long-run average payoff to a player i using
Σi,δ is no worse than player i’s maxmin payoff in the stage
game (minus small ϵ > 0) almost surely, regardless of the
learning rule used by the other players. Although Σi,δ is a
natural and appealing learning rule, the results in [12] cannot
be extended to the imperfect information case, in particular
to the extensive-form games with simultaneous moves, in a
satisfactory manner.

To see why Σi,δ would not produce satisfactory results
in the case of simultaneous moves, consider the matching
pennies game depicted in fig. 1. Each of the two players
chooses either Heads (H) or Tails (T) simultaneously with
the other player. If player 1’s choice matches player 2’s
choice, player 1 receives a one unit payoff from player
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H/T T/H H/H T/T

Players: 1,2

-1, 1 -1, 1 1, -1 1, -1

Fig. 1. Matching Pennies (H=Heads / T=Tails)

2; otherwise, player 2 receives a one unit payoff from
player 1. This game can be represented by a tree where
the only non-terminal node is the root node with four
terminal nodes. The edges, H/T, T/H,H/H, T/T , corre-
spond to each possible joint move at the root node. If
player 1 uses Σ1,δ and player 2 uses a constant strat-
egy σ2 (with σ2(r,H), σ2(r, T ) > 0), then player 1’s
average payoff for H and T converges to σ2(r,H) and
σ2(r, T ) respectively. In this case, player 1’s average payoff
would converge to (1 − δ/2)max{σ2(r,H), σ2(r, T )} +
(δ/2)min{σ2(r,H), σ2(r, T )}, which would be nearly op-
timal for player 1 for sufficiently small δ > 0.

However, if player 2 uses a strategy which selects T
(resp. H) in each round t when f̄1

t (r,H) > f̄1
t (r, T ) (resp.

f̄1
t (r, T ) > f̄1

t (r,H)), then player 1 would be winning each
round only with probability δ/2 unless f̄1

t (r,H) = f̄1
t (r, T )

(conditioned on the prior history). This would lead to the
long-term average payoff −1 + δ that is nearly player 1’s
minimum payoff for small δ > 0. The root cause of this
unsatisfactory performance of Σi,δ is the fact that, when
δ > 0 is small (as it should be), it assigns nearly all of
the probability mass to a move corresponding to the highest
average payoff in prior rounds even when an alternative
move achieves an average payoff in prior rounds that is
only slightly below the highest. As a result, player i using
Σi,δ with small δ > 0 becomes quite predictable by a so-
phisticated opponent. This shows the significance of random
exploration as well as the manner in which it is conducted.
We refer the interested reader to [14] for a detailed discussion
on this point.

The discussion above motivates us to introduce an alter-
native learning rule which will call the logit learning rule
and refer to it as Σ̄i,λ. A player i using Σ̄i,λ makes his/her
moves in round t according to the strategy

σ̄i,λ
t (n) := βλ(f̄ i

t (n, ·)), ∀n ∈ N i

where f̄ i
t (n, ·) := (f̄ i

t (n,m
i))mi∈Mi(n) and λ > 0. Unlike

Σi,δ , Σ̄i,λ assigns probabilities to actions in a way that is
commensurate with the corresponding average payoffs in
the prior rounds; in particular, actions with nearly equal
average payoffs in the prior rounds are assigned nearly equal
probabilities for small λ > 0.

We finally introduce a slight modification of Σ̄i,λ to
simplify our analysis and make use of the existing results in
the literature; the analysis of the long term behavior of Σ̄i,λ

in repeated normal-form games does not seem to be readily
available in the literature to our knowledge. For any λ > 0,
the modified logit learning rule Σ̂i,λ is obtained from Σ̄i,λ

by replacing the averages {f̄ i
t}t∈N with {f̂ i

t}t∈N generated

by

f̂ i
t+1(n,m

i) = f̂ i
t (n,m

i) + xt(n,m
i)

f i(zt)− f̂ i
t (n,m

i)

νt+1(n)βλ
mi(f̂ i

t (n, ·))
(1)

starting from some arbitrary f̂ i
1(n,m

i), for all n ∈ N i and
mi ∈ M i(n), where

xt(n,m
i) :=

 1 if n is visited and mi is chosen
by player i in round t

0 else

νt+1(n,m
i) :=

t∑
k=1

xt(n,m
i)

νt+1(n) :=
∑

mi∈Mi(n)

νt+1(n,m
i)

f̂ i
t (n, ·) := (f̂ i

t (n,m
i))mi∈Mi(n)

and βλ
mi(f̂ i

t (n, ·)) is the probability assigned by βλ(f̂ i
t (n, ·))

to the move mi. We note that, in (1), νt+1(n)β
λ
mi(f̂ i

t (n, ·))
is expected to approximate νt+1(n,m

i) in the long run. In
fact, if νt+1(n)β

λ
mi(f̂ i

t (n, ·)) is replaced with νt+1(n,m
i),

the recursion (1) would generate {f̄ i
t}t∈N.

When every player i uses Σ̂i,λ in a repeated normal-form
game, the long term behavior of player strategies is analyzed
in [16] using the Ordinary Differential Equation (ODE)
method of stochastic approximation. The joint learning rule
Σ̂λ := (Σ̂i,λ)i∈I leads to an autonomous ODE which is
related to the ODE associated with the smooth fictitious play
algorithm in [16]. The reference [16] shows that player strate-
gies generated by Σ̂λ converge to a λ-perturbed equilibrium
of the stage game in repeated two-player zero-sum and two-
player partnership normal-form games (with countably many
λ-perturbed equilibrium) under the following boundedness
assumption.

Assumption 1: {f̂ i
t}i∈I,t∈N generated by Σ̂λ, λ > 0, is

bounded almost surely.
Assumption 1 can be removed by projecting the iterates

{f̂ i
t}i∈I,t∈N to large compact sets at the cost of a more com-

plicated analysis [17]. Without further mention, we will also
let Assumption 1 hold throughout the paper. A consequence
of Assumption 1 is that all node-move pairs for all players
are visited infinitely often, i.e., limt→∞ νt(n,m

i) = ∞ for
all i ∈ I , n ∈ N , mi ∈ M i(n), almost surely under Σ̂λ,
λ > 0.

In the next section, we present our main results on the long
term behavior of player strategies and average cost generated
by Σ̂λ in extensive-form games with simultaneous moves.

III. MAIN RESULTS

We will present two results whose proofs can be found
in Appendix. We will first present convergence results under
self-play, i.e., every player i uses the modified logit learning
rule Σ̂i,λ. We will then present a robustness result for a player
i using Σ̄i,λ against the other players using arbitrary learning
rules.
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H/T T/HH/H T/T

H/T T/H H/H T/T H/T T/H H/H T/T H/T T/H H/H T/T H/T T/H H/H T/T

Players: 2,3

Players: 1,2

-1, 1, -1 -1, 1, -1 1, -1, 1 1, -1, 1

Players: 1,2

1, 1, -1 1, 1, -1 2, 2, -2 0, 0, 0

Players: 2,3

-1, -1, 1 -1, -1, 1 1, 1, -1 1, 1, -1

Players: 1,3

1, -1, 1 1, -1, 1 2, -2, 2 0, 0, 0

Fig. 2. Three Player Game with Simultaneous Moves (H=Heads / T=Tails)

For each λ > 0, we consider the set Gλ of extensive-form
games G with simultaneous moves satisfying

1) At most two strategic players can make moves at any
node, i.e., maxn∈N |I(n)| ≤ 2.

2) If |I(n)| = 2, then either

f i(z) = −f−i(z), ∀i ∈ I(n), z ∈ Z(n)

or

f i(z) = f−i(z), ∀i ∈ I(n), z ∈ Z(n)

3) Every subgame G(n) has a finite number of λ-
perturbed equilibrium.

The second condition above implies that, if player i and −i
can make moves at any node n ∈ N , then either player i and
−i receive the same payoffs at each terminal node z ∈ Z(n),
or their payoffs sum to zero at each z ∈ Z(n). In other
words, either player i and −i face a zero-sum or a partnership
game in G(n) for any fixed strategies of the other players
in I\I(n). The third condition is a generic one, i.e., almost
all games G satisfies the third condition (in fact, with an
odd number of λ-perturbed subgame perfect equilibrium) for
almost all λ > 0; see Theorem 3 in [15]. Furthermore, every
zero-sum extensive-form game with simultaneous moves has
a unique λ-perturbed subgame perfect equilibrium; see [18]
for the case of zero-sum normal-form games.

Theorem 1: Player strategies σt = (σi
t)i∈I generated by

the modified logit learning rule Σ̂λ, λ > 0, in an extensive-
form game G ∈ Gλ with simultaneous moves, converges
almost surely to a λ-perturbed subgame perfect equilibrium
of G.

Remark 1: A very appealing robustness result for the
modified logit learning rule is included in [14]. In Section 6
of [14], it is argued that the modified logit learning rule
achieves “ϵ-universal consistency”. Loosely speaking, this
means that a player i using the modified logit learning
rule Σ̂i,λ with small λ > 0 would achieve near optimal
performance in the long run with respect to the empirical
frequency distribution of the other player’s moves. In par-
ticular, this would imply that a player i using Σ̂i,λ with
small λ > 0 would be more or less playing optimally in the
long run against the other players using constant strategies.
We conjecture that this ϵ-universal consistency result can
be extended to the extensive-form games with simultaneous
moves under Σ̂i,λ.

Remark 2: We expect that the counterparts of the results
obtained for the modified logit learning rule can also be

obtained for the logit learning rule, that is a somewhat
more natural learning rule. This would first require obtaining
counterparts of Proposition 4.2 in [16] and the ϵ-universal
consistency result in [14] for the logit learning rule in
normal-form games. A promising approach to obtain such
results would be to employ the asynchronous stochastic
approximation techniques [19], [20].

We next present a robustness result for a player i ∈ I
using the logit learning rule Σ̄i,λ in an extensive-form game
with perfect information.

Theorem 2: For every extensive-form game G with per-
fect information and ϵ > 0, there exists λ̄ > 0 such that,
under any joint learning rule Σ where Σi = Σ̄i,λ for some
player i ∈ I with λ ∈ (0, λ̄], we have

limt→∞
1

t

t∑
k=1

f i(zk) ≥ ρi(r)− ϵ

almost surely (PΣ).
In extensive-form games with perfect information, The-

orem 2 provides a guaranteed long-run average payoff to
a player using the logit learning rule, that is the player’s
maxmin payoff minus small ϵ > 0, against all sophisticated
opponents. For example, this would imply that, in two-
player constant-sum win-lose games, a player using the
logit learning rule would eventually almost always win if
a guaranteed winning strategy exists for the player. It is
straightforward to see that a player using the logit learning
rule, or its modified version, would in general achieve higher,
in fact nearly optimal, long-run average payoffs against
unsophisticated opponents using constant strategies. Extend-
ing Theorem 2 to extensive-form games with simultaneous
moves and obtaining an ϵ-universal consistency result are
interesting research problems, which we plan to address in
the fuller version of the paper.

IV. SIMULATION

To illustrate convergence using logit learning, we consider
a three player game with simultaneous moves, see fig. (2).
The sub-games played after initial plays H/H and H/T are
zero sum games, and the other two sub-games are identical
interest between the active players at the node. Note for
players two and three that from condition 2 of Theorem 1,
that their payoffs are opposite at each node. For this game,
the expected payoffs at any subgame perfect equilibrium
are 0, 0, 0 for players one, two, and three. The non-terminal
nodes are labeled with the players, and the terminal nodes
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are labeled with the payoffs. In the simulation all three
players use logit learning with λ = 0.1, as in the context of
Theorem 1. The simulation was run for 10, 000 trials where
for each trial the players play 10, 000 stage games. As λ
becomes smaller the payoffs get closer to the equilibrium,
but also take longer to converge.
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Fig. 3. Simulation of Theorem 1 for Multiplayer Game in fig. (2)

V. CONCLUSION

Much work remains to be done to obtain a fuller picture of
the behavior of the logit learning by valuation in extensive-
form games with imperfect information, some of which is
pointed out in the sequel. We considered the long-term
behavior of the logit learning in extensive-form games with
simultaneous moves. We showed convergence to perturbed
subgame perfect equilibria under self play in a certain class
of extensive-form games with simultaneous moves. We also
obtained a robustness result for a player using the logit
learning rule in the case of perfect information. Extending
these results to more general extensive-form games with
imperfect information is a future research topic. Finally,
obtaining counterparts of such results in large games where
the moves of players are partitioned into similarity classes as
in [13] would be another interesting topic for future research.
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