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Abstract— Self-interested routing policies from individual
users in a system can collectively lead to poor aggregate
congestion in routing networks. The introduction of altruistic
agents (referred to as altruists), whose goal is to minimize
other agents’ routing time in addition to their own, can
seemingly improve aggregate congestion. However, in some
network routing problems, it is known that altruists can actually
worsen congestion compared to that which would arise if all
agents had simply behaved selfishly. This paper provides a
thorough investigation into the necessary conditions for altruists
to be guaranteed to improve total congestion. In particular, we
study the class of series-parallel nonatomic congestion games,
where one sub-population is selfish and the other is altruistic.
We find that a game is guaranteed to have improved congestion
in the presence of altruists (regardless of their population size)
compared to if all agents route selfishly, provided the path
set for the network is symmetric (all agents can access all
paths), and the path set cannot exhibit Braess’s paradox (a
phenomenon we refer to as a Braess-resistant path set). Our
results appear to be the most complete characterization of when
behavior that is designed to improve total congestion (which we
refer to as altruism) is guaranteed to do so.

I. INTRODUCTION

As society and technology become increasingly connected,
there is growing demand to understand and improve the
coordination between human behavior and technological
operations within sociotechnical systems [1]. The growing
presence of autonomous vehicles provides another opportu-
nity for system designers to optimize traffic routing in trans-
portation networks, making it a canonical, (and significant)
example of a sociotechnical system. It is well-known that
when agents choose routes solely to minimize their own
travel time, suboptimal congestion can emerge [2]. Game
theory offers promising concepts to address this problem,
providing well-studied methods to compare the inefficiencies
resulting from the behaviors of self-interested agents with
that of the optimal aggregate congestion for a network [3].

Centralized routing control is one method to reduce net-
work inefficiencies; however, it is often infeasible, so many
studies have aimed to improve network efficiency in a less
centralized manner. Techniques designed to influence routing
behavior have been studied such as direct fleet routing
strategies [4], information distribution [5], and monetary
incentives such as tolls and subsidies [6]. Additionally, a sys-
tem designer for a fleet of autonomous vehicles may design
the fleet’s routing policies to consider their own contribution
to congestion, a concept we refer to as altruism [7], [8]. The

*This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-23-1-0171 and by the
National Science Foundation under award number ECCS-2013779.

The authors are with the University of Colorado at Colorado Springs, CO
80918, USA. {chill13, pbrown2}@uccs.edu

system designer then needs to understand when the presence
of altruistic agents improve aggregate congestion relative to
all-selfish traffic?

A common measure of the inefficiency that arises from
an all-selfish population is the price of anarchy; the ratio
between the worst-case congestion in a system where all
agents route to minimize their own commute time (modeled
by a Nash equilibrium) and the congestion that can be
achieved if a system designer centrally coordinates all agents’
actions for the overall benefit of the system [3]. While a
system designer for an autonomous fleet may be interested
in the price of anarchy, she may also be interested in whether
using an altruistic routing policy improves congestion com-
pared to a selfishly routed fleet. The inefficiency that may
arise from altruism is formalized with the perversity index;
the ratio of the worst-case congestion that arises when a
heterogeneous population of agents routes to minimize the
latency they experience at Nash equilibrium, compared to
the congestion that arises if all agents route selfishly [9].
If the perversity index is less than 1 (e.g., when the entire
population is altruistic [10]), altruism improves congestion
relative to selfishness. If the perversity index is greater than 1,
altruists may actually worsen congestion compared to if they
route selfishly – a phenomenon referred to as perversity. That
is, partially-adopted altruism has the potential to degrade
congestion relative to an all-selfish population [7].

The key motivation for our work is to fully characterize the
necessary network requirements so altruists are guaranteed
to not worsen congestion. That is, what constraints must be
put on a network so that the perversity index is less than
1 for a heterogeneous population of altruistic and selfish
agents? Previous work has provided the network topol-
ogy that produces efficient equilibria [11], and has shown
that altruism cannot degrade congestion on serially-linearly-
independent networks [12]. Our work extends previous re-
sults, and shows that altruism cannot degrade series-parallel
networks provided the path set adheres to two requirements:
it is symmetric and the path set does not exhibit Braess’s
paradox. Theorem 3.1 shows that altruism is certain to
improve aggregate congestion in person-hours, provided the
network and path set restrictions mentioned above. That is, if
selfish agents become altruistic, they are assured to improve
aggregate congestion; likewise, altruists are guaranteed to
worsen aggregate congestion if they start routing selfishly.

II. MODEL AND RELATED WORK

A. Routing Problem

We consider a routing problem on a network (V,E), for
vertex set V and edge set E. Each edge e ∈ E connects
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two distinct vertices, and we say that an edge e is incident
with vertex v ∈ V if v is a vertex of e. A sub-path σ is an
alternating sequence of distinct vertices and edges, beginning
and ending with vertices, where each edge e ∈ σ is incident
with the vertex preceding and the vertex succeeding e. The
vertices that are incident with σ are the first and last vertex of
σ. A path p comprises a set of edges or sub-paths connecting
common origin o to common destination t. We write R ⊆ 2E

to denote the set of all feasible paths connecting o to t, and is
referred to as the set of routes, and P ⊆ R to denote the set
of paths accessible to agents. We restrict network topology
to series-parallel; a series-parallel network consists of

1) a single edge,
2) two series-parallel networks connected in series, or
3) two series-parallel networks connected in parallel [11].
A unit mass of traffic is routed from o to t and is composed

of two types, an altruistic sub-population and a selfish sub-
population. Altruistic agents comprise mass ra, and selfish
users make up mass rs, so that ra + rs = 1. Each type
θ ∈ {a, s} of traffic can access an arbitrary subset of paths
Pθ ⊆ P , where xθp denotes the flow of agents of type θ using
path p ∈ Pθ. A feasible flow for type θ assigns rθ mass of
traffic to paths in Pθ, denoted by xθ ∈ R|Pθ|

≥0 , such that∑
p∈P x

θ
p = rθ. A network flow is a combined allocation of

altruistic and selfish agents to paths, denoted x ∈ R|P|
≥0 , such

that xp :=
∑
θ:p∈Pθ xθp for all p ∈ P , where xθ is feasible

for each respective type. Provided network flow x, the flow
on edge e ∈ E is given by xe =

∑
p:e∈p xp, where flow of

type θ = {a, s} on edge e is denoted by xθe. For each e ∈ E,
commute time is expressed as a function of traffic flow and is
associated with a latency function ℓe : [0, 1] → [0,∞), where
ℓe(xe) denotes the actual cost (in person-hours) it takes to
use edge e with flow xe. We assume the latency function for
each edge is a non-decreasing, convex posynomial. So, for
every e ∈ E,

ℓe(xe) =

d∑
i=0

ae,ix
i
e, (1)

where ae,i ∈ R≥0 and degree d ∈ N. For any path or sub-
path ρ, we define the latency of ρ to be the sum of the
latencies of each edge e ∈ ρ:

ℓρ(x) :=
∑
e∈ρ

ℓe(xe). (2)

The aggregate congestion that arises from a given flow is
represented by the total latency, given by

L(x) =
∑
e∈E

xeℓe(xe) =
∑
p∈P

xpℓp(x). (3)

Intuitively, total latency represents the total person-hours that
a population spends travelling from origin o to destination t.

An instance of a routing problem is fully specified by
the tuple G = (V,E, {ℓe}e∈E ,P, ra), and we write G(d, ra)
to denote the set of all routing problems on series-parallel
networks with posynomial latency functions of degree at
most d and altruistic population ra.

B. Heterogeneous Routing Game

To understand how altruists effect congestion within the
context of a heterogeneous population, we model the routing
problem as a nonatomic congestion game. Each type of
traffic is a continuum of agents, where the cost each agent
experiences is determined by their type. Given flow x, the
cost selfish agents experience for using path p ∈ Ps is the
actual latency of the path:

ℓsp(x) :=
∑
e∈p

ℓe(xe), (4)

where ℓsp(x) is often denoted ℓp(x). Intuitively, (4) assumes
selfish agents uniformly focus on minimizing their own
commute time only.

