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Abstract— Sparse representation of the states of strings or
cascades of dynamical systems is examined. Specifically, a
notion of compressibility for string system states is introduced,
which captures whether and to what extent the state can be
expressed sparsely in a fixed basis. For a highly simplified
string system model (made up of scalar, linear, discrete-
time objects), compressibility in the Laplacian spectrum and
Gramian spectrum bases is characterized analytically. The main
result of this analysis is that the energy in the state snapshot
is captured in a diminishing fraction of the basis vectors, as
the string is made long. Simulations are used to illustrate the
formal results, and demonstrate state recovery from sparse,
randomly-located samples.

I. INTRODUCTION

Models of interconnected dynamical systems arranged in
a string topology are apt for assessing vehicle platoons and
dense highway traffic, among other applications [1], [2]. Sim-
ilar models also arise in spatially-discretized approximations
of one-dimensional wave and diffusion processes, such as
heat flow in a bar or fluid flow in a pipe [3], [4]. These
applications have motivated an extensive research effort
on the external stability of strings of dynamical systems,
under the heading of string stability. These studies aim to
assess the propagation of disturbances introduced at one
point on the string; broadly, stability is defined based on
whether or not the disturbance amplifies unboundedly, as the
number of dynamical systems forming the string is made
large. A parallel track of work has considered disturbance
propagation and attenuation in strings of dynamical systems
using wave approximations. Beyond external stability and
stabilization through control, a few recent studies have begun
to consider additional control-theoretic notions for strings,
such as controllability from local actuation.

Our interest in this study is to understand at a more basic
level the patterns or configurations taken on by a string
system, when it is actuated at one or a small number of
locations along the string. Intuitively, one might expect the
states of string systems to be strongly patterned provided that
actuations are localized: for example, dense vehicle traffic
on highways tends to organize in particular configurations,
and fluid flow in channels is patterned even when subjected
to stochastic disturbances. To study this, we introduce and
examine a notion of string compressibility, which captures
whether snapshots of the string’s state can be expressed as a
sparse linear combination of basis vectors in an appropriate
basis, as the dimension of the string is increased. If it can
be verified, string compressibility can enable a number of
computational and design benefits, such as state recovery
from sparse measurements via regularized optimization.

The focus of our effort here is to assess string com-
pressibility for a canonical model in two bases: 1) the
Fourier or Laplacian-spectrum basis and 2) the spectrum
of the controllability Gramian of the string system. In this
initial study, we deliberately focus on the simplest possi-
ble string system model – a string of discrete-time scalar
linear subsystems with symmetric linear couplings, which
is actuated at one potentially unknown location – to enable
a complete analysis of compressibility. For this model, we
are able to verify compressibility in both bases of interest,
in the following sense: an arbitrarily small fraction of the
basis vectors capture (almost) all of the energy in the state
snapshot, provided that the string is sufficiently long. For the
Gramian basis, an even sparser (sub-linear) representation
is obtained, however at the cost of needing to know the
location of the actuation. Via simulations, the compressibility
result is illustrated and state recovery from sparse data is also
explored.

The research described here connects to the rich litera-
ture on compressive sensing and graph signal processing,
which originated in the signal-processing community [5]–
[14]. Within this literature, there have been a track of work
on compressing sensing for dynamical processes [10], [11].
While these efforts largely focus on the practical recovery of
states from measurements, our work here and in a couple of
complementary studies [9], [15] are focused on understand-
ing whether and in what basis dynamical-system states can
be compressed. In this study, we further seek to understand
compressibility as the dimension of the string system is made
large, in analogy with efforts on string stability and analyses
of wave-like phenomena. The proofs are omitted here in the
interest of space and can be found in the extended journal
paper, see [16].

II. PROBLEM FORMULATION

The goal of this study is to determine whether state
snapshots of an (infinite-dimensional) string system subject
to local disturbances is compressible in some fixed bases;
and if so, determine the level of sparsity. To formulate this
problem, we present the simple string-system model, define
compressibility, and introduce bases for compression.

