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Abstract— Semidefinite programs (SDPs) have many applica-
tions in the field of controls. To improve scalability, it is impor-
tant to exploit the inherent sparsity when solving SDPs. In this
paper, we develop a new spectral bundle algorithm that solves
sparse SDPs without introducing additional variables. We first
apply chordal decomposition to replace a large positive semidef-
inite (PSD) constraint with a set of smaller coupled constraints.
Then, we move the coupled constraints into the cost function via
exact penalty. This leads to an equivalent non-smooth penalized
problem, which can be solved by bundle methods. We present
a new efficient spectral bundle algorithm, where subgradient
information is incorporated to update a lower approximation at
each iteration. We further establish sublinear convergences in
terms of objective value, primal feasibility, dual feasibility, and
duality gap. Under Slater’s condition, the algorithm converges
with the rate of O

(
1/ϵ3

)
, and the rate improves to O (1/ϵ)

when strict complementarity holds. Our numerical experiments
support the theoretical analysis.

I. INTRODUCTION

Semidefinite programs (SDPs) are an important sub-field
of optimization that involves the minimization of a linear
objective function over the cone of PSD matrices with linear
constraints. The standard primal and dual forms of SDPs are

min
X

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m

X ∈ Sn+,

(1)

max
y,Z

b⊤y

subject to Z +

m∑
i=1

Aiyi = C,

Z ∈ Sn+,

(2)

where A1, A2, . . . , Am, C ∈ Sn and b ∈ Rm are problem
data, Sn+ stands for the cone of PSD matrices, and ⟨·, ·⟩
denotes the standard matrix inner product. SDPs have impor-
tant applications in numerous fields such as combinatorial
optimization [1], control theory [2], machine learning [3].
Furthermore, many graph-theoretic problems (such as max
cut and graph partitioning) can be addressed using SDPs [4].

In theory, SDPs can be solved to arbitrary accuracy in
polynomial time using interior-point methods [5]. However,
due to its computational complexity, it is often impractical to
solve large-scale SDPs considering memory and time con-
straints [3], [6]. The state-of-the-art solvers for SDPs, such as
MOSEK [7], can only solve medium-sized problems reliably
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(e.g., n,m ≤ 1000 in (1)) on regular laptops. Improving the
scalability of solving SDPs has received extensive research
interest [3], [6], [8]. First-order algorithms are one promising
direction for computational scalability when solutions of
moderate accuracy are required. For example, a general conic
solver based on the alternating direction method of multipli-
ers (ADMM) was developed in [9]. This approach has been
extended in [10] to exploit the underlying sparsity in SDPs
based on chordal decomposition. We refer interested readers
to [6, Section 3] for a recent survey. Despite the efficiency of
first-order methods per iteration, obtaining high-accuracy so-
lutions remains challenging and may require an unacceptable
number of iterations due to the slow convergence.

Another approach is to apply structured decomposition
to decompose a large PSD matrix X ∈ Sn+ into structured
ones that are easier to impose positivity [6], [11], [12]. For
a sparse matrix, we can associate it with a graph, and the
principal submatrices can be identified by maximal cliques
of the graph (see Section II). If the sparsity graph is chordal,
which means that all cycles of length greater than three have
an edge between nonconsecutive vertices in a cycle, a clique-
based decomposition is guaranteed to exist for sparse PSD
matrices [13]. In this case, it is possible to equivalently re-
place a large matrix constraint X ∈ Sn+ with a set of smaller
and coupled matrix constraints. This chordal decomposition
strategy, combined with a dual result on the existence of PSD
matrix completions, is promising to significantly reduce the
computational complexity of SDPs that involve sparse PSD
matrices; see the developments in [6], [14]–[16].

In this paper, we focus on a spectral bundle method
proposed in [17], which shows fast practical convergence and
enjoys low computation complexity per iteration. In particu-
lar, the dual SDP (2) is transformed into an equivalent eigen-
value optimization by exploring the constant trace property
in [17]. Very recently, [18] generalized the spectral bundle
method to any SDPs and showed convergence in terms of
primal feasibility, dual feasibility, and primal-dual duality
gap. Furthermore, a linear convergence rate of the spectral
bundle method is established under mild assumptions [18].
We refer the interested reader to [19] for a recent comparison.

In this work, inspired by [17]–[19], we propose a first-
order spectral bundle method to solve sparse SDPs that
are characterized by a chordal graph or chordal extension.
Specifically, instead of solving (1) directly, benefiting from
chordal sparsity property, we decompose the large semidefi-
nite constraint in (1) into several smaller ones. We emphasize
that the smaller PSD constraints are interdependent in gen-
eral. In many existing methods, such as those outlined in [6,
Section 3], different additional consensus constraints have
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been introduced to handle the coupled constraints. Instead,
we solve an equivalent penalized problem without introduc-
ing extra variables, which is in the form of constrained non-
smooth eigenvalue optimization. Similar to [17]–[19], this
problem is well-suited to be solved via bundle methods [20].
In particular, we adapt and tailor the techniques in [17]–
[19] to solve the resulting non-smooth problem, leading to
a new spectral bundle algorithm for sparse SDPs. Assuming
Slater’s condition, we prove that the algorithm converges as
O
(
1/ϵ3

)
. If the problem satisfies strict complementarity, the

convergence rate is enhanced to O (1/ϵ).
The rest of this paper is structured as follows. We cover

some preliminaries on chordal graphs and bundle methods in
Section II. In Section III, we introduce an exact penalization
for sparse SDPs. This allows us to develop a new spectral
bundle algorithm in Section IV. We present numerical results
in Section V, and conclude the paper in Section VI. Some
technical proofs are provided in our report [21].

II. PRELIMINARIES

In this section, we review graph theory for matrix decom-
position and bundle methods for non-smooth optimization.

A. Chordal graphs and matrix decomposition

A graph G(V, E) is defined by a set of vertices V and a
set of edges E ⊆ V × V . A graph is called undirected if the
edges do not have orientations, i.e., (i, j) ∈ E ⇔ (j, i) ∈ E .
A subset of vertices C ⊆ V is called a clique if every pair of
vertices in C is connected by an edge. A clique is maximal
if it is not a subset of any other clique. We use |C| to denote
the number of vertices in the clique. A cycle in a graph is
defined as a sequence of vertices and edges that begins and
ends at the same vertex. A chord is an edge between two
non-consecutive vertices in a cycle. An undirected graph G
is called chordal if it contains at least one chord in every
cycle of length greater than three.

Given a graph G(V, E), a matrix X ∈ Sn has sparsity
pattern E if Xij = Xji = 0, ∀(i, j) /∈ E , i ̸= j. We denote
the space of sparse symmetric matrices by

Sn(E , 0) := {X ∈ Sn | Xij = 0, if (i, j) /∈ E , i ̸= j} .

Given a matrix X ∈ Sn, let PSn(E,0)(X) be the projection
onto Sn(E , 0) with respect to the Frobenius norm, i.e.,
M = PSn(E,0)(X) with Mij = 0, if (i, j) /∈ E , i ̸= j and
Mij = Xij , otherwise. Then, we define the cone of positive-
semidefinite completable matrices as

Sn+(E , ?) := PSn(E,0)
(
Sn+
)
.

In other words, X ∈ Sn+(E , ?) if some (or all) of the zero
entries Xij with (i, j) /∈ E , i ̸= j can be replaced with
nonzeros to obtain a PSD matrix X̄ ∈ Sn+. We call X̄ the
PSD completion of X ∈ Sn+(E , ?).

Given a clique Ck of graph G, we define an index matrix
ECk

∈ R|Ck|×n as follow

(ECk
)ij =

{
1, if Ck(i) = j

0, otherwise.

Given a matrix X ∈ Sn, the operation ECk
XET

Ck
∈ S|Ck|

selects the submatrix indexed by Ck. Alternatively, given
Y ∈ S|Ck|, the operation ET

Ck
Y ECk

∈ Sn expands Y into a
sparse n×n matrix that contains Y as its principal submatrix
indexed Ck, and zero otherwise.

Theorem 1 ([6, Theorem 2.2]): Given a chordal graph
G(V, E) with maximal cliques C1, . . . , Cp, we have X ∈
Sn+(E , ?) if and only if ECk

XET
Ck

∈ S|Ck|
+ , ∀k = 1, . . . , p.

This result replaces a large constraint X ∈ Sn+(E , ?) with a
set of smaller PSD constraints, indexing by the cliques. If the
chordal graph has small cliques, we can expect computational
improvements, which have been widely used (see [6] for a
survey). In this paper, we will exploit Theorem 1 to develop
a new spectral bundle method for solving sparse SDPs.

B. Bundle methods

The bundle method [20] is a standard technique to solve
a non-smooth convex optimization problem of the form

min
x∈X0

f(x)

subject to x ∈ X0,
(3)

where f : Rn → R is a convex (possibly non-differentiable)
function and X0 is a simple convex set. We refer the
interested reader to [20] for a detailed discussion on bundle
methods. We only introduce a few key ingredients below.

One key step in the bundle method is to construct a lower
approximation f̂t(x) of the objective function f(x) at each
iteration t, i.e., f̂t(x) ≤ f(x),∀x ∈ X0. One standard way
is to use a subgradient to form an under-estimator f̂(x) =
f(x̂) + ⟨g, x− x̂⟩ where g is a subgradient of f at point x̂,
but other methods also exist [17]. At each iteration of the
bundle method, we perform the following proximal step

yt+1 ∈ argmin
x

f̂t(x) +
α

2
∥x− xt∥2 , (4)

where xt is the current reference point and α > 0 penalizes
the deviation from xt. If the candidate point yt+1 gives a
sufficient descent in the true cost function, i.e. let β ∈ (0, 1),
we have β

(
f (xt)− f̂t (yt+1)

)
≤ f (xt)−f (yt+1) , then we

update the current (reference) iterate xt+1 = yt+1 (descent
step); otherwise, the reference point does not change, xt+1 =
xt (null step). In either case, yt+1 will be used to update the
lower approximation function f̂t+1(x).

The bundle method is guaranteed to return a converging
sequence xt to a minimizer of (3) (if it exists), when f̂t
satisfies three properties [22] and [19, Section 2.3.3]

f̂t+1(x) ≤ f(x), ∀x ∈ X0, (5a)

f̂t+1(x) ≥ f (yt+1) + ⟨gt+1, x− yt+1⟩ ,∀x ∈ X0, (5b)

f̂t+1(x) ≥ f̂t (yt+1) + ⟨st+1, x− yt+1⟩ ,∀x ∈ X0, (5c)

where st+1 = α(xt − yt+1) ∈ ∂f̂(yt+1) + NX0(yt+1), and
gt+1 ∈ ∂f(yt+1) with the subdifferential defined as

∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + ⟨g, y − x⟩, ∀y ∈ Rn},

and the normal cone defined as

NX0
(y) = {h ∈ Rn | ⟨h, x− y⟩ ≤ 0, ∀x ∈ X0}.
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III. EXACT PENALIZATION FOR SPARSE SDPS

In this section, we introduce an exact penalization of
sparse SDPs (1) into the form of (3). This allows us to
develop the spectral bundle method in the next section.

A. Exact penalization for constrained convex optimization

Consider a constrained convex optimization problem:

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X0,

(6)

where f : Rn → R and gi : Rn → R, i = 1, . . . ,m are
(possibly non-differentiable) convex functions, X0 ⊆ Rn is
a convex closed set. The idea of exact penalty methods is
to reformulate (6) by introducing an exact penalty function
P (x) =

∑m
i=1 max{0, gi(x)}. We then consider a penalized

problem

min
x

Φρ(x) := f(x) + ρP (x)

subject to x ∈ X0,
(7)

where ρ > 0 is a penalty parameter. It is known that when
choosing ρ large enough and assuming Slater’s condition,
problems (6) and (7) are equivalent in the sense that they
have the same optimal value and solution set [23, Theorem
7.21]. Therefore, we can transform some nonsmooth con-
straints that are hard to handle in (6) into the nonsmooth cost
in (7). Then, we can apply the bundle method (cf. Section II-
B) to solve the nonsmooth problem (7).

B. Non-smooth penalization of sparse SDPs

We consider the standard primal SDP (1). In many practi-
cal applications, the matrices A1, . . . , Am, C in problem data
are often sparse [6]. If they share a common sparsity pattern
G(V, E), i.e., C ∈ Sn(E , 0), Ai ∈ Sn(E , 0), i = 1, . . . ,m,
we refer to this graph as aggregate sparsity pattern. It is not
difficult to verify that (1) is equivalent to

min
X

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

X ∈ Sn+(E , ?).
(8)

Without loss of generality, we assume that the aggregate
sparsity pattern G(V, E) is a chordal graph with maximal
cliques C1, . . . , Cp (otherwise a suitable chordal extension
can be performed). Then, Theorem 1 allows us to reformulate
problem (8) into

min
X

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m

ECk
XET

Ck
∈ S|Ck|

+ , k = 1, . . . , p.

(9)

The single semidefinite constraint in (1) is replaced by
multiple smaller constraints in (9). This decomposition (9)
underpins many scalable algorithms for sparse SDPs [6].
The submatrices ECk

XET
Ck

induced by maximal cliques may

overlap, therefore the semidefinite constraints in (9) are cou-
pled. Previous techniques in [6], [10], [24] introduce a large
number of consensus constraints such as Xk = ECk

XET
Ck

.
In this work, we introduce further reformulations which

allow us to solve (9) directly without adding extra variables.
It is clear that (9) is equivalent to

min
X

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m, (10)

λmax

(
ECk

(−X)ET
Ck

)
≤ 0, k = 1, . . . , p.

The eigenvalue constraints in (10) are non-smooth. Similar to
(7), we then get the following formulation via exact penalty

min
X

⟨C,X⟩+ ρ

p∑
k=1

max
{
0, λmax

(
ECk

(−X)ET
Ck

)}
subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m. (11)

Unlike previous results in [6], [10], [24], this formulation
(11) only has a single matrix variable X (with no extra vari-
ables). It is clear (11) is in the form of (3). We will develop
a spectral bundle method to solve (11) in Section IV.

C. Properties and assumptions
Before developing the spectral bundle method, we expect

that problems (11) and (1) are equivalent when the penalty
parameter ρ is large enough. In particular, let us consider the
Lagrange dual problem of (9), which is

max
y,Yk

bTy

subject to C −
m∑
i=1

yiAi =

p∑
k=1

ET
Ck
YkECk

,

Yk ∈ S|Ck|
+ , k = 1, . . . , p.

(12)

It can be verified that (12) is also equivalent to (2). We denote
the optimal solution set of the decomposed primal SDP (9)
and dual SDP (12) by P⋆ and D⋆ respectively. Throughout
the paper, we make the following assumptions.

Assumption 1: The matrices Ai, i = 1, . . . ,m in (1) and
(2) are linearly independent.

Assumption 2: The primal and dual SDPs (9) and (12)
satisfy Slater’s condition (i.e., they are strictly feasible) and
their solution sets, P⋆ and D⋆, are compact.

We have the following technical result, and its proof is
provided in our report [21].

Proposition 1: Under Assumption 2, the non-smooth pe-
nalized formulation (11) is equivalent to the original primal
SDP (1) if we choose

ρ > DY⋆ := max
(y⋆,{Y ⋆

k })∈D⋆

{
tr(Y ⋆

1 ), tr(Y
⋆
2 ), . . . , tr(Y

⋆
p )
}
.

We conclude with a notion of strict complementarity.
Definition 1 (strict complementarity): A pair of optimal

solutions (X⋆, {y⋆, Y ⋆
k }) ∈ P⋆×D⋆ in (9) and (12) satisfies

strict complementarity if

rank
(
ECk

X⋆ET
Ck

)
+ rank (Y ⋆

k ) = |Ck|, k = 1, . . . , p.

If such a pair exists, we say the decomposed SDPs (9) and
(12) satisfy strict complementarity.
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IV. A SPECTRAL BUNDLE METHOD

In this section, we introduce a spectral bundle algorithm to
solve the penalized nonsmooth problem (11), and establish
its convergence guarantees.

A. Constructions of lower-approximation model

For simplicity, we denote the cost function in (11) as

G(X) := ⟨C,X⟩+ ρ

p∑
k=1

max
{
0, λmax

(
ECk

(−X)ET
Ck

)}
.

As discussed in Section II-B, one key step in the bundle
method is to construct an appropriate lower approximation
for G(X) that satisfies (5a) to (5c). Our strategy for con-
structing a lower approximation is motivated by [18], [19].

For each clique k, we use a matrix Pk ∈ R|Ck|×r

with orthonormal columns, where r ≤ mink |Ck|, such that
PT
k Pk = Ir×r, and construct a lower approximation:

Ĝ{Pk}(X) = ⟨C,X⟩+

ρ

p∑
k=1

max
Sk∈Sr+,

tr(Sk)≤1

〈
PkSkP

T
k , ECk

(−X)ET
Ck

〉
. (13)

By definition, we observe Ĝ{Pk}(X) ≤ G(X), ∀X ∈ Sn
thanks to the fact

max {λmax(−X), 0} = max
S∈Sn+,tr(S)≤1

⟨S,−X⟩, ∀X ∈ Sn,

and {PkSP
T
k ∈ Sn+ | S ∈ Sr+, tr(S) ≤ 1} ⊆ {S ∈ Sn+ |

tr(S) ≤ 1}. Therefore, Ĝ{Pk}(X) in (13) serves as an
underestimator that meets the requirement (5a).

We can also verify the subgradient lower bound condition
(5b) when we choose Pk spanning the top eigenvector
associated with ECk

(−X)ECk
. Another modification is re-

quired to ensure that the condition (5c) is fulfilled. Along
with selecting past and current eigenvectors to generate Pk,
the spectral bundle approach in [17] retains a thoughtfully
chosen weight to incorporate past information. Notably, we
introduce a constant matrix W̄k ∈ S|Ck|

+ for each clique k
with tr

(
W̄k

)
= 1, and define the set, k = 1, . . . , p

Ŵk := {γkW̄k + PkSkP
T
k | Sk ∈ Sr+,

γk ≥ 0, γk + tr (Sk) ≤ 1}.
(14)

We then refine the lower approximation function below

Ĝ{W̄k,Pk}(X)

= ⟨C,X⟩+ ρ

p∑
k=1

max
Wk∈Ŵk

〈
Wk, ECk

(−X)ET
Ck

〉
.

(15)

It is evident that the lower approximation model (15) pro-
vides a better estimate than (13). Letting γk = 0 reduce (15)
to (13); hence (15) satisfies (5a), (5b), as well as (5c) by
carefully constructing W̄k and Pk at each iteration.

B. A spectral bundle algorithm

Following Section II-B, we present a spectral bundle
algorithm to solve (11) based on the lower approximation
model (15). In this algorithm, we will construct a lower
approximation model Ĝ{W̄t,k,Pt,k}(Xt) and update the model
parameters {W̄t,k}, {Pt,k}, and the set Ŵt,k := {γt,kW̄t,k+
Pt,kSt,kP

T
t,k | γt,k≥0, St,k∈Sr+, γt,k+tr(St,k)≤1} at each

iteration t. The overall algorithm is listed in Algorithm 1,
which has the following steps:

Pre-processing: The algorithm starts by extracting aggre-
gate sparsity pattern of the problem data and computing the
maximal cliques C1, . . . , Cp. This step can be performed very
efficiently; see [6].

Initialization: The algorithm is initiated with a random
reference point Ω0 ∈ Sn and P0,k ∈ R|Ck|×r by setting the
top r eigenvectors of ECk

(−Ω0)E
T
Ck

as their columns. We
choose W̄0,k ∈ S|Ck|

+ with tr
(
W̄0,k

)
= 1, and construct the

initial under-estimator Ĝ{W̄0,k,P0,k}(X) as in (15).
Solving the master problem: Similar to (4), our algorithm

solves the following problem at iteration t ≥ 0 to get the next
iteration parameters and the candidate reference point(

X⋆
t+1, S

⋆
t,k, γ

⋆
t,k

)
= argmin

X∈X0

Ĝ{W̄t,k,Pt,k}(X) +
α

2
∥X − Ωt∥2F ,

(16)

where X0 = {X ∈ Sn | ⟨Ai, X⟩ = bi, i = 1, 2, . . . ,m},
and Ωt is the reference point at iteration t and α > 0 is a
parameter which penalizes the deviation from Ωt.

Update reference point: The algorithm updates the refer-
ence point if the following condition holds

β
(
G (Ωt)− Ĝ{W̄t,k,Pt,k}

(
X⋆

t+1

))
≤ G (Ωt)−G

(
X⋆

t+1

)
,

(17)

where β ∈ (0, 1). This indicates that if the actual cost reduc-
tion G (Ωt)−G

(
X⋆

t+1

)
is greater or equal than β portion of

the approximate reduction G (Ωt) − Ĝ{W̄t,k,Pt,k}
(
X⋆

t+1

)
, a

decent step happens and the algorithm updates the reference
point, i.e., Ωt+1 = X⋆

t+1. Otherwise, a null step happens and
the reference point does not change, i.e., Ωt+1 = Ωt.

Update the under-estimation model: The algorithm up-
dates the model (15) at each iteration to improve the approx-
imation accuracy. Similar to [18, Section 2.2], to compute
W̄t+1,k, Pt+1,k, we apply eigenvalue decomposition to small
matrices S⋆

k,t as below

S⋆
t,k =

[
Qk,1 Qk,2

] [ Σk,1 0
0 Σk,2

] [
QT

k,1

QT
k,2

]
,

where Qk,1 ∈ Rr×rp and Qk,2 ∈ Rr×rc contain the
orthonormal eigenvectors associated with eigenvalues Σk,1

and Σk,2 respectively, with Σk,1 consisting of the largest rp
eigenvalues and Σk,2 consisting of the remaining eigenval-
ues. We compute the Vt,k ∈ R|Ck|×rc with its columns being
the top rc ≥ 1 orthonormal eigenvectors of ECk

(−X⋆
t+1)E

T
Ck

which captures the current sub-gradient information. Then,
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Algorithm 1 Spectral bundle method for sparse SDPs

Require: Problem data A1, . . . , Am, C ∈ Sn, b ∈ Rn.
Require: Parameters rp ≥ 0, rc ≥ 1, α > 0, β ∈ (0, 1),
ϵ ≥ 0. An initial point Ω0 ∈ Sn.
Pre-processing: Extract aggregate sparsity pattern of the
problem data and compute maximal cliques.
Initialization: Let r = rp + rc. Initialize W̄0,k ∈ S|Ck|

+ ,
with tr

(
W̄0,k

)
= 1, and construct P0,k ∈ R|Ck|×r with

its columns set to the top r orthonormal eigenvectors of
ECk

(−Ω0)E
T
Ck

.
for t = 0, . . . , tmax do

Solve (16) to obtain X⋆
t+1, γ

⋆
k,t, and S⋆

k,t.
\\master problem
If G(Ωt)− Ĝ{W̄t,k,Pt,k}(X

⋆
t+1) ≤ ϵ, then stop.

Set Ωt+1 =

{
X⋆

t+1, if (17) holds. \\descent step
Ωt, otherwise. \\null step

Compute Pk,t+1 as (18) and W̄k,t+1 as (19).
\\update model

end for

the next parameter Pt+1,k is updated as

Pt+1,k = orth
([

Vt,k, Pt,kQ1,k

])
. (18)

The update of the weight matrices W̄t,k captures the remain-
ing past information

W̄t+1,k =

(
γ⋆
t,kW̄t,k + Pt,kQk,2Σk,2Q

T
k,2P

T
t,k

)
γ⋆
t,k + tr (Σk,2)

, (19)

where W̄t+1,k is normalized with tr(W̄t+1,k) = 1. If rp = 0,
the parameter updates in (18) and (19) become Pt+1,k =

Vt,k ∈ R|Ck|×r and W̄t+1,k =
W⋆

t,k

tr(W⋆
t,k)

respectively, where

W ⋆
t,k is the optimal solution of γkW̄t,k+Pt,kSkP

T
t,k in (16).

C. Computational details

Solving the regularized master problem in (16) is the
main computation in Algorithm 1. Therefore, it is crucial
to solve the master problem efficiently. We summarize the
computation details in Proposition 2. Its proof is provided
in the report [21]. For notational simplicity, we define the
linear mapping ECk

: Sn → S|Ck| as ECk
(X) = ECk

XET
Ck

and ÊCk
: S|Ck| → Sn as ÊCk

(X) = ET
Ck
XECk

.
Proposition 2: The master problem (16) is equivalent to

max
Wk∈Ŵt,k

y∈Rm

〈
C−ρ

p∑
k=1

ÊCk
(Wk),Ωt

〉
+ ⟨b−A(Ωt), y⟩

− 1

2α

∥∥∥∥∥ρ
p∑

k=1

ÊCk
(Wk) +A∗(y)− C

∥∥∥∥∥
2

F

.

(20)

The optimal solution of X in (16) is recovered by

X⋆
t+1 = Ωt +

1

α

(
ρ

p∑
k=1

ÊCk
(Wk) +A∗(y)− C

)
. (21)

D. Convergence guarantees

We present the convergence guarantee for Algorithm 1
when strong duality holds for (9) and (12).

Theorem 2: Suppose strong duality holds for (9) and (12).
Given any β ∈ (0, 1), rc ≥ 1, rp ≥ 0, α > 0, r = rc + rp,
ρ > 2DY⋆ + 1, P0,k ∈ Rn×r,∀1 ≤ k ≤ p, Ω0 ∈ Sn,
and target accuracy ϵ > 0, then Algorithm 1 outputs iterates(
Ωt, {W ⋆

t,k}, y⋆t
)

with

G(Ωt)−G(X⋆) ≤ ϵ, (22a)∥∥∥∥∥ρ
p∑

k=1

ÊCk

(
W ⋆

t,k

)
− C +A∗(y⋆t )

∥∥∥∥∥
2

F

≤ ϵ, W ⋆
t,k ⪰ 0, (22b)

λmin

(
ECk

ΩtE
T
Ck

)
≥ −ϵ, 1 ≤ k ≤ p, (22c)

|⟨C,Ωt⟩ − ⟨b, y⋆t ⟩| ≤
√
ϵ, (22d)

by t ≤ O
(
1/ϵ3

)
. If the strict complementarity (Definition 1)

also holds, then the condition (22) is reached by t ≤ O(1/ϵ).
Our proof is motivated by [18], [19]; see our report [21]

for details.

V. IMPLEMENTATION AND NUMERICAL RESULTS

In this section, we present the numerical results of Al-
gorithm 1 to show its efficiency and convergence. All the
experiments were executed in MATLAB R2023b on an
Ubuntu 22.04 PC 32.0 GB RAM1. We consider SDPs with a
block-arrow sparsity pattern shown in [10, Fig. 6] which has
l overlapping maximal cliques of size d + h. We randomly
generate problem data such that there exists at least one low-
rank dual solution; see our report [21] for further experiment
details.

For the implementation, we reformulate the master prob-
lem (20) in Algorithm 1 into a quadratic SDP of the form,

min
v

vTQv + qTv + c

subject to γk ≥ 0, Sk ∈ Sr+,
γk + tr(Sk) ≤ ρ, k = 1, . . . , p,

where v =
[
γ1 · · · γp vec(S1)

T · · · vec(Sp)
T
]T

,
and vec(·) denotes the vectorization operation, then solve
it using MOSEK [7] (See [21] for construction details). The
problem above only involves p scalar variables and p small
PSD variables, which can be efficiently solved.

We first run Algorithm 1 for two settings:
1) A small-scale problem with dimensions d = 20, l =

10, h = 4, and m = 100.
2) A large-scale problem with dimensions d = 50, l =

40, h = 4, and m = 1000.
Inspired by [18, Section 5] and [19, Section 6], we choose
different configurations of the parameters rp and rc. The
parameter rp is fixed to be 0, while different rc is considered
since rp does not have much influence on the convergence
rate as shown in [18, Section 5] and [19, Section 6]. The
numerical results are presented in Table I, where ”Semi

1Our code and experiments are available at https://github.com/
hsmmoj/A-Spectral-Bundle-Method-for-Sparse-SDPs.
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TABLE I: Computational results on solving two random SDPs with
block-arrow sparsity pattern (we fixed tmax = 400 in Algorithm 1).

Dimension (rp, rc) Semi Opt. Affine Opt. Dual Gap Cost Opt.

Small SDP
(0, 4) −3.47e−8 2.45e−11 4.54e−9 1.04e−10

(0, 5) −1.01e−10 4.74e−12 1.61e−8 1.01e−10

Large SDP
(0, 4) −2.25e−5 6.30e−11 9.16e−11 1.61e−9

(0, 5) −1.03e−5 4.17e−11 9.67e−10 5.15e−9

TABLE II: Comparison with different solvers on solving sparse
SDPs of different sizes (time in seconds).

Sedumi [25] Mosek [7] SDPNAL+ [26] Algorithm 1

Dim CO time CO time CO time CO time

4002 1.7e−8 2243 9.79e−12 1985 8.3e−9 887 2.11e−9 551

3902 4.8e−8 2035 1e−11 1790 2.1e−8 545 2.14e−8 535

3802 6.2e−8 2136 9.8e−12 1557 6.4e−8 540 1.2e−8 510

3702 1.1e−7 1696 9.09e−12 1510 3.5e−7 270 1.37e−7 480

CO denotes ”Cost optimality”. We fixed tmax = 300 in Algorithm 1.

Opt.”, ”Affine Opt.”, ”Dual Gap”, and ”Cost Opt.” denote
the following criteria

λmin (Ωt+1) ,
∥C −A∗(y)−W ⋆

t ∥F
1 + ∥C∥

,

|⟨C,Ωt+1⟩ − ⟨b, ωt⟩|
1 + |⟨C,Ωt+1⟩|+ | ⟨b, ωt⟩ |

,
|G (Ωt+1)−G⋆|

|G⋆|
,

with W ⋆
t =

∑p
k=1 ÊCk

(W ⋆
t,k) and G⋆ as the true optimal

value. In both small-scale and large-scale SDPs, Algorithm 1
returns a solution of high accuracy within 400 iterations.

We next conduct experiments comparing our algorithm’s
performance with other solves on sparse SDPs, ranging from
dimensions 3702 to 4002. The results in Table II demonstrate
our algorithm’s scalability and efficiency to handle large-
scale SDPs without excessive resource usage. Our solver out-
performs standard interior-point solvers (Sedumi and Mosek)
in terms of speed while maintaining comparable accuracy.
Also, our preliminary implementation of Algorithm 1 shows
comparable (sometimes better) scalability compared to the
first-order solver SDPNAL+ [26] on these problem instances.

VI. CONCLUSIONS

In this paper, we have developed a new spectral bundle
method for sparse SDPs. This approach breaks down a large
PSD constraint into several smaller ones using chordal de-
composition. We introduce an equivalent non-smooth convex
optimization problem by moving the PSD constraints into the
objective function. Instead of introducing extra consensus
variables as many previous studies [6], [10], we solve the
non-smooth problem using a new spectral bundle method,
which is shown Algorithm 1. Under a mild condition, the
algorithm converges as O

(
1/ϵ3

)
. If the problem satisfies

strict complementarity, the convergence rate is improved to
O (1/ϵ). Our experiments confirm that this new algorithm is
promising to efficiently solve large-scale sparse SDPs.
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