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Abstract— This paper investigates a class of continuous-time
parameter identifiers with the so-called “dynamic adaptation
gain (DAG)”, inspired by its discrete-time counterpart [1]. A
modular control law is first presented: this helps re-parametrize
the system and highlight the required properties for the
identifier. Then, a dynamic adaptation gain is constructed using
a strictly passive system, strengthened by a feedthrough path:
the resulting DAG is input strictly passive. Analysis shows
that the identifier with the proposed DAG satisfies specific
signal properties. An integrated analysis of both the control
law and the identifier establishes boundedness of all closed-
loop signals and state convergence. The convergence of the
parameter estimate is also established under a persistence of
excitation condition. Finally, an example inspired by a path-
following problem demonstrates the convergence improvement
achieved by the proposed DAG.

I. Introduction
Adaptive control describes a class of control algorithms

that adapt their parameters or structure to accommodate
uncertainties in the system, lack of knowledge about the
system, and variations in the operating conditions. In the past
decades, adaptive control has undergone extensive research
and a comprehensive theory has been built for linear and
nonlinear systems (see, e.g., [2]–[6]).

The core of most adaptive control algorithms is the pa-
rameter adaptation mechanism. Since adaptive control sys-
tems are dynamic systems, unlike what happens for static
optimization problems, there is no natural definition of a cost
function. A standard practice is to use the current best knowl-
edge of the unknown parameters to predict the evolution of
the underlying system. Intuitively, if the current knowledge
is close to the “true knowledge”, the prediction error should
be small. This motivates updating the current parameter
estimation in the direction that reduces the prediction error.
Viewed from this point, parameter adaptation algorithms are
in nature optimization algorithms (see, e.g., [5], [7] for a
summary of the underlying optimization algorithms used in
adaptive control), and of course, suffer from similar issues
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such as slow convergence due to “small” gradient and lack
of robustness against noise and delays.

To overcome these issues, parameter adaptation algorithms
with finer structures have been developed. One of the com-
mon remedies is to extend integral-type identifiers to higher-
order identifiers (see, e.g., [8]–[10]). Such an idea has been
exploited in both discrete-time algorithms (see e.g., [11],
[12]) and in continuous-time algorithms (see e.g., [13]–[15]).
These methods are proven to help accelerate learning or
improve parameter estimation. In [1], a general structure
of a discrete-time high-order parameter estimator has been
proposed under the name Dynamic Adaptation Gain (DAG)1.
The static adaptation gain in the classical integral-type
adaptation law is replaced by a dynamical operator, which
generalizes several known high-order adaptation algorithms.
Similar to classical results, the stability and convergence
properties are related to passivity of the DAG and of the
identifier subsystem.

An alternative method to enhance adaptation performance
is to adjust the value of the adaptation gain online based on
measurement from the controlled system. The classical least-
squares adaptation algorithms (see, e.g., [7] for a discrete-
time version and e.g., [5] for a continuous-time version) are
their representatives. These algorithms modify the adaptation
gain (also known as the covariance matrix in the literature) to
mitigate the effect of noise on adaptation. Due to the nature
of the adaptation gain being adjusted dynamically, sometimes
this method is also referred to as dynamic adaptation gain
[16]2. Unlike in [1], the DAGs under such a definition modify
only the adaptation gain itself and do not alter the gradient
signal fed into the adaptation algorithm directly. A DAG of
this type appears in the parameter estimation error dynamics
as a time-varying gain instead of a dynamic compensator.

In this paper, we follow a similar idea to show that the
continuous-time counterpart3 of the DAG in [1] exists and
has similar properties. In addition, it is shown that by a
slight change in the location of the DAG, the passivity-related

1Some special cases of DAG were developed in the 1970s, see e.g., the
PID adaptation in [2, Section 3.3]

2The motivation for introducing a dynamically updated adaptation gain
in [16] and [17] is to use its time derivative to apply certainty-equivalence
principle for unmatched uncertainties.

3The main reason for extending the notion of DAG design to continuous-
time systems is because, in modern control systems, the control algorithm
is typically running on a real-time operating system, which is mostly
event-driven instead of time-driven and does not admit a fixed sampling
period (which is the case for classical dedicated digital control systems).
In this case, a standard methodology for control design is to first design a
continuous-time algorithm with a guaranteed robustness margin, and then fit
the effect of variable-rate sampling into the robustness margin by designing
the triggering mechanism [18].
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requirement on the identifier is easier to fulfil. We also show
that the proposed identifier is compatible with a modular
design as it has the same signal properties as the classical
integral-type identifiers.

Notation: This paper uses standard notation unless stated
otherwise. For an 𝑛-dimensional vector 𝑣 ∈ R𝑛, |𝑣 | denotes
the Euclidean 2-norm; |𝑣 |𝑀 =

√
𝑣⊤𝑀𝑣, 𝑀 =𝑀⊤ ≻ 0, denotes

the weighted 2-norm with weight 𝑀 . For 𝑀 =𝑀⊤ ⪰ 0, 𝜆(𝑀)
denotes the smallest eigenvalue of 𝑀 (and similarly for 𝜆

denoting the largest eigenvalue); 𝑀 1
2 denotes the unique non-

negative square root of 𝑀 . 𝐼 denotes the identity matrix. Let
𝑇 (𝑠) be a transfer function (matrix), 𝑇 (𝑠) [𝑢] ≜ 𝑦, where 𝑦 is
the output signal of the underlying dynamical system driven
by 𝑢 from some initial state. ⋄

II. System Re-parametrization for a Modular Design
Consider a system with matched4 parametric uncertainty,

namely the system

¤𝑥 = 𝐴𝑥 +𝐵
(
𝑢 +𝜙⊤ (𝑥)𝜃

)
, (1)

where 𝑥(𝑡) ∈R𝑛 is the state; 𝑢(𝑡) ∈R is the input; 𝜙 :R𝑛 →
R𝑞 is a known continuous nonlinear mapping; 𝜃 ∈ R𝑞 is a
vector of constant unknown parameters; 𝐴, 𝐵 are constant
and known; and the pair (𝐴, 𝐵) is stabilizable. In what
follows we design a feedback controller independent of 𝜃 that
generates 𝑢 such that 1) all closed-loop signals are bounded
and 2) lim

𝑡→+∞
𝑥(𝑡) = 0.

To begin with, consider the simple scenario in which
information on 𝜃 is available for control design. It is well
known that (1) can be stabilized by a “nominal” control law,
that is

𝑢 = −𝑘⊤𝑥−𝜙⊤ (𝑥)𝜃, (2)

where 𝑘 is a vector of feedback gains such that 𝑃 = 𝑃⊤ ≻ 0
solves the Lyapunov equation(

𝐴−𝐵𝑘⊤
)⊤

𝑃+𝑃
(
𝐴−𝐵𝑘⊤

)
+𝑄 = 0, (3)

for some given 𝑄 =𝑄⊤ ≻ 0.
When information on 𝜃 is unavailable, one has to design an

estimate 𝜃 to compensate for the unknown 𝜃 and the feedback
design is more complicated due to the nonlinear state-
dependent uncertainty 𝜙⊤ (𝑥)𝜃. Without a growth condition
imposed on 𝜙, even an exponentially converging parameter
estimation error 𝜃 ≜ 𝜃 − 𝜃 can lead to finite escape time. A
standard practice (see e.g., [4]) is to add nonlinear damping
terms to the feedback law to prevent such a phenomenon,
namely, to modify (2) as

𝑢 = −𝑘⊤ (𝑥)𝑥−𝜙⊤ (𝑥)𝜃, (4)

where 𝑘 (𝑥) =
(
𝑘𝐿 + 𝑘𝜙 |𝜙(𝑥) |2

)
𝑃𝐵, with 𝑘𝐿 > 0, 𝑘𝜙 > 0, and

𝑃 = 𝑃⊤ ≻ 0 the solution of the algebraic Riccati equation

𝐴⊤𝑃+𝑃𝐴−2𝑘𝐿𝑃𝐵𝐵⊤𝑃+𝑄 = 0, (5)

4Only matched uncertainties are considered to avoid unnecessary com-
plexity. The modular design in this section is inspired by and can be
extended to the unmatched case discussed in [4], with some tedious but
straightforward computation.

for some given 𝑄 =𝑄⊤ ≻ 0. The resulting closed-loop system
has the useful property stated hereafter.

Lemma 1: Consider the system (1) controlled by (4). The
resulting closed-loop system is input-to-state stable (ISS)
with respect to the input 𝜃. ⋄

From now on we consider the controlled plant dynamics
(which do not explicitly contain 𝑢) described by

¤𝑥 = 𝐴𝑐𝑙 (𝑥)𝑥−𝐵𝜙⊤ (𝑥)𝜃, (6)

where 𝐴𝑐𝑙 ≜ 𝐴− 𝐵𝑘⊤ (𝑥). From (5) we know that, with the
same 𝑃 solving (5), the state-dependent Lyapunov inequality
(a nonlinear counterpart of (3))

𝐴⊤
𝑐𝑙 (𝑥)𝑃+𝑃𝐴𝑐𝑙 (𝑥) +𝑄 ⪯ 0, (7)

holds for all 𝑥 ∈ R𝑛. Since 𝜃 is unknown, in an adaptive
control architecture, one can design an identifier that updates
the estimate 𝜃 such that the control law (4) achieves the
control objectives. To do this, we first need a parametric
model of the system. Typically, it is more convenient to study
the convergence of parameter estimates if an algebraic rela-
tion between the parameter and the output of the parametric
model can be established (in contrast, the relation between 𝑥

and 𝜃 in (1) is differential). To this end, consider the filters

¤𝜔0 = 𝐴𝑐𝑙 (𝑥)𝜔0 −𝐵𝜙⊤ (𝑥)𝜃, (8a)
¤Ω⊤ = 𝐴𝑐𝑙 (𝑥)Ω⊤ +𝐵𝜙⊤ (𝑥). (8b)

One can see that the parametric model 𝑥 = 𝜔0 +Ω⊤𝜃 − 𝜀

holds because the parametrization error 𝜀 is governed by the
equation ¤𝜀 = ¤𝜔0 + ¤Ω⊤𝜃− ¤𝑥 = 𝐴𝑐𝑙 (𝑥) (𝜔0 +Ω⊤𝜃) −𝐵𝜙⊤ (𝑥) (𝜃−
𝜃) − 𝐴𝑐𝑙 (𝑥)𝑥 + 𝐵𝜙⊤ (𝑥) (𝜃 − 𝜃)) = 𝐴𝑐𝑙 (𝑥)𝜀, hence 𝜀 exponen-
tially decays to 0 by (7). In other words, as 𝑡 → +∞,
one has that 𝑥 → 𝜔0 +Ω⊤𝜃, which establishes an algebraic
relation between 𝑥 and 𝜃. This is also the reason why such
a parametrization is called a static parametric model (see
e.g., [19]). Furthermore, we can use this algebraic relation
to create a "prediction" 𝑥 ≜ 𝜔0+Ω⊤𝜃 for 𝑥. This leads to the
alternative algebraic parametric model

𝑥 = Ω⊤𝜃 + 𝜀, (9)

where 𝑥 ≜ 𝑥 − 𝑥 is the prediction error. We will show that
while 𝑥 is crucial for the realization of the identifier, its
properties are also determined by the identifier.

Before designing the identifier, we discuss what properties
an “ideal” identifier should possess. Since the control design
aims to make 𝑥 converge to 0, a sufficient convergence
condition is that both 𝑥 and 𝑥 converge to 0 (due to (9)),
while keeping all other closed-loop variables bounded.

Proposition 1: Consider the partially closed-loop system5

consisting of (6), (8a), (8b), and the identifier to be designed.
Such a system satisfies the following properties.

1) Ω and 𝜀 are bounded.
2) All signals are bounded, provided that the signals of the

identifier subsystem are bounded, 𝜃 ∈ L∞, and ¤̂𝜃 ∈ L∞.

5The system is partially closed-loop because the identifier is still to be
determined and its dynamical properties have not yet been analyzed.
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3) lim
𝑡→+∞

𝑥(𝑡) = 0, provided that in addition to the condi-

tions in 2), 𝑥 ∈ L2, and ¤̂𝜃 ∈ L2.
⋄

Proposition 1 indicates that the control law design can
provide bounded Ω and 𝜀, independent of the properties
of the identifier. As long as the identifier can exploit such
boundedness to achieve 𝜃 ∈ L∞, 𝑥 ∈ L2 and ¤̂𝜃 ∈ L2∩L∞, the
control objectives can be achieved. This is the reason why
the control law (4), together with the auxiliary filters (8a)
and (8b) yields a modular design: any identifier satisfying
the requirements in Proposition 1 can be integrated into the
controller in a plug-and-play manner.

III. Identifier with Dynamic Adaptation Gain
In the classical scenario, the negative gradient of the

quadratic cost of the instantaneous prediction error 𝐽1 =
1
2 |𝑥 |

2 = 1
2
��Ω⊤ (𝜃 − 𝜃) + 𝜀

��2 is integrated to obtain 𝜃, namely:

¤̂𝜃 = −Γ1

(
𝜕𝐽1

𝜕𝜃

)⊤
= −Γ1Ω𝑥, (10)

where Γ1 = Γ⊤
1 ≻ 0 is the adaptation gain to adjust the rate

of the “learning” process. An alternative way to adjust the
learning rate is to consider a prediction error “weighted” by
Γ2 = Γ⊤

2 ≻ 0, that is, to minimize 𝐽2 =
1
2 |𝑥 |

2
Γ2

. The resulting
gradient descent law is

¤̂𝜃 = −
(
𝜕𝐽2

𝜕𝜃

)⊤
= −ΩΓ2𝑥. (11)

In both cases, Γ1 and Γ2 are constant positive definite
matrices, or in other words, static adaptation gains. These
gains are special cases of a more general class of dynamic
adaptation gains (DAG) [20], which are dynamic operators.

In the spirit of the discrete-time designs in [1], in what
follows we develop an identifier similar to (11) but with a
DAG. To this end, consider an identifier described by the
equations

¤𝜉 = 𝐹𝜉 +𝐺𝑣, (12a)
𝜂 = 𝐻𝜉 +Γ𝑣, (12b)
¤̂𝜃 = Ω𝜂, (12c)

where 𝜉 (𝑡) ∈ R𝑛𝜉 is the state of the DAG; 𝑣(𝑡) ∈ R𝑛 is
the input to the identifier; 𝜂(𝑡) ∈ R𝑛 is the output of the
DAG; 𝜃 (𝑡) ∈ R𝑞 is the vector of parameter estimates for 𝜃,
and Ω(𝑡) ∈ R𝑞×𝑛 is the filtered regressor matrix generated
by (8b). The matrices in (12a)–(12c) are selected such that
(𝐹,𝐺,𝐻) is minimal6, and the transfer function 𝑇(𝐻𝜉 )𝑣 (𝑠) =
𝐻 (𝑠𝐼 − 𝐹)−1𝐺 is strictly positive real (SPR). In addition,
Γ = Γ⊤ ≻ 0.

It is not difficult to see that, if one lets 𝑣 = −𝑥, the DAG
described by (12a) and (12b) yields a dynamic counterpart
of the gain Γ2 in (11), since ¤̂𝜃 = Ω𝑇𝜂𝑣 (𝑠) [𝑥]. In fact, the
proposed identifier reduces to (11) if one removes the state
variables in (12a) and sets 𝐻 = 0, Γ = Γ2.

6This means that (𝐹,𝐺) is controllable and (𝐻,𝐹 ) is observable.

Note now that since ¤̃𝜃 =
¤̂𝜃 − 0 =

¤̂𝜃 and 𝑥 = Ω⊤𝜃 + 𝜀, the
identifier dynamics can be described by the negative feedback
interconnection in Fig 1.

Fig. 1. Schematic interpretation of the identifier subsystem.

From the classical Lyapunov/SPR framework for adaptive
control design, we know that the interconnected system is
stable and the state of the forward-path system converges
to zero, provided the forward-path system is strictly passive
and the feedback-path system is passive. The difference here
is that the forward path is now the DAG instead of a plant
to be controlled. The convergence of 𝜉 is not sufficient for
the identifier design because we still need to fulfil the other
requirements in Proposition 1, especially the L2 property of
𝑥 and ¤̂𝜃. Fortunately, one can show that the DAG described
by (12a) and (12b) has a useful property as stated in the
following result.

Lemma 2: The DAG is both strictly passive and input
strictly passive7 with respect to the input 𝑣, the output 𝜂, with
storage function 𝑉𝜉 (𝜉) = 1

2 |𝜉 |
2
𝑋

, where 𝑋 = 𝑋⊤ ≻ 0 solves the
equations

𝐹⊤𝑋 + 𝑋𝐹 = 𝑌, (13a)
𝑋𝐺 = 𝐻⊤, (13b)

for some given 𝑌 = 𝑌⊤ ≻ 0. ⋄
Proof: Since 𝑇(𝐻𝜉 )𝑣 (𝑠) = 𝐻 (𝑠𝐼 − 𝐹)−1𝐺 is SPR,

one can compute 𝑋 by solving (13a) and (13b) (this is
due to the Lefschetz-Kalman-Yakubovich Lemma, see, e.g.,
Lemma 3.5.3 in [5] and the references therein). Differenti-
ating 𝑉𝜉 with respect to time along the trajectories of the
system yields

¤𝑉𝜉 =
1
2
𝜉⊤ (𝐹⊤𝑋 + 𝑋𝐹)𝜉 + 𝜉⊤𝑋𝐺𝑣

≤ − |𝜉 |2𝑌 + (𝐻𝜉 +Γ𝑣)⊤𝑣− |𝑣 |2Γ
≤ − �̄� 𝜉 |𝜉 |2 − �̄�𝜉𝑣 |𝑣 |2 +𝜂⊤𝑣, (14)

where �̄� 𝜉 ≜ 1
2𝜆(𝑌 ) > 0, �̄�𝜉𝑣 ≜ 𝜆(Γ) > 0. In particular, the

fact that �̄� 𝜉 > 0 proves strict passivity and �̄�𝜉𝑣 > 0 proves
input strict passivity.

We are now ready to present the properties of the identifier
subsystem.

Proposition 2: Consider the identifier described by (12a)–
(12c), with input 𝑣 = −𝑥. The following properties hold.

1) All signals within the identifier are bounded.

7See, e.g., Definition 6.3 in [21] for the definitions of passivity properties.
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2) 𝜃 ∈ L∞, ¤̂𝜃 ∈ L2 ∩L∞, and 𝑥 ∈ L2 ∩L∞.
3) lim

𝑡→+∞
𝜉 (𝑡) = 0.

⋄
Proof: Recall the property 1) of Proposition 1. Let

𝑉𝜀 (𝜀) = |𝜀 |2
𝑃

and note that

¤𝑉𝜀 ≤ −𝑎𝜀 |𝜀 |2, (15)

with 𝑎𝜀 ≜ 𝜆(𝑄). Consider the storage function 𝑉𝜃 (𝜃) =
1
2 |𝜃 |

2 and differentiate it with respect to time along the
trajectories of (12c) (noting that ¤̃𝜃 =

¤̂𝜃). This yields ¤𝑉𝜃 =

𝜃⊤ (Ω𝜂) = (Ω⊤𝜃)⊤𝜂. Recall Lemma 2 and the dissipa-
tion inequality (14). We can then write ¤𝑉𝜉 ≤ −�̄� 𝜉 |𝜉 |2 −
�̄�𝜉𝑣 |𝑥 |2 + 𝜂⊤ (−Ω⊤𝜃 − 𝜀) = −�̄� 𝜉 |𝜉 |2 − �̄�𝜉𝑣 |𝑥 |2 + 𝜂⊤ (−Ω⊤𝜃) +
(𝐻𝜉 −Γ𝑥)⊤ (−𝜀) ≤ −𝑎 𝜉 |𝜉 |2 −𝜎𝜉𝑣 |𝑥 |2 +𝜂⊤ (−Ω⊤𝜃) + 𝑏 𝜉 𝜀 |𝜀 |2,
where 𝑎 𝜉 ≜ �̄� 𝜉 − 1

2𝜖𝜉 𝜀
, 𝜎𝜉𝑣 ≜ �̄�𝜉𝑣 − 1

2𝜖�̃� 𝜀 , 𝑏 𝜉 𝜀 ≜
1
2
(
𝜖𝜉 𝜀 |𝐻 |22 + 𝜖 �̃� 𝜀 |Γ |

2
2
)
, and the 𝜖 ( ·) > 0 are balancing coef-

ficients to guarantee that 𝑎 𝜉 > 0 and 𝜎𝜉𝑣 > 0. Let 𝑉𝜉 𝜃 =

𝑉𝜉 +𝑉𝜃 and note that

¤𝑉𝜉 𝜃 ≤ − 𝑎 𝜉 |𝜉 |2 −𝜎𝜉𝑣 |𝑥 |2 + 𝑏 𝜉 𝜀 |𝜀 |2. (16)

This, together with (15), proves that 𝜉, 𝜃 and all other
signals generated by the identifier subsystem are bounded.
In addition, note that 𝑥 = Ω⊤𝜃 + 𝜀, which is also bounded
due to boundedness of Ω and 𝜀. Therefore, the property 1)
has been proven.

To prove 2), we first note that 𝑥 ∈ L2, by (16) and (15).
¤̂𝜃 ∈ L2 follows due to boundedness of Ω. Finally, using the
boundedness properties established in 1) proves the claim.

To prove 3), we note that 𝜉 ∈ L2 ∩L∞ by (16) and (15).
In addition, ¤𝜉 is bounded by (12a), with 𝑣 = −𝑥. Hence by
the standard convergence argument in Barbalat’s lemma, we
conclude that lim

𝑡→+∞
𝜉 (𝑡) = 0, which completes the proof.

An intuitive interpretation of the reason why a DAG could
be a better choice is to consider a scalar time-invariant
version of Fig. 1, that is, let Ω = Ω⊤ = 1. One can view
the DAG as a controller/compensator for the integrator.
In the classical case, the DAG reduces to a proportional
controller, which can only shift the Bode magnitude plot of
the loop transfer function to adjust the cut-off frequency. The
proposed DAG acts as a passive compensator. Consider a
first-order compensator as an example. One can let the DAG
be

𝑇𝜂𝑣 (𝑠) = 𝛾 + 𝛽

𝛼𝑠+1
=
𝛾𝛼𝑠+ 𝛽+𝛾

𝛼𝑠+1
, (17)

with 𝛼 > 0, 𝛽 > 0, 𝛾 > 0. In this case, the high-frequency
gain 𝛾 and the DC gain 𝛽+𝛾 can be adjusted separately and
the cut-off frequency can be adjusted by selecting 𝛼. Since
Ω is in general time-varying and not a scalar, the tuning
procedure, in that case, can be more complicated than the
one discussed in the linear case.

Remark 1: Compared to the discrete-time DAG in [1]
and the continuous-time DAG in [22], which are associated
with (10), the passivity condition for the proposed DAG
associated with (11) is easier to be satisfied, from a design
perspective. For the DAG associated with (10), not only the

DAG should be SPR, but the cascade of the DAG and the
integrator should be positive real. This makes the design
procedure of the DAG implicit as it has to satisfy two
conditions simultaneously. In comparison, the proposed DAG
only requires finding an SPR component and combining it
with a feedthrough path, which is an explicit procedure. ⋄

IV. Closed-Loop Analysis and Parameter Convergence

With the properties of the partially closed-loop system
established in Section II and the properties of the identifier
established in Section III, we are ready to analyze the overall
closed-loop system.

Theorem 1: Consider the closed-loop system consisting
of (6), (8a), (8b), and the identifier described by (12a)–(12c)
(with 𝑣 =−𝑥). Then, all trajectories of the closed-loop system
are bounded, lim

𝑡→+∞
𝑥(𝑡) = 0, and lim

𝑡→+∞
𝑥(𝑡) = 0. ⋄

Proof: The proof is a straightforward consequence of
Proposition 1 and Proposition 2.

Remark 2: One may have noted that the formulations of
Proposition 1 and 2 are to achieve modularity, which allows
the user to use an alternative identifier. In the proposed
design, ¤̂𝜃 ∈ L2 is already guaranteed by 𝑥 ∈ L2. In ad-
dition, such a proof based on a cascade of implications
for signal properties can be fragile if the system contains
any unmodelled uncertainties that may result in circular
signal dependencies (see, e.g., [23]). In this case, one may
perform a network small-gain-like synthesis by computing
the dissipation inequalities of all subsystems and invoking
Theorems 2 and 3 in [24] to derive an alternative proof for
Theorem 1. ⋄

Aside from the control objectives mentioned at the be-
ginning of Section II, one may also want the controller to
estimate the true value of 𝜃, for long-term control perfor-
mