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Abstract— In the linear threshold model, each individual
has a time-invariant threshold and an initial action A or B.
At each time step one or more individuals become active to
revise their action depending on their own threshold and the
population proportion of each action. The resulting decision-
making dynamics can be predicted and controlled, provided
that the thresholds of individuals are known. In practice, how-
ever, the thresholds are unknown and often only the evolution
of the total number of individuals who have chosen one action
is known. The question then is whether the thresholds are
identifiable given this quantity over time. We find necessary and
sufficient conditions for threshold identifiability of the linear
threshold model under synchronous and asynchronous decision-
making. The results open the door for reliable estimation of the
thresholds, and in turn, prediction and control of the decision-
making dynamics using real data.

I. INTRODUCTION

The linear threshold model [1] is used in explaining
the cascading behavior of decision dynamics within binary
decision settings. This model has been applied to various
phenomena, such as spread of rumors, adoption of technolo-
gies, and diffusion of information [2]–[5].

In this model, each individual has a threshold that deter-
mines his decision to adopt an action based on the proportion
of the population who has already adopted it. In the context
of evolutionary game theory, the best-response update rule
also capture this behavior, provided that the utility function
is a linear function of the number of adaptors [6].

In the literature the linear threshold model was adopted
to maximize the spread [7]–[9] and also to minimize the
spread of undesirable entities, such as computer viruses
and malicious rumors [10], [11]. Several works focused on
characterizing and analyzing the equilibrium of the linear
threshold decision dynamics [12], [13]. Further, recent at-
tention was paid in controlling the dynamics by providing
incentives and optimal seeding [14]–[18].

We need an accurate estimation of the threshold distri-
butions, to be able to accurately predict the decision-making
dynamics over time. Most studies assumed that the thresholds
are the same for each individual or uniformly distributed
over the population. This may not be true in the real-world
scenario as the sensitivity to social influence varies from
person to person. There are several works on estimating
thresholds [19]–[21].

Nevertheless, identifiability comes first. It may not be
possible to uniquely obtain the thresholds given the observed
output, i.e., the individuals’ decisions over time. If so, then
one may estimate the “wrong” value for the thresholds,
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because several threshold distributions can result in the same
observed output; namely, the threshold distribution is not
identifiable. To the best of our knowledge, no studies have
investigated the identifiability of the linear threshold model.

Different approaches and notions have been suggested
in the literature for identifiability, such as output equality
and algebraic identifiability both in the local and global
sense. There is a rich literature for the identifiability of
continuous space systems for both continuous-time [22]–[24]
and discrete-time cases [25], [26]. However, the system of
linear threshold dynamics belongs to the discrete space, thus,
we use the discrete space extension of the output equality
approach presented in [27] to analyze the identifiability.

We formulate the linear threshold decision-making dynam-
ics for synchronous and asynchronous updates separately and
analyze their local, structural, and global identifiability– Sec-
tion II. For synchronous systems, we find that the system is
identifiable if and only if the output trajectory monotonically
increases (resp. decreases) and meets all thresholds except for
possibly the highest (resp. lowest) threshold –Theorem 1. If
a threshold is not met, the number of individuals with that
threshold is not identifiable–Lemma 1. The conditions for the
asynchronous case are more restrictive as the necessary and
sufficient condition for the identifiability of an individual’s
threshold requires the individual to become active at the time
steps when the population proportion of those who have
selected action A in the population equals his threshold and
1
n less than to his threshold–Lemma 3 and Theorem 2.

II. PROBLEM FORMULATION

Consider a well-mixed population of n decision-making
individuals who choose either of the actions A or B over time
t = 1, 2, . . .. Each individual has a time-invariant temper
τ i ∈ {0, 1, . . . , n} and an initial action. They revise their
decision based on others’ actions and their own tempers.
The temper divided by the population size, i.e., τ i/n, which
belongs to [0, 1], is the threshold of individual i.

An individual “tends” to choose action A at time t+ 1 if
and only if a number of individuals greater than or equal to
his temper have chosen A in the population at time t. The
intention translates into action if the individual is active at
time t; otherwise, he sticks to his action at time t. More
specifically, the linear threshold update rule for individual i
who is active at time t is

xi(t+ 1) =

{
A, if A(t) ≥ τ i,

B, if A(t) < τ i.
(1)

where xi(t) ∈ {A,B} is the decision of individual i at time t
and A(t) denotes the number of individuals in the population
who have chosen action A at time t.
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Sort the individuals in the ascending order of their tempers
and label them by 1, 2, . . . , n, yielding τ1 ≤ τ2 ≤ . . . τn.
Then we have the detailed temper vector τ̄ = (τ i)ni=1 that
characterizes the heterogeneity of the population and belongs
to the space Θ̄ = {0, 1, . . . , n}n. Define x̄, the state of the
population, as the stack of all individuals’ actions, x̄(t) ≜
(x1(t), ..., xn(t)), with the state space X̄ = {A,B}n.

At every time t, a set of individuals become active to revise
their decisions. Define the activation sequence ⟨U t⟩∞t=0,
where U t ⊆ {1, . . . , n}, U t ̸= ∅, is the set of individuals
active at time t. The activation sequence is synchronous
if the whole population becomes active at each time, i.e.,
|U t| = n for all t, and is asynchronous if exactly one
individual becomes active at a time. In the asynchronous
case, we simplify the notation U t to ut, where ut is the
single active individual at time t.

Update rule (1) together with the activation sequence
govern the evolution of the state x̄, resulting in the linear
threshold dynamics. The goal is to determine whether the
thresholds can be obtained uniquely given some measurable
quantity (i.e., output) of the dynamics; namely, whether the
thresholds are identifiable. In what follows, we provide the
analytical form of the dynamics in Definitions 1 and 2.

A. The asynchronous system

In asynchronous system, the activation sequence is con-
sidered as the input and the output is the total number of
A-selected individuals, i.e., those who have chosen action
A. We use A(x̄), with an abuse of notation, to denote the
number of A-selected individuals in the state x̄. The detailed
temper vector τ̄ is considered as the parameter. Inspired by
[28], we define the asynchronous system in the following
compact way. Define step function 1(p, q) which equals 1
if p ≥ q and 0 otherwise. Then individual i tends to select
action A at time t if and only if 1(A(x̄), τ i) = 1. Define
ei as the ith column of the n × n identity matrix. Assign
numeric values 0 and 1 to the actions; namely, A := 1 and
B := 0. Let U = {1, . . . , n}.

Definition 1 (Asynchronous system): The asynchronous
decision-making system is defined by

x̄(t+ 1) = x̄(t) + (1(A(x̄), τ i)− xi(t))ei, x̄0 = x̄(0)

i = ut,

y(t) =
∑n

j=1 x
j(t),

(2)

where x̄(t) ∈ X̄ is the state, τ̄ ∈ Θ̄ is the parameter,
⟨ut⟩∞t=0, ut ∈ U , is the input, x̄0 is the initial state, y(t)
is the output which belongs to the space Y = {0, . . . , n}.

Example 1: Consider the asynchronous system with n =
3, the temper distribution τ̄ = (0, 1, 2) implying that
individual i has a temper τ i = i − 1, and initial state
x̄0 = (B,B,A). Under the activation sequence ⟨ut⟩∞t=0 =
⟨3, 2, 1, 3, 2, 1, . . . ⟩, the population state evolves as in Table I
which is also illustrated in Fig. 1.

B. The synchronous system

The dynamics are simpler in the synchronous case as
the system becomes autonomous. Moreover, although the

TABLE I: Transition of the states in Example 1. The active
individual at each time is indicated by red.

Time t State x̄(t) Output y(t)
0 (B,B,A) 1
1 (B,B,B) 0
2 (B,B,B) 0
3 (A,B,B) 1
4 (A,B,B) 1
5 (A,A,B) 2
6 (A,A,B) 2
7 (A,A,A) 3
8 (A,A,A) 3

y(t)

t0 321 4

1

3

2

5 9876

Fig. 1: Output of the asynchronous system with τ̄ = (0, 1, 2)
and initial state x̄0 = (B,B,A) given in Example 1.

detailed temper vector τ̄ is again enough to determine the so-
lution trajectory given any initial condition, it is unnecessary,
because all individuals with the same tempers act in the same
way. This motivates us to categorize equal tempers into the
same type. Let p ∈ N denote the total number of types and
label the types in the ascending order as 1, 2, . . . ,p, where
p ≥ 2. Then by denoting the temper of type-p by τp, we
have that τ1 < τ2, . . . < τp. Define the categorized temper
vector as τ = (τp)

p
p=1. Stack the frequencies of each type to

obtain the temper distribution nτ ≜ (n1, ..., np), where np

is the number of type-p individuals which belongs to the set
Θ = {z ∈ Zp

≥0 |
∑p

p=1 zp = n}. Correspondingly, define
the categorized state x(t) = (A1(t), . . . , Ap(t)) where Ap

is the number of A-selected type-p individuals, i.e., those
with temper τp who have selected action A. The state space
equals X = {z ∈ Zp

≥0 | zp ≤ np}. It can be shown
that the categorized temper vector τ with frequencies nτ

is sufficient to determine the dynamics for a given initial
condition. Hence, we can now define the synchronous system
in the following form by considering nτ as the parameter.

Definition 2 (Synchronous system): Given the categorized
temper vector τ ∈ {0, . . . , n}p, the autonomous synchronous
decision-making system is defined by{

x(t+ 1) =
∑p

p=1 np1(A(x), τp), x0 = x(0)

y(t) =
∑p

p=1 npg(x(t);nτ ),
(3)

where x(t) ∈ X , np’s are the parameters that are stacked
to form the parameter vector nτ , with the parameter space
Θ, x0 is the initial state, y(t) is the output which belongs
to the space Y = {0, . . . , n}.

Example 2: Consider the synchronous system with n = 6,
τ = (0, 2, 4) and nτ = (2, 1, 3). Starting with initial state
x0 = (0, 0, 0), the population state evolves through x(1) =

4974



(2, 0, 0) and x(t) = (2, 1, 0) for all t ≥ 2. Type-3 individuals
never switch to A as they never meet their temper.

We first provide the necessary identifiability definitions to
determine the identifiability of systems.

III. PRELIMINARIES: IDENTIFIABILITY

Starting with the same initial condition and under the
same input sequence, if two different parameter values
yield identical output trajectories, then the system is not
identifiable. This can be analyzed both globally and locally;
global identifiability guarantees the uniqueness in the whole
parameter space while in local identifiability, the space is
restricted to a subset of the space. We use the notions of
identifiability defined in [27] for discrete space systems, but
rewrite them here in terms of the decision-making systems.
The output sequences of the systems in Definition 1 and
Definition 2 are denoted by ⟨y(t, x̄0, ⟨ut⟩T−1

0 ; τ̄ )⟩T0 and
⟨y(t, x̄0; τ̄ )⟩T0 respectively.

Definition 3 ( [27] definition 1): The asynchronous sys-
tem in Definition 1 is locally (strongly) x̄0-identifiable at
τ̄ ∈ Θ̄ through the input sequence ⟨ut⟩T−1

0 ∈ {1, . . . , n}T−1

for some T > 0, if there exists a neighborhood Θ̄′ ⊂ Θ̄ of
τ̄ , such that for any τ̄ , τ̄ ′ ∈ Θ̄′,

τ̄ ̸= τ̄ ′ ⇒
⟨y(t, x̄0, ⟨ut⟩T−1

t=0 ; τ̄ )⟩T0 ̸= ⟨y(t, x̄0, ⟨ut⟩T−1
t=0 ; τ̄ ′)⟩T0 .

(4)

Definition 3 is for the identifiability at τ̄ for a given x̄0.
The notion of structural identifiability requires subsets of
initial conditions X̄ ′ ⊆ X , parameters Θ̄′ ⊆ Θ̄, and inputs
U ′ ⊆ UT , defined as U × . . . × U for T > 0 times, where
the system is identifiable for almost all the points in these
subsets except for those of a measure zero [22], [25], [29].
This is, however, not applicable to our setup as the size of
these spaces is finite.

Definition 4 ( [27]): The asynchronous system in Defini-
tion 1 is locally structurally identifiable if there exist a
T > 0 and subsets Θ̄′ ⊂ Θ̄, X̄ ′ ⊆ X̄ , and U ′ ⊆ UT ,
such that the system is locally (strongly) x̄0-identifiable at τ̄
through the input sequence ⟨ut⟩T−1

t=0 for all τ̄ ∈ Θ̄′, x̄0 ∈ X̄ ′,
and ⟨ut⟩T−1

t=0 ∈ U ′.
Finally, we provide the definition of global identifiability.
Definition 5 ( [27]): The asynchronous system in Defini-

tion 1 is globally identifiable at τ̄ if there exist a T > 0
and an input sequence ⟨ut⟩T−1

t=0 such that for all τ̄ ′ ∈ Θ̄ and
all x̄0 ∈ X̄ , (4) holds.

Definitions for the synchronous system can be obtained
similarly by removing the input sequence. All definitions
presented so far are for the identifiability of the system,
that is whether all parameters of the system are identifiable.
However, even if the whole system is not identifiable, some
parameters may be identifiable. To analyze the identifiability
of a parameter, similar definitions as Definitions 3 to 5 can
be used with the difference of replacing the whole parameter
vector τ̄ with a single parameter τ i for some i ∈ {1, . . . , n}.

IV. IDENTIFIABILITY OF SYNCHRONOUS SYSTEM

In synchronous updating, if the total number of A-selected
individuals at time t is A(t), then at time (t + 1) every

individual who has a temper less than or equal to A(t) will
update to A and others will switch to B resulting in x(t+1) =
(n1, . . . , np, 0, . . . , 0) for some p ∈ {1, . . . ,p}. Then the
output of the system at t+ 1 is y(t+ 1) =

∑p
k=1 nk.

Define the cumulative distribution function of the tempers
by F (p,nτ ) =

∑p
k=1 nk, where p ∈ {1, . . . ,p}. It can

be shown that F (p,nτ ) is a piece-wise constant, non-
decreasing, and right-continuous function with discontinu-
ities at all points k ∈ {1, . . . ,p}. The system output is the
same as the cumulative tempers at some p ∈ {1, . . . ,p}. Let
X̂ = {z ∈ Zp

≥0 | zp < np}, that is the set of states where the
individuals of none of the types have all selected A. Define
Θ̂ = {z ∈ Zp

≥1|
∑p

p=1 zp = n} and y(x0) = y(0), that is
the output at time zero. The following is the main result of
this subsection.

Theorem 1: Consider the synchronous system in Defini-
tion 2 with initial condition x0 ∈ X̂ . The system is locally
x0-identifiable at nτ ∈ Θ̂ if and only if one of the following
two cases hold:
Case 1. x0 and nτ satisfy

y(x0) ∈ [τ1, τ2), (5)
(∀p ∈ {1, . . . ,p− 2}) F (p,nτ ) ∈ [τp+1, τp+2). (6)

Case 2. x0 and nτ satisfy
y(x0) ∈ [τp−1, τp), (7)

(∀p ∈ {2, . . . ,p− 1}) F (p,nτ ) ∈ [τp−1, τp). (8)

Moreover, if (5) and (6) hold, then
n1 = y(1),

np = y(p)− y(p− 1), p = 2, . . . ,p− 1,

np = n− y(p− 1),

(9)

and if (7) and (8) hold, then
n1 = y(p− 1),

np = y(p− 1)− y(p), p = 2, . . . ,p− 1,

np = n− y(1).

(10)

We provide all the proofs in the appendix. The intuition
behind Theorem 1 is that the identifiability of a synchronous
system is ensured when exactly one type of individuals
change their actions at a time and every type of individual
changes their strategy at some point. The system output
should start at a value between the least temper and the one
after and gradually increase to achieve this (or the other way
around as in the second case of the theorem). This intuition
is illustrated by the following example.

Example 3 (revisiting Example 2): Consider the output
trajectory ⟨y(t)⟩∞t=0 = ⟨0, 2, 3, 3, . . .⟩ depicted by green in
Fig. 2. By observing the output, parameter nτ = (2, 1, 3) can
be uniquely obtained as n1 = y(1) = 2, n2 = y(2)−y(1) =
1 and n3 = n− y(2)− y(2) = 6− 3 = 3. Consider another
output trajectory ⟨y(t)⟩∞t=0 = ⟨0, 4, 6, 6, . . .⟩ with the same
initial condition given by blue in Fig. 2. It implies that n1 =
y(1) = 4, thus the parameter n1 is identifiable. However,
n2 + n3 = y(2) = 2 as both type-2 and 3 individuals met
their tempers at time t = 1. Hence, parameters n2 and n3

are not identifiable as all three temper distributions (4, 1, 1),
(4, 2, 0), and (4, 0, 2) can result in the same output.
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Fig. 2: Output of the synchronous system with n = 6, nτ =
(2, 1, 3), and τ = (0, 2, 4) given in Example 3.

Example 3 also illustrates how one parameter can be
identifiable but not the whole system. The following lemma
provides the condition for the identifiability of one parameter.

Lemma 1: Consider the synchronous system in Defini-
tion 2 with initial condition x0 ∈ X̂ . Parameter np, p ∈
{2, . . . ,p−1}, is locally x0-identifiable at n∗

p, where n∗
p ≥ 1,

if and only if there exists some time T ≥ 0 such that at least
one of the following two conditions are met:{

y(T ) ∈ [τp−1, τp),

y(T + 1) ∈ [τp, τp+1),
(11)

or {
y(T ) ∈ [τp, τp+1),

y(T + 1) ∈ [τp−1, τp).
(12)

Additionally, under (11) and (12), n∗
p = |y(T+2)−y(T+1)|.

According to Lemma 1, to know the number of individuals
with temper τp, the total number of A-selected individu-
als should consecutively enter the intervals [τp−1, τp) and
[τp, τp+1) in either direction.

Remark 1: The categorized tempers τ1, . . . , τp are as-
sumed to be known in Theorem 1 and Lemma 1, because
the only parameter in the synchronous system in Definition 2
is the temper distribution nτ . By observing the monotoni-
cally increasing output of the system with nτ (Case 1 of
Theorem 1), it is unclear whether after a jump in the output,
say from y(T ) ∈ [τp−1, τp) the new value y(T + 1) falls in
the interval [τp, τp+1) or beyond. If it falls in the interval
[τp+1, n), then we never know about the existence of the
temper τp and may incorrectly assume that the temper after
τp−1 is τp+1. This is not the case when the number of types
p is known a priori as then Conditions (5) and (6) are met
if the number of jumps in y are p − 2 (if y does not reach
the total population size n at its final jump; otherwise, the
conditions are met if the number of jumps in y are p− 1).

We end this section with the following result.
Corollary 1: The synchronous system in Definition 2 is

locally structurally identifiable but not globally identifiable.

V. IDENTIFIABILITY OF ASYNCHRONOUS SYSTEM

The asynchronous dynamics depend on both the tempers
and the activation sequence. The following result determines
the identifiability of the system.

Theorem 2: Asynchronous system Definition 1 is locally
x̄0-identifiable at τ̄ (through some input) if and only if every

individual becomes active and chooses different actions at
two consecutive output values.

According to the theorem, one needs to observe the output
trajectory and activation sequence to see whether every
individual becomes active at some output value y∗ and also
becomes active at y∗± 1 and chooses a different action than
that at y∗. The parametric identifiability requires the same for
just the individual whose temper is the parameter of interest
and is rigorously stated in Lemma 3 in the appendix. The
following example illustrates these results.

Example 4: Consider an asynchronous system with n =
3, τ̄ = (0, 1, 2), and ⟨ut⟩∞t=0 = ⟨3, 2, 1, 3, 2, 1, . . . ⟩. Now
consider another temper distribution τ̄ ′ = (0, 1, 1). Starting
with the state x̄0 = {B,B,B}, the evolution of the population
state for both temper distributions is given in Table II.
Clearly, at time t = 4, the systems have two different
population states resulting in different outputs. This is in
line with Lemma 3 as individual 3 is active at time t1 = 3
when the output is equal to his temper, y(3) = 1 under τ̄ ′.

TABLE II: Transition of the states for τ̄ and τ̄ ′ over time.

Time State for τ Output for τ State for τ ′ Output for τ ′

0 (B,B,B) 0 (B,B,B) 0
1 (B,B,B) 0 (B,B,B) 0
2 (B,B,B) 0 (B,B,B) 0
3 (A,B,B) 1 (A,B,B) 1
4 (A,B,B) 1 (A,B,A) 2
5 (A,A,B) 2 (A,A,A) 3

However, for what detailed temper distribution τ̄ and acti-
vation sequence, the conditions in Theorem 2 and Lemma 3
are met? This appears to be a complex problem. Let us start
with the simple case when τ̄ = (0, 1, . . . , n − 1). Then
the system is identifiable only for a non-self-fulfilling initial
condition as explained the following. Define the total number
of A-selected individuals at state x̄ who have a temper less
than or equal to i by FA(i, x̄) =

∑i
k=1 x

k. Individual
i ∈ {1, . . . , n} is self-fulfilling at state x̄ if FA(i, x̄) ≥ τ i for
τ i > 0 and 0 otherwise. Namely, a self-fulfilling individual
can never switch his action to B. A population state x̄ is self-
fulfilling if at least one of the individuals is so, and otherwise
the state is not self-fulfilling. Being not self-fulling ensures
that all individuals, except for those with a threshold of
zero, can switch from A to B under an appropriate activation
sequence. The states of all-A and all-B are examples of self-
fulfilling and not self-fulling states.

Proposition 1: The asynchronous system in Definition 1
is locally x̄0-identifiable at τ̄ = (0, 1, . . . , n − 1) (through
some input) if and only if x̄0 is not self-fulfilling.

Proposition 1 leads to another result. When all individuals
initially choose action B–as in many real-world scenarios
such as the spread of innovation or diseases the only identi-
fiable detailed threshold vector is (0, 1, . . . , n− 1).

Proposition 2: The asynchronous system in Definition 1
is locally x̄0 = (B, . . . ,B)-identifiable at τ̄ (through some
input) if and only if τ̄ = (0, 1, . . . , n− 1).

Corollary 2: The asynchronous system in Definition 1 is
locally structurally but not globally identifiable.
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VI. CONCLUDING REMARKS

We analyzed the identifiability of the linear threshold
model for under synchronous and asynchronous dynamics.
We derived the necessary and sufficient conditions for the
identifiability of temper distributions, which implies the
identifiability of threshold distributions. The thresholds are
not globally identifiable, however, they are locally struc-
turally identifiable, meaning there exists a subset of the
parameter space and a set of initial states where the system
is identifiable only if it starts from those initial states and
the threshold distribution belongs to that parameter subset.

In the context of the spread of innovation, the results
imply that identifiability is guaranteed if and only if the
number of adaptors can be observed from the beginning,
that is, from zero adaptors. By observing how the number
of adaptors changes over time, the threshold distribution can
be obtained: the length of a jump in the number of adaptors
equals the number of individuals of one same type. However,
if the number of adaptors increases in a way that it bypasses
certain threshold levels, identifying those thresholds becomes
impossible, although other thresholds can still be identified.
Furthermore, while the exact threshold values may not be
uniquely determined, tight upper and lower bounds exist.

The results for the asynchronous case are somewhat dis-
couraging in the sense that identifying the threshold of each
individual requires them being active at two consecutive
output values and choosing different actions at each value.

The results open the door to confidently estimate the
thresholds in linear threshold dynamics. Knowing the dis-
tribution of thresholds can be insightful by itself, and it also
allows for the control of the dynamics, bringing us closer
to real-world implementation of existing control algorithms.
Extending the results to populations consisting of imitators,
those who imitate the highest earners in terms of payoffs
in a game theory framework [30], [31] is subject to future
research.

APPENDIX

Proof: [Proof of Lemma 1] (sufficiency) If (12) holds,
then y(T + 1) = F (p,nτ ), as the temper of all types
1, . . . , p− 1 are met at time T and no other type’s temper is
met. Consequently, because of the second condition in (12),
y(T + 2) = F (p − 1,nτ ). Therefore, y(T + 1) − y(T +
2) = n∗

p. Hence, for any temper distribution n′
τ different

from nτ at n∗
p, i.e., n′

p ̸= n∗
p, the outputs at time T + 1

or T + 2 will be different. The proof for (11) is similar.
(necessity) Assume on the contrary that neither (12) nor
(11) holds. Then one of the following cases holds: Case
1. For all T ≥ 0, either y(T ) < τp−1 or y(T ) ≥ τp+1.
Then the same system with a different parameter defined by
n′

τ = (n1, . . . , np−2, np−1 − 1, n∗
p + 1, np+1, . . . , np) will

exhibit the same output trajectory. This can be shown as
follows. Since x0 ∈ X̂ , xp−1(0) < np−1. Thus, reducing
np−1 by one does not affect the initial condition in the new
system and it keeps n′

τ feasible as nτ ∈ Θ̂. On the other
hand, at every time t ≥ 1 in the original system, either all
individuals of both types p− 1 and p update simultaneously

to B or A. In either case, y(t) changes in the same way in
both systems as xp−1(t)+xp(t) either equals 0 or np−1+n∗

p.
Case 2. One of the following two cases:{

(∀T ≥ 0) y(T ) ∈ [τp, τp+1) ⇒ y(T + 1) ≥ τp, or
(∀T ≥ 0) y(T ) ∈ [τp, τp+1) ⇒ y(T + 1) < τp−1,

(13)

together with one of the following two cases are in force:{
(∀T ≥ 0) y(T ) ∈ [τp−1, τp) ⇒ y(T + 1) ≥ τp+1, or
(∀T ≥ 0) y(T ) ∈ [τp−1, τp) ⇒ y(T + 1) < τp.

(14)

Using Lemma 2, it can be shown that (13) and (14) imply

(∀T ≥ 0, k ≥ 1) y(T ) ∈ [τp, τp+1) ⇒ y(T + k) ̸∈ [τp−1, τp), (15)
(∀T ≥ 0, k ≥ 1) y(T ) ∈ [τp−1, τp) ⇒ y(T + k) ̸∈ [τp, τp+1). (16)

Now (15) and (16) imply that either the output never enters
any of the intervals [τp−1, τp) and [τp, τp+1), which is the
same as Case 1, or the output enters only one of these
intervals and never enters the other. Should the output never
enter the interval [τp−1, τp), type-p individuals would always
choose the same action as type-(p−1) individuals. Hence, the
system with the aforementioned parameter n′

τ will exhibit
the same output trajectory. Should the output never enter the
interval [τp, τp+1), type-p individuals would always choose
the same action as type-(p+1) individuals. Thus, the system
with the parameter n′′

τ = (n1, . . . , np−1, n
∗
p − 1, np+1 +

1, np+2 . . . , np) will again exhibit the same output trajectory.
Hence, the system becomes unidentifiable.

Lemma 2: Consider the synchronous system (2). Consider
an arbitrary time T ≥ 1 and let p be the type that satisfies
y(T ) ∈ [τp, τp+1). If y(T +1) ≥ τp, then y(T + k) ≥ τp for
all k ≥ 1 and if y(T + 1) < τp, then y(T + k) < τp+1 for
all k ≥ 1.
The proof follows induction on k.

Proof: [Proof 1 of Theorem 1] (sufficiency) If Case
1 holds, then the population state evolves through x(1) =
(n1, 0, . . . , 0), x(2) = (n1, n2, 0, . . . , 0), . . . , x(p − 1) =
(n1, n2, . . . , np−1, 0). That is, for each p ∈ {1, . . . ,p − 1},
there exist a time T ≥ 0 that satisfies (11). For p = p,
np simply equals n − y(p − 1). This proves the first case
as well as (9). The second case and (10) can be proven
similarly. (necessity) Define the notation Ip = [τp, τp+1) for
p = 1, . . . ,p. Define a directed graph whose nodes are Ip
and there is a link from Ip to Ik if and only if for some time
T ≥ 0, y(T ) ∈ Ip and y(T+1) ∈ Ik. Clearly, the out-degree
of each node in this graph is 1. On the other hand, in view
of Lemma 1, for each parameter np, p = 2, . . . ,p− 1 to be
identifiable, the output should either go from Ip−1 to Ip or
vice versa. Hence, the graph must be in the form of a directed
path: either I2 → I3 → . . . Ip−1 or Ip−1 → Ip−2 → . . . I2.
On the other hand, in the first case, once the output enters I2,
it will not enter I1 afterwards due to Lemma 2. Moreover,
the output must reach I1 at some point, as otherwise, the
temper distribution n′

τ = nτ +(1,−1, 0, . . . , 0) exhibits the
same output trajectory. Hence, the graph must be I1 → I2 →
I3 → . . . Ip−1. Now, again due to Lemma 2, the graph either
leaves Ip as a singleton or reaches it from Ip. This proves
Case 1 and that of Case 2 is similar.
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Proof: [Proof of Corollary 1] The proof of the structural
identifiability follows, Theorem 1 by choosing the subset
Θ′ = Θ̂ that satisfy (6) and the subset X ′ = X̂ that satisfy
(5). The proof of the global unidentifiability is trivial.

Proof of Theorem 2 is an immediate result of Lemma 3.
Lemma 3: Consider the asynchronous system Definition 1

with initial condition x̄0. Parameter τ i, i ∈ {1, . . . , n}, is
locally x̄0-identifiable at τ∗ ≥ 1 (through some input) if and
only if there exist times t1 and t2 such that (i) y(t1) = τ∗−1
and individual i becomes active at t1 and chooses action B,
and (ii) y(t2) = τ∗ and individual i becomes active at t2 and
chooses action A.

Proof: [Proof of Proposition 1] (sufficiency) Define
⟨X⟩k as the sequence of ⟨X, . . . ,X⟩ where X is repeated k
times, k ≥ 1. Under the activation sequence ⟨n, n−1, . . . , 2⟩,
the output reaches the state of (B, . . . ,B). Then, under
the activation sequence ⟨1, ⟨n, n − 1, . . . , 1⟩n⟩, the output
trajectory becomes ⟨0, ⟨1⟩n−1, ⟨2⟩n−1, . . . , ⟨n⟩n−1⟩ and each
individual i becomes active at each output value 0, 1, . . . , n,
completing the proof according to Lemma 3. (necessity) If
an individual i is self-fulfilling at the initial state x̄0, then
by induction over time t, it can be shown that individuals
1, . . . , i will never choose B, which violates Lemma 3.

Proof: [Proof of Proposition 2] The sufficiency is the
same as that in the proof of Proposition 1. For the necessity,
if τ̄ ̸= (0, 1, . . . , n− 1), there are more than one individual
with the same temper. Let i, j be two individuals with the
same temper τ . Starting from x̄0, individuals can only switch
from B to A, hence, the output never reaches back to τ , after
it increases to τ +1. Hence, both individuals i and j cannot
be active when the output equals τ .
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