In general, a string system consists of n dynamical
objects in a line, where each object’s state dynamics is
interdependent on those of its predecessor and successor
(neighbors). In discrete time (k = 0, 1, 2, . . .), a string system
with objects i = 1, . . . , n would in general have vector
states xi[k] with the following dynamical evolution: xi[k +
1] = fi(xi[k], xi−1[k], xi+1[k], ui[k]) for i = 2, . . . , n − 1,
while x1[k + 1] = f1(x1[k], x2[k], u1[k]) and xn[k + 1] =
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fn(xn[k], xn−1[k], un[k]). Analyses of string systems of this
sort are mostly focused on the assessment of disturbance
propagation and hence external stability as n becomes large,
due to inputs ui[k] at one or a few locations.

In this article, we consider the simplest possible string
system of this form, with scalar linear objects that have
symmetric linear interactions with their neighbors, and an
input applied at one (possibly unknown) object. Specifically,
the dynamics of the objects in the string are given by:
xi[k + 1] = axi+1[k] + axi−1[k] + (1− 2a)xi[k] + biui[k],
x1[k] = ax2[k] + (1 − a)x1[k] + b1u1[k], and xn[k] =
axn−1[k] + (1 − a)xn[k] + bnun[k]. Here, the constant a
has the range a ∈ (0, 0.5) and exactly one of the constants
b1, . . . , bn equals 1, while the others are 0 (i.e. a disturbance
is applied at one object). The string system’s dynamics can
be readily written in vector form as:

x[k] = Ax[k] +Bu[k] (1)

where x[k] =

x1[k]...
xn[k]

 ∈ Rn is a state vector at time k, the

system matrix A is the symmetric row-stochastic tridiagonal
Toeplitz matrix

A =



1− a a
a 1− 2a a

. . .
. . .

. . .
a 1− 2a a

a 1− a


, (2)

and B is a 0-1 indicator vector with only the zth entry equal
to 1, indexing the (possibly unknown) input location. We
typically will assume that the input u[k] is a zero-mean unit-
variance white noise process input, although other models
for the input (as unknown, or having a different statistics)
will also be considered. Although extremely simplistic, the
model is approximative of some real-world processes, such
as heat flow in a bar subject to a disturbance input, consensus
among distributed processors, or position/phase alignment of
well-damped interconnected masses in a line topology.

We define string compressibility based on whether or not,
and to what extent, states of the string system are sparse in
a fixed basis. Conceptually, the string system can be viewed
as generating an ensemble of stochastic or unknown states,
which depend on the input applied. The string system’s
dynamics is said to compressible if all or most of these states
can be expressed in terms of a small number of basis vectors.

Formally, a state of a string system x[k] is said to be
compressible in an orthogonal basis Φ, if it can be written
as x[k] = Φs[k], where the transformed state s[k] is K-
sparse (i.e. has at most K non-zero/dominant entries). In
many cases, it is unrealistic to expect exact K-sparsity in
a basis of interest, and hence it is more natural to consider
the energy in the signal that is contained in K basis vectors.
To formalize this concept, we note that for an orthogonal
basis, s[k] is uniquely determined from x[k] as s[k] =

Φ−1x[k]. For convenience, we relabel the entries in s[k] in
order of decreasing amplitude, i.e. as ŝ1[k], . . . , ŝn[k], where
|ŝ1[k]| ≥ . . . ≥ |ŝn[k]|. Then, the fraction of energy captured
by the K largest-amplitude entries is considered as a measure
of compressibility of the state at the sparsity level K. Finally,
compressibility of the ensemble of states can be defined in a
statistical sense, provided that a stochastic model is in force.
Precisely, we use F (K) =

∑K
i=1 E[ŝ2i [k]]∑n
j=1 E[ŝ2j [k]]

as a measure of
compressibility at a K-sparsity level, for the string dynamics
as a whole (the ensemble of states). In a non-random setting,
worst-case energy fractions among an ensemble of signals
needs to be considered, as we will briefly discuss later in
the paper. In the ensuing analysis, we will largely focus on
whether a limited fraction of the basis vectors (Kn small) is
sufficient for F (K) to approach 1, as n becomes large.

Remark: As we will formalize in Section III, for the
bases considered, the dominant component s1[k] grows un-
boundedly with the time horizon k for a white-noise input.
To appropriately assess compressibility, we will therefore
slightly modify the measure F to exclude s1[k], i.e. we will
consider

∑K
i=2 E[ŝ2i [k]]∑n
j=2 E[ŝ2j [k]]

as the measure.
The core of this study is to develop bounds on the number

of basis vectors K required for almost exact compressibility
for string systems, in the limit of large n. Compressibility in
two bases is considered: the Laplacian spectrum or Fourier
basis, and the Gramian spectrum basis. The Laplacian spec-
trum basis is defined from the Laplacian matrix L for an
undirected line graph, which captures the string system’s
topology. Specifically, L is an n× n matrix where Li,i+1 =
Li+1,i = −1 for i = 1, . . . , n− 1, and all other off-diagonal
entries are nil (Lij = 0). The diagonal entries are chosen
to make the row and column sums of L equal to zero, i.e.
L11 = Lnn = 1, and Lii = 2 for i = 2, . . . , n − 1. We
order the (real, nonnegative) eigenvalues of L as 0 = λ̂1 <
λ̂2 < . . . < λ̂n, and use the notation v1 = 1,v2, . . . ,vn

for the corresponding eigenvectors. The Laplacian spectrum
basis is defined as ΦL =

[
v1 . . . vn

]
. For large n, it is

well-known that the eigenvectors of the Laplacian look like
sinusoids at equally-spaced frequencies, and hence the basis
is equivalently a Fourier basis.

Remark: The eigenvectors v1, . . . ,vn need to be normal-
ized in a consistent way, so that the components of the state
snapshot in each basis direction can be fairly compared. For
the formal analysis in the next section, we have normalized
the eigenvectors so that the largest entry in each is 1, in
which case the energy (two-norm) of each vector is of order
n. Normalization to unit energy is also appropriate.

Remark: The Laplacian spectrum basis has no dependence
on either the parameter a of the string system, or the location
of the external input.

As an alternative, the spectrum of the string system’s
controllability Gramian is also considered as a basis for com-
pression. The time controllability Gramian of the dynamics
(1) is given by G(0, k) =

∑k−1
τ=0A

τBB′(A′)τ at time k.
Since G(0, k) is a positive semidefinite symmetric matrix, its
eigenvalues are real and nonnegative. It is convenient to label
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the eigenvalues of G(0, k) in increasing order, as λ1(k) ≤
. . . ≤ λn(k). We again use the notation v1(k), . . . ,vn(k) for
an orthogonal set of eigenvectors corresponding to the eigen-
values, where again the eigenvectors have been normalized in
a commensurate way. The Gramian spectrum basis is defined
as ΦG(k) =

[
v1(k) . . .vn(k)

]
. We consider the Gramian

spectrum largely in the infinite horizon as well, i.e. k → ∞.
The spectrum notation and the Gramian basis is simplified
at k → ∞ as λi, vi for i = 1, . . . , n and ΦG, respectively.

The Gramian spectrum is an interesting basis for sparsify-
ing string system state snapshots, as it distinguishes configu-
rations that require little energy to achieve (and hence could
be substantially represented in the state) from ones that are
hard to achieve, given the input location. The eigenvectors for
the Gramian have a wavelet-like shape, with a peak around
the input location and an oscillatory falloff away from the
input (Figure 1). In contrast with the Laplacian spectrum,
the Gramian spectrum depends on the specifics of the string
system, including the connection strength a and the input
location.

Fig. 1. An illustration of one Gramian eigenvector where an input is applied
at location 1 (object 1).

III. COMPRESSIBILITY ANALYSIS FOR THE LAPLACIAN
SPECTRUM BASIS

In this section, string compressibility in the Laplacian
spectrum basis is characterized, given a white-noise input
at an arbitrary location. As a preliminary step, we first
recognize that the energy function F (K) is hard to analyze
directly, because it depends on the order statistics of s[k] (i.e.,
the ordering of the random entries in s[k] by amplitude).
As a lower bound, we instead consider the energy in the
K specific components (say s1[k], . . . , sK [k] without loss
of generality) in a basis of interest. This energy is given
by Fs(K) =

∑K
i=1 E[s2i [k]]∑n
j=1 E[s2j [k]]

. The relationship between Fs(K)

and F (K) is formalized in the following lemma:
Lemma 1: Consider the linear string system (1), in the

case of a stochastic input u[k]. Consider compression of state

snapshots at a time k. The energy fraction F (K) is lower-
bounded by Fs(K), i.e. F (K) ≥ Fs(K).

The majorization in Lemma holds for any basis. For the
Laplacian spectrum basis as defined in Section II, the first K
basis vectors correspond to slower-varying sinusoids, which
we expect to be primary components in the state snapshot
(as we will verify in what follows). Therefore, a good bound
is achieved by considering the first K entries rather than the
K largest.

To bound the sparsity level that is sufficient to capture
the state snapshot in the Laplacian-spectrum basis, we un-
dertake a full algebraic analysis of the energy in the first k
components of s[k]. We do this using explicit expressions
for the eigenvalues and eigenvectors of the state matrix A
if the string system. Standard results on the eigenanalysis
of tridiagonal Toeplitz matrices can be used to get explicit
formulas for the eigenvalues of A. This eigenanalysis, and
also the relationship to the eigenanalysis of L, is captured in
the following:

Lemma 2: Consider the state matrix A of the string sys-
tem. Denote eigenvalues of A as 1 = λ1 > . . . > λn.
Consider the eigenvectors matrix is shared by A and L,
we denote the right eigenvector of A as same as ΦL. Then
eigenvalues and eigenvectors of A are the following:

(1). The ith eigenvalue is λi = 1− 2a+2a cos (i−1)π
n , for

i = 1, . . . , n. Furthermore, λi ∈ (1− 2a, 1].
(2) The vectors v1, . . . ,vn of the Laplacian L are also

the right eigenvectors of A with each vi corresponding to λi
as defined above. The jth entry of the ith right eigenvector
satisfies vji = cos (j−1)(2i−1)π

2n .
(3). The left eigenvector matrix W = Φ−1

L = [wij ] is
given by:

wij =

{ 1
n , i = 1
2
ncos

(i−1)(2j−1)π
2n , i ≥ 2

, (3)

where each row is a left eigenvector of A.
The results are derived easily from the analysis of the

eigenvalue and eigenvector of the tridiagonal Toeplitz matrix,
see [17].

In the next lemma, for the string system’s state at a time
k, the expected energy in each component in the Laplacian
spectrum basis (E[s2i [k]]) is characterized. The result follows
directly from a result in our previous work [9], hence details
are omitted. We note the result holds only when the input is
assumed to be a zero-mean unit-variance white noise process.

Lemma 3 ( [9]): Consider the string system (1), in the
case where the input is a zero-mean unit-variance white noise
process input with zero-mean and unit variance. Consider
expression of the time-k state x[k] in the Laplacian spectrum
basis, i.e. x[k] = ΦLs[k]. Then, in the limit of large k, the
expected energy E[(si[k])

2] in each component approach:

E[s2i [k]] =

{
w2

izk, i = 1
w2

iz

1−λ2
i
, i = 2, 3, . . . , n,

(4)

where z is an input location, wiz are the left eigenvectors of
L as specified in Lemma 2.
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Next, by substituting the exact expressions for the eigen-
values and eigenvector components and pursuing approxima-
tions for the large-n limit, the following expressions for the
component energies are obtained:

Lemma 4: Consider the string system (1), with a stochas-
tic input provided at location z. Now consider the expected
energy in each component in the Laplacian eigenvector basis,
i.e. E(s2i [k]), for sufficiently large k. Then, for sufficiently
large n, E[s2i [k]] approaches:

E[s2i [k]] =

{
k
n2 , i = 1
4
π

1
2a (ψ1(i) + ψ2(i)), i = 2, . . . , n

(5)

where 
ψ1(i) =

π
2n cos2

(i−1)(2z−1)π
2n

sin2 (i−1)π
2n

ψ2(i) =
π
2n cos2

(i−1)(2z−1)π
2n

1
2a−sin2 (i−1)π

2n

(6)

Lemmas 3 and 4 show that the energy in the direction
of the first eigenvector v1 = 1 asymptotes to a function
that is growing linearly k, while the energy in the other
directions approach a constant. The unbounded growth of
the energy in the first eigenvector direction reflects that A
has an eigenvalue at on the unit circle (at 1), and hence the
stochastic input causes a slowly drifting offset in the states
of all objects in the string. For this reason, the energy in
the string state concentrates in the first basis vector in a
formal sense. However, we are primarily concerned about
whether or not the shape of the string state (not the offset)
is captured in a small number of basis vectors. Hence, in
the ensuing development, we exclude the component in the
first basis vector direction in the analysis of compressibil-
ity. We therefore consider the following alternate energy-
fraction measure for the compressibility at a K-sparsity level:
F̂ (K) =

∑K
i=2 E[ŝ2i [k]]∑n
j=2 E[ŝ2j [k]]

.
As for the original energy-fraction measure, direct analysis

of the modified energy-fraction measure is difficult because it
requires consideration of order statistics. We therefore bound
F̂ (K) in terms of the energy contained in basis components
2, . . . ,K. Specifically, we define F̂s(K) =

∑K
i=2 E[s2i [k]]∑n
j=2 E[s2j [k]]

.
Using the same logic as for the proof of Lemma 1, we
immediately recover that F̂ (K) ≥ F̂s(K), i.e. F̂s(K) lower
bounds the energy measure of interest F̂ (K).

We are now ready to present our main result, which shows
that the the state snapshot’s energy can be captured by an
arbitrarily small fraction K

n of basis vectors in the Laplacian
spectrum basis.

Theorem 1: Consider the string system (1), in the case
that it is driven by a 0-mean and unit variance white-noise
input at location z. Consider the representation s[k] of a
state snapshot x[k] in the Laplacian spectrum basis, for a
sufficiently large time k. In particular, consider the sparsity
level K required for an energy fraction F̂ (K) > δ for a
specified δ ∈ (0, 1). For any δ ∈ (0, 1), the desired energy
fraction is achieved for K > ϵn for any ϵ ∈ (0, 1), provided
that n is sufficiently large.

The theorem indicates that the string system’s state is com-
pressible using an arbitrarily small fraction of the Laplacian

spectrum basis vectors, in the limit of a long string (large
n). In short, the Laplacian spectrum or Fourier basis is able
to sparsely represent string states, even without knowledge
of the stochastic input location and model parameters.

IV. COMPRESSIBILITY IN THE CONTROLLABILITY
GRAMIAN SPECTRUM BASIS

In this section, we study string compressibility in the con-
trollability Gramian spectrum basis. The Gramian spectrum
should be appealing as a means for compressing process state
snapshots, because it can distinguish state configurations that
are reachable with limited energy from ones that cannot be
reached at a plausible energy level.

In the following development, we first give two simple
results that give insight into the connection between the
Gramian spectrum and compressibility, and hence provides a
motivation for a closer assessment of sparsity in the Gramian
spectrum basis. Finally, we discuss a specific characterization
of sparsity levels that are sufficient to represent the state
snapshot in the Gramian basis, when the dimension n of the
string becomes large.

The first result is a characterization of the covariance of
the string system’s state snapshot in the Gramian spectrum
basis:

Lemma 5: Consider the string system (1), in the case that
the input is a zero-mean unit-variance additive Gaussian
white noise process at location z. where the input location
z is know, u[k] is a 0-mean, 1-variance Gaussian white
noise process. Consider expression of the string state at
time k in terms of the Gramian spectrum basis (i.e. x[k] =
ΦG(k)s[k], where the spectrum ΦG(k) is computed from
the time Gramian G(0, k) =

∑k−1
τ=0A

τBB′(A′)τ . Then the
second moment of the transformed state s[k] in the Gramian
spectrum basis is:

E[s[k]s′[k]] = Λ, (7)

where Λ is a diagonal matrix with the eigenvalues of G(0, k).
The above lemma shows that the Gramian spectrum

whitens the state snapshot. Whitening filters are known to
maximize compressibility, which gives an indication that
the Gramian basis should allow sparse representation of the
string state.

Of interest, there is a logic for compression in the Gramian
spectrum basis, even in the case that the input signal is en-
tirely arbitrary except for being energy-limited. Specifically,
the following lemma shows a tight relationship between the
maximum allowable component energy in different basis
directions and the eigenvalues of the Gramian:

Lemma 6: Consider the string system (1) in the case
where an input u[k] is applied at location z on the string,
which is energy bounded (

∑k
i=0 u[i]

2 < µ). Then the
components si[k] of the string state in the controllability
Gramian spectrum basis ΦG in the infinity horizon satisfy∑n

i=1
s2i [k]

λi
< µ.

The lemma shows that components in basis vector di-
rections must necessarily be small, if the corresponding
eigenvalues λi of the Gramian are small.
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For the Gramian spectrum basis in the infinity horizon,
we also have been able to obtain a specific bound on the
number of basis vectors K needed to capture (almost) all
energy in the string state. To develop the result, we rely
on the rich theory on the Gramian spectrum for symmetric
matrices developed by T. Penzl and others [18]. The key
insight of this work is that the eigenvalues of the Gramian fall
off very quickly for systems with symmetric state matrices
and a limited number of inputs. Applying the methodology
to the string compressibility analysis requires three technical
advances: 1) specializing the result to the particular state
matrix form considered here, 2) understanding the scaling
of the result as n is made large, and 3) correcting for the
fact that the the state matrix has an eigenvalue on the unit
circle. Applying this process, one finds that the any desired
expected energy fraction F̂ (K) = δ, where 0 < δ < 1, can
be achieved with a sparsity level K that is sublinear in n.
Indeed, we posit and simulations suggest that K = O(nα),
for some α < 1, basis vectors are sufficient. We expect to
include a complete development .

In sum, the Gramian spectrum basis permits more effective
compression of the string state than the Laplacian eigenvector
basis, but at the cost of requiring knowledge of the string
model’s parameters and the input location.

V. SIMULATIONS

Simulations are developed which illustrate the compress-
ibility of a string system’s state (1) in the Laplacian spectrum
basis and Gramian spectrum basis.

In Figure 2, we examine the compressibility fraction F̂ (K)
as a function of the sparsity level K for the Laplacian
spectrum basis, in a string with 2000 objects which is driven
by a white noise input at location z = 1. The parameter in
the state matrix is a = 0.35. The state snapshot is seen to be
effectively compressed using 10 percent of the basis vectors.

Fig. 2. Illustration of F (K) versus the sparsity level K for state snapshot
at time k = 8× 105 in the Laplacian spectrum.

Next, to illustrate the value of compressibility, recovery of
the spread state from samples is demonstrated. Specifically,
a vector y with 200 objects’ states at randomly sampled

locations is used for recovery. The sampling locations are
shown in 5, and a state snapshot is also illustrated on the
figure.

Fig. 3. Illustration of density and position of 200 randomly sampled object
states from a state snapshot at k = 8× 105.

The recovery is based on the classical compressed sensing
processes: given the sampling vector y and a known fixed
basis (the Laplacian eigenvector basis in this case), a sparse
solution with 200 sparsity level is generated by LASSO(least
absolute shrinkage and selection operator) regression, and
then the snapshot is recovered by x[k] = V s[k]. A recovered
snapshot is shown in Figure 4. The snapshot is recovered
well, with a mean square error (MSE) of 0.002.

Fig. 4. A recovered state snapshot at time k = 8 × 105 based in the
Laplacian spectrum given 200 sampling state values.

Next, compressibility in the Gramian spectrum basis is
illustrated. A string with n = 100 objects is considered, with
a = 0.2 and the input location z = 1. The dependence of the
energy fraction F (K) on the sparsity is shown in Figure 5.
In this case, even for a small system with n = 100 objects,
a very small fraction of basis vectors (5-10) are needed to
capture the energy in the string state.

State recovery using the Gramian spectrum basis is pur-
sued. The states at 15 randomly-sampled locations are used
for recovery Figure 6. The recovered state is shown in Figure
7.

The simulations demonstrate that both the Laplacian spec-
trum basis and the Gramian spectrum basis permit sparse
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Fig. 5. Illustration of F (K) versus the sparsity level K for state snapshot
at k = 30000 in the Gramian spectrum.

Fig. 6. Illustration of density and position of 15 randomly sampled states.

Fig. 7. A recovered state snapshot based on the Gramian spectrum basis
from an actual state snapshot at k = 30000.

representation of string system state snapshots. It is important
to emphasize that the Laplacian basis permits a parameter-
free representation, requiring only the system scale. The
Gramian basis, in comparison, provides an advantage in
recovery when only low-dimensional state data is available.
However, capturing the Gramian spectrum basis requires
model knowledge, meaning the system matrices are neces-
sary.

VI. CONCLUSION

The compressibility of state snapshots of linear string
systems is analyzed in two spectral bases of the Laplacian
and the Gramian. The analyses show that string system
states are highly compressible in both bases. This may be
valuable for the reconstruction of string states from limited
data, effective control, and other goals. This paper focuses
only very simple string processes, future work will need to
consider more general models.

REFERENCES

[1] M. K. Ng, Iterative methods for Toeplitz systems. Numerical
Mathematics and Scie, 2004.

[2] S. Noschese, L. Pasquini, and L. Reichel, “Tridiagonal toeplitz matri-
ces: properties and novel applications,” Numerical linear algebra with
applications, vol. 20, no. 2, pp. 302–326, 2013.

[3] W. Minkowycz, Advances in numerical heat transfer. CRC press,
1996, vol. 1.

[4] J. Y. Murthy and S. Mathur, “Numerical methods in heat, mass,
and momentum transfer,” School of Mechanical Engineering Purdue
University, 2002.

[5] M. Fornasier and H. Rauhut, “Compressive sensing.” Handbook of
mathematical methods in imaging, vol. 1, pp. 187–229, 2015.

[6] R. Baraniuk, “A lecture on compressive sensing,” IEEE signal pro-
cessing magazine, vol. 24, no. 4, 2007.

[7] S. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee, “Com-
pressive sensing: From theory to applications, a survey,” Journal of
Communications and networks, vol. 15, no. 5, pp. 443–456, 2013.

[8] A. Montanari, Y. Eldar, and G. Kutyniok, “Graphical models concepts
in compressed sensing.” Compressed Sensing, pp. 394–438, 2012.

[9] S. Roy and M. Xue, “Compressibility of network opinion and spread
states in the laplacian-eigenvector basis,” in 2021 60th IEEE Confer-
ence on Decision and Control (CDC). IEEE, 2021, pp. 4988–4993.

[10] R. Gribonval, V. Cevher, and M. E. Davies, “Compressible distribu-
tions for high-dimensional statistics,” IEEE Transactions on Informa-
tion Theory, vol. 58, no. 8, pp. 5016–5034, 2012.

[11] M. Stojnic, W. Xu, and B. Hassibi, “Compressed sensing of approx-
imately sparse signals,” in 2008 IEEE International Symposium on
Information Theory. IEEE, 2008, pp. 2182–2186.

[12] W. Wang, M. J. Wainwright, and K. Ramchandran, “Information-
theoretic limits on sparse signal recovery: Dense versus sparse
measurement matrices,” IEEE Transactions on Information Theory,
vol. 56, no. 6, pp. 2967–2979, 2010.

[13] D. L. Donoho, “Compressed sensing,” IEEE Transactions on informa-
tion theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[14] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Van-
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