The cost experienced by altruists considers both their
commute time, as well as their contribution to congestion
along the path. Hence, the cost an altruistic agent experiences
for using path p ∈ Pa is the marginal cost of the path:

ℓap(x) :=
∑
e∈p

[ℓe(xe) + xeℓ
′
e(xe)] , (5)

where ℓ′ denotes the flow derivative of ℓ, and ℓap(x) is often
denoted ℓmc

p (x). For a formal treatment of altruism, see [13].
All agents travel from origin o to destination t using the

minimum-cost path from those available in their path set. We
call flow x a Nash flow if all agents are individually using
minimum-cost paths relative to the choices of others. That
is, for each type θ ∈ {a, s}, there exists a feasible xθ such
that the following condition is satisfied:

∀p, p′ ∈ Pθ, xθp > 0 =⇒ ℓθp(x) ≤ ℓθp′(x). (6)

It is well known that a Nash flow exists for any heteroge-
neous nonatomic congestion game [14]. For each θ ∈ {a, s},
and Nash flow x, we denote the common latency of minimum
cost paths as Λθ(x) (i.e., Λθ(x) = ℓθp(x) for any xθp > 0).

C. Related Work

The inefficiency of selfish routing in congestion games has
been extensively studied [15], with a focus on the cost at
equilibrium as a function of network topology [16], and the
degree of cost functions [17]. Moreover, it is known that in
all networks with affine cost functions and a homogeneously
altruistic population (ra = 1), the total latency is guaranteed
to be better than when the population is homogeneously
selfish [18]. It is also known that altruism can produce
unbounded improvements over selfishness in parallel net-
works [19]. In parallel networks with symmetric path sets
(Pa = Ps = P), heterogeneous altruism lowers the price
of anarchy compared to homogeneous selfishness [13], and
the perversity index is unity in these networks [20]. It is
known that in serially-linearly-independent networks, altru-
ism is guaranteed to improve network efficiency [12]. The
equilibrium cost for users is also monotone with respect to
overall population size (even if the path set is not symmetric),
provided all users have the same cost functions [21].

These results do not extend to more general networks
as altruism can cause unbounded harm if the pathsets are
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not symmetric (Pa ̸= P) [7]. Similarly, altruism can cause
unbounded harm if the path set is not Braess-resistant (ex-
hibits Braess’s paradox) [9]. However, partial altruism can
be used to mitigate the risk of harm caused by selfishness
and heterogeneous altruism [8].

III. CONTRIBUTION: ALTRUISM IS GUARANTEED TO
IMPROVE CONGESTION IN SYMMETRIC AND

BRAESS-RESISTANT NETWORKS

It is well-known that altruism can cause inefficiency with
respect to the total latency of a network. These inefficiencies
often arise because of restrictions on the path set and path
access for agents. Hence, we seek a set of conditions that
guarantees the presence of altruists will improve total latency.

Our first definition provides terminology for when altru-
istic and selfish agents have the same path sets, a necessary
condition for altruism to improve overall system welfare.

Definition 1: P is symmetric if Pa = Ps = P .
Next, path sets on series-parallel networks can be designed

to exhibit Braess’s paradox. Our next definition clarifies the
intention of a series-parallel network, and precludes path sets
that produce Braess’s paradox, another necessary condition
for altruism to improve overall system welfare.

Definition 2: P is Braess-resistant if P = R.
Path sets that fail either condition can be shown to have

perversity; examples are given in Section V.
Our main result shows that any series-parallel network

with a symmetric and Braess-resistant path set has improved
total latency in the presence of altruism; likewise, total
latency deteriorates if any altruists become selfish.

Theorem 3.1: Let G = (V,E, {ℓe}e∈E ,P, ra) be a rout-
ing game on a series-parallel network, let ε ∈ (0, ra], and
define G̃ = (V,E, {ℓe}e∈E ,P, ra − ε). Let x be a Nash flow
for G and x̃ a Nash flow for G̃. If the path set for G (and
thus G̃) is both symmetric and Braess-resistant, then

L(x) ≤ L(x̃). (7)

The proof is completed in Section IV; we provide intuition
for the result, and briefly discuss its consequences here. The
importance of Theorem 3.1 is twofold: it is quite simple,
and has a wide breadth of applications. For any game G
with altruistic population ra, if the path set for G satisfies
Definitions 1 and 2, then if the mass of altruists decreases
even slightly, the resulting total congestion is guaranteed
to weakly worsen. Since the result implies an increase in
altruists will weakly improve total congestion, a system
planner can use this result to design the topology of a
road network, ensuring that future tolls, fleet managers of
autonomous vehicles, and independent altruists all contribute
to improving network efficiency. Next, we present the sup-
porting material for Theorem 3.1, then provide its proof.

IV. PROOF OF THEOREM 3.1

The proof of Theorem 3.1 is completed in three steps:
1) Lemma 4.1 is an extension of [11, Lemma 2]. Under

mild assumptions on total origin-destination flow, if
one sub-population’s mass increases, then some path

used by agents of that sub-population experiences an
increase in flow on every edge.

2) Corollary 4.2 specifies Lemma 4.1 for our context:
where an increase in selfish population coincides with
a decrease in altruistic population. It demonstrates that
selfish agents use a path such that each edge in the
path increases from x to x̃, and altruists use a path
such that each edge in the path decreases from x to x̃.

3) Lemma 4.3 shows that the flow for paths used by
selfish agents increases from x to x̃, and the flow for
paths used by altruists decreases from x to x̃.

We state the supporting material here, and proceed with
their proofs in the Appendix.

Lemma 4.1: Let Ḡ = (V,E, {ℓe}e∈E ,P, ra + µ) for µ ∈
[−ra, rs] (the same game as G, except for differing altruistic
and selfish masses), and θ ∈ {a, s}. Assume G (and thus Ḡ)
has a symmetric and Braess-resistant path set. If x̂ and x̄ are
Nash flows (x̂ for G and x̄ for Ḡ) satisfying

||x̂||1 ≥ ||x̄||1 (8a)

||x̂θ||1 ≥ ||x̄θ||1, and (8b)

||x̂θ||1 > 0, (8c)

then there exists a path p ∈ P such that for each edge e ∈ p,
x̂e ≥ x̄e and x̂θe > 0.

Intuitively, Lemma 4.1 says that if either the altruistic or
selfish population increases, then there is a path used by
the increased sub-population such that each edge in the path
increases flow. Additionally, even though the Nash flows
have equal masses of traffic traversing the network in our
application, (8a) shows that this also holds if the total mass
of traffic has a strict order in the same direction as the sub-
population under consideration. The results of Lemma 4.1
are made explicit with the following corollary.

Corollary 4.2: Assume x is a Nash flow for G and x̃ is a
Nash flow G̃, and P is symmetric and Braess-resistant. Since
||x||1 = ||x̃||1, ||xs||1 ≤ ||x̃s||1 and ||xa||1 ≥ ||x̃a||1, there
exist minimum-cost paths (denoted ps and pa), such that for
each edge e ∈ ps, and for each edge e′ ∈ pa,

xe ≤ x̃e and x̃se > 0, (9)
xe′ ≥ x̃e′ and xae′ > 0. (10)

Intuitively, it follows that the total origin-destination flow
for x and x̃ is equal. Thus, since rs < rs + ε, there exists a
path in x̃ used by selfish agents such that each edge along
that path is non-decreasing in flow from x, which we denote
ps. Similarly, since ra > ra − ε, there exists a path in x
used by altruists such that each edge along that path is non-
increasing in flow in x̃, which we denote pa.

Lemma 4.3: Let x and x̃ be a Nash flow for G and
G̃, respectively, and assume P is symmetric and Braess-
resistant. Then, for any paths p, q ∈ P , the following hold:

xsp > 0 =⇒ xp ≤ x̃p, (11)

x̃aq > 0 =⇒ xq ≥ x̃q. (12)
Lemma 4.3 demonstrates that the path flows for paths used

by selfish agents in x are guaranteed to be non-decreasing
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in x̃, and the path flows for paths used by altruists in x̃ are
guaranteed to be non-increasing from x.

Proof of Theorem 3.1: Recall, G and G̃ are identical
games, except G̃ corresponds to changing ε ∈ (0, ra] altruists
to selfish agents. That is, ra − ε agents are altruistic and
commute according to the marginal-cost of a path in G̃, and
rs + ε are selfish and commute according to the actual cost
associated with a path in G̃. Now, since L is convex:

L(x̃)− L(x) ≥
∑
p∈P

ℓmc
p (x) · (x̃p − xp)

=
∑
p∈P+

ℓmc
p (x) · δp +

∑
q∈P−

ℓmc
q (x) · δq,

where δp := x̃p − xp for p ∈ P . Further, P+ is the set of
paths such that δp > 0 for all p, and P− is the set of paths
such that δq < 0 for all q; paths that do not change flow
from x to x̃ can be ignored. The contrapositive of (11), from
Lemma 4.3, shows that if a path flow decreases from x to x̃
(i.e., δq < 0), then altruists use that path in x. Now, we use
pa, the minimum cost path for altruists in x (as defined in
(10) of Corollary 4.2), to continue the bound:

L(x̃)− L(x) ≥
∑
p∈P+

ℓmc
p (x) · δp +

∑
q∈P−

ℓmc
q (x) · δq

≥ ℓmc
pa (x)

∑
p∈P+

δp + ℓmc
pa (x)

∑
q∈P−

δq (13)

=
(
ℓmc
pa (x)− ℓmc

pa (x)
) ∑
p∈P+

δp (14)

= 0,

where (13) follows from the fact that ℓmc
pa (x) ≤ ℓmc

p (x) for
all p ∈ P+, and ℓmc

pa (x) = ℓmc
q (x) since q is used by altruists

in x for all q ∈ P−. Additionally, (14) follows from the fact
that

∑
p∈P+ δp = −

∑
q∈P− δq . Hence, L(x) ≤ L(x̃). ■

V. PATH SETS THAT ARE NOT SYMMETRIC AND
BRAESS-RESISTANT ARE SUSCEPTIBLE TO PERVERSITY

Here, we present a short discussion on the inefficien-
cies that arise if a path set is not Braess-resistant or not
symmetric. It is well-known that networks which are not
series-parallel can experience increased total congestion in
the presence of altruism. Hence, we maintain the series-
parallel assumption, and provide networks that may exhibit
worsened total congestion in the presence of altruism.

A. Networks which are not Braess-resistant

Consider sending 2 units of traffic across a series-parallel
network consisting of five edges, where the path set is P =
{(e1, e3), (e1, e4), (e2, e4), e5}; notice that (e2, e3) is not a
path available to agents, hence P is not Braess-resistant. The
edge latencies are ℓe1(xe1) = xe1 , ℓe2(xe2) = ℓe3(xe3) = 1,
ℓe4(xe4) = xe4 , and ℓe5(xe5) = 3. If all traffic is selfish, then
sending 1 unit of traffic on path (e1, e3), and 1 unit of traffic
on (e2, e4) is a Nash flow (denoted x̃) with common latency
Λs(x̃) = 2 (paths (e1, e4) and e5 have latencies of 2 and 3,
respectively). If half the population becomes altruistic (i.e.
ra = rs = 1), then sending selfish agents on path (e1, e4)

and altruists on path e5 is a Nash flow (denoted x) with
common latencies Λs(x) = 2 and Λa(x) = 3, respectively.
Straightforward computation shows that L(x̃) = 4, and
L(x) = 5. This example is shown graphically in Figure 1a.

B. Networks which are not Symmetric

Consider sending 2 units of traffic across a parallel net-
work consisting of three edges, where P = {e1, e2, e3},
Pa = {e1, e2} and Ps = P; notice e3 is not available to
altruists, thus P is not symmetric. The edge latencies are
ℓe1(xe1) = 1 + d, ℓe2(xe2) = xd, and ℓe3(xe3) = 1. When
all agents are selfish, x̃ = [0, 1, 1]⊤ is a Nash flow. Now,
if half of traffic becomes altruistic (i.e. ra = rs = 1),
x = [ra, rs, 0]⊤ is a Nash flow. Finally, straightforward
computation shows that L(x̃) = 2, and L(x) = 2 + d. This
example is shown graphically in Figure 1b.

VI. CONCLUSIONS

We have defined a specific set of conditions for the net-
work that ensures altruistic routing in heterogeneous traffic
improves overall congestion compared to all-selfish routing.
Future work will focus on extending to heterogeneous popu-
lations that consist of partially altruistic sub-populations, so
the effects of multiple partially altruistic sub-populations on
total congestion can be better understood.

APPENDIX

If two sub-paths are in parallel with each other and
have equal and constant latency functions, we call them
redundant-parallel sub-paths. Because the inclusion of these
paths does not lead to altruists degrading perversity, we
assume networks do not contain redundant-parallel sub-paths
in all proofs.

Proof of Lemma 4.1: Recall, G and Ḡ have the same
path set, P; we slightly abuse notation and also refer to the
network (which is also equivalent for G and Ḡ) upon which
P is defined, by P itself. The proof proceeds by induction
on the number of edges in P . If P consists of a single edge,
the result is trivial, so assume P has two or more edges. By
the induction hypothesis, the lemma holds for any two Nash
flows that satisfy (8) in every series-parallel, symmetric, and
Braess-resistant path set with fewer edges than P . It is known
that P can be constructed by connecting two series-parallel
networks, P ′ and P ′′, in series or in parallel. First, consider
P ′ and P ′′ are connected in series, so the destination node
of P ′ is the origin node of P ′′. Now, it is clear that paths
in P ′ are sub-paths of paths in P . Hence, every Nash flow
x̂ of G induces a Nash flow x̂′ of G′ (the game G on P ′),
given by x̂′ = (x̂p′)p′∈P′ . Likewise, every Nash flow x̄ of
Ḡ induces a Nash flow x̄′ of Ḡ′ (the game Ḡ on P ′), given
by x̄′ = (x̄p′)p′∈P′ . Now, the flow x′e is the total flow on all
the paths in P ′ containing edge e, that is

x′e =
∑

p′∈P′,p′∋e
xp′ . (15)

Thus, (15) implies x′e = xe, so if x̂ and x̄ are Nash flows
satisfying (8) for G and Ḡ, then the induced Nash flows
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(a) (b)

Fig. 1: Graphical representation of the examples from Section V; in each example, two units of traffic are routed. In figure 1a, the path set is constructed
so agents using e2 cannot use e3 (hence, no Braess-resistance). If all traffic is selfish, one unit uses (e1, e3) and the other unit uses (e2, e4) at Nash flow,
resulting in a total latency of L(x̃) = 4. If half the population becomes altruistic, selfish agents use (e1, e4) and altruists use e5 in a Nash flow, resulting
in total latency L(x) = 5. In figure 1b, altruists have access to the top two edges while selfish agents have access to all three (hence, not symmetric).
If all traffic is selfish and at Nash flow, the two units of traffic are split between the bottom two edges, resulting in total latency L(x̃) = 2. If half the
population becomes altruistic, altruists may use the top edge in a Nash flow, and the total latency becomes L(x) = 2 + d ≥ 2 = L(x̃).

x̂′ and x̄′ satisfy (8) for G′ and Ḡ′, as well. Thus, by the
induction hypothesis, there is a path p′ ∈ P ′ such that
x̂′e ≥ x̄′e, and x̂′θe > 0 for all e ∈ p′. Now, let x̂′′ be the
induced Nash flow for G′′ (G on P ′′), and x̄′′ be the induced
Nash flow for Ḡ′′ (Ḡ on P ′′). By similar arguments, there
exists a path p′′ ∈ P ′′ such that x̂′′e ≥ x̄′′e , and x̂′′θe > 0 for
all e ∈ p′′. Since P is Braess resistant, there is a path p ∈ P
such that p = p′ + p′′. Hence, x̂e ≥ x̄e, and x̂θe > 0 for all
e ∈ p, and since P is symmetric, p is a minimum cost path
for agents belonging to θ. This proves the case that P is the
result of connecting two series-parallel networks in series.

Next, consider P is the result of connecting P ′ and
P ′′ in parallel, so that o and t are also the origin and
destination nodes of P ′ and P ′′. By definition, P ′ and P ′′

are disjoint, and P = P ′ ∪ P ′′. Any Nash flow x̂ of G
induces Nash flows x̂′ and x̂′′ for G′ and G′′ (the game
G on P ′ and P ′′, respectively), where x̂′ = (x̂p′)p′∈P′ and
x̂′′ = (x̂p′′)p′′∈P′′ . Similarly, any Nash flow x̄ of Ḡ induces
Nash flows x̄′ and x̄′′ for Ḡ′ and Ḡ′′ (the game Ḡ on P ′

and P ′′, respectively). We claim either x̂′ and x̄′ satisfy the
induction hypothesis for G′ and Ḡ′, or x̂′′ and x̄′′ satisfy
the induction hypothesis for G′′ and Ḡ′′. Suppose not, then
it follows that ||x̂′||1 < ||x̄′||1 or ||x̂′θ||1 < ||x̄′θ||1, and
||x̂′′||1 < ||x̄′′||1 or ||x̂′′θ||1 < ||x̄′′θ||1 holds. Since

||x̂||1 = ||x̂′||1 + ||x̂′′||1
= ||x̄′||1 + ||x̄′′||1
= ||x̄||1,

and

||x̂θ||1 = ||x̂′θ||1 + ||x̂′′θ||1
≥ ||x̄′θ||1 + ||x̄′′θ||1
= ||x̄θ||1,

it is without loss of generality that we may
assume ||x̂′||1 < ||x̄′||1, then ||x̂′′||1 > ||x̄′′||1. Hence,
||x̂′′θ||1 < ||x̄′′θ||1, which in turn implies ||x̂′θ||1 > ||x̄′θ||1.
Now, fix ψ ∈ {a, s} such that ψ ̸= θ. It follows that
||x̂′ψ||1 < ||x̄′ψ||1 and ||x̂′′ψ||1 > ||x̄′′ψ||1. Hence, x̂′ and x̄′

satisfy (8) on P ′ for ψ, where G = Ḡ′ and Ḡ = G′. Thus,
by the induction hypothesis and the fact that x̂ and x̄ have

the same flow on each edge as their induced flows, there
exists p′ ∈ P ′ ⊂ P such that x̂e′ < x̄e′ and x̄ψe′ > 0 for all
e′ ∈ p′. Hence, ℓψp′(x̄) = Λψ(x̄), and

ℓψp′(x̂) =
∑
e′∈p′

ℓψe′(x̂e′)

≤
∑
e′∈p′

ℓψe′(x̄e′)

= ℓψp′(x̄).

Hence, it follows that Λψ(x̂) ≤ Λψ(x̄). Similarly, x̂′′ and x̄′′

satisfy (8) on P ′′ for ψ, where G = G′′ and Ḡ = Ḡ′′. So,
by identical arguments, there exists p′′ ∈ P ′′ ⊂ P such that
x̂e′′ > x̄e′′ and x̂ψe′′ > 0 for all e′′ ∈ p′′. Hence, ℓψp′′(x̄) ≤
ℓψp′′(x̂) = Λψ(x̂), and so Λψ(x̂) ≥ Λψ(x̄). But then, either
ℓψp′ and ℓψp′′ are constant and equal, implying p′ and p′′ are
redundant-parallel paths, or Λψ(x̂) < Λψ(x̄) and Λψ(x̂) >
Λψ(x̄), both of which are contradictions. Thus, either x̂′ and
x̄′ satisfy the induction hypothesis for G′ and Ḡ′, or x̂′′ and
x̄′′ satisfy the induction hypothesis for G′′ and Ḡ′′, proving
the case that P is the result of connecting P ′ and P ′′ in
parallel. ■

Proof of Corollary 4.2: The existence of ps and pa follows
immediately from Lemma 4.1, and by [11, Lemma 3], ps is
a minimum cost path for selfish agents in x̃, and pa is a
minimum cost path for altruists in x, as desired. ■

Proof of Lemma 4.3: Assume by contradiction that the
claim is false. Then there exists a path p∗ ∈ Ps such that

xsp∗ > 0, (16)

xp∗ > x̃p∗ . (17)

Now, it is without loss of generality that there exists a sub-
path σ ∈ p∗ such that xe > x̃e for all e ∈ σ; otherwise,
xe ≤ x̃e for all e ∈ p∗, so xp∗ ≤ x̃p∗ , contradicting (17).
Further, by Corollary 4.2, ps and pa exist and satisfy (11)
and (12), respectively. Hence, it follows that

ℓps(x) ≤ ℓps(x̃) = Λs(x̃), (18)
ℓmc
pa (x̃) ≤ ℓmc

pa (x) = Λa(x). (19)

Case 1: First, assume p∗ = σ. Then, since xe > x̃e for
all e ∈ p∗, and by (16), Λs(x) = ℓp∗(x) ≥ ℓp∗(x̃). Thus, by
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(18), ℓp∗(x) ≤ ℓps(x) ≤ ℓps(x̃) ≤ ℓp∗(x̃) ≤ ℓp∗(x). Hence,
either ℓp∗(x) < ℓp∗(x), or ℓp∗ and ℓps are constant and equal
to one another, implying the network has redundant-parallel
paths. Both of which are contradictions.

Case 2: Next, assume p∗ = σ∪σ2, where xe ≤ x̃e for all
e ∈ σ2. Because the flow on σ2 is non-decreasing, and the
flow on σ is decreasing, there exists a sub-path σ1 that is
parallel to σ, where xe < x̃e for all e ∈ σ1. Now, because
each edge e ∈ σ1 is increasing flow from x to x̃, and xe =∑
p∈P:p∋e xp, it follows that σ1 can be selected so that agents

of the same type use each edge of σ1 in x̃, and are then using
σ2 in x̃. That is, the path p′ = σ1 ∪ σ2 is a minimum cost
path for either altruists or selfish agents in x̃. First assume
p′ is a minimum cost path for selfish agents. Since σ and
σ1 are parallel, we can apply identical arguments from Case
1 to show that either ℓσ(x) < ℓσ(x), or ℓσ and ℓσ1

are
constant and equal to one another, implying the network has
redundant-parallel sub-paths, both contradictions. If p′ is a
minimum cost path for altruists in x̃, it follows that ℓmc

p′ (x) ≤
ℓmc
p′ (x̃) = Λa(x̃), since xe ≤ x̃e and x̃ae > 0 for all e ∈ p′.

Hence, by (19), ℓmc
pa (x) ≤ ℓmc

p′ (x) ≤ ℓmc
p′ (x̃) ≤ ℓmc

pa (x̃) ≤
ℓmc
pa (x). Thus, either ℓmc

pa (x) < ℓmc
pa (x), or ℓmc

pa and ℓmc
p′ are

redundant-parallel paths, both of which are contradictions.
The case where σ is the second sub-path and σ2 is the first
sub-path can be done by switching o and t, and proceed in
an identical manner to this case.

Case 3: Finally, let E be the set of even natural numbers,
and consider the case that the sub-paths of p∗ are constructed
so that each sub-path consists of decreasing edges, or non-
decreasing edges. That is, p∗ =

⋃n
i=1:p∗∋σi

σi for some
n ∈ N, where xe > x̃e for {σi}i∈E, and xe ≤ x̃e for {σi}i/∈E.
Since flow increases and then decreases from x to x̃ among
subsequent sub-paths in p∗, selfish agents must be sharing
each odd-numbered sub-path of p∗ in x̃ with agents using
a path other than p∗. Since the network is series-parallel, it
can be shown that agents diverting away from each sub-path
σi ∈ p∗ for i ∈ E go onto a sub-path (denoted σ̄′

i) that is
parallel to σi. Now, we claim only altruists use σ̄′

i. Suppose
not, and selfish agents use σ̄′

i for some i ∈ E. Then, because
σi and σ̄′

i are parallel, similar arguments from Case 1 show
that either ℓσi

(x) < ℓσi
(x), or ℓσi

and ℓσ̄′
i

are constant and
equal to one another, implying the network has redundant-
parallel sub-paths. Both of which are contradictions. Hence,
there exists a path p′ such that each sub-path σ′

i ∈ p′ can be
defined

σ′
i =

{
σi i ∈ E
σ̄′
i i /∈ E

,

for i = 1, . . . , n. That is, the sub-paths of p′ can be expressed
such that each odd sub-path of p′ is also an odd sub-path of
p∗, and each even sub-path of p′ is the sub-path parallel to
a sub-path in p∗ that agents divert onto. Hence, xe ≤ x̃e
and x̃ae > 0 for all e ∈ p′. Thus, it follows that ℓmc

p′ (x) ≤
ℓmc
p′ (x̃) = Λa(x̃). Since P is symmetric and Braess-resistant,
p′ is a minimum cost path for altruists in x̃. Similar argu-
ments as Case 2 show that either ℓmc

pa (x) < ℓmc
pa (x), or ℓmc

pa
and ℓmc

p′ are redundant-parallel paths, each a contradiction.

Identical reasoning shows the case where odd-numbered sub-
paths of p∗ decrease flow from x to x̃, and even-numbered
sub-paths of p∗ increase flow from x to x̃.

Similar arguments show that (12) holds. ■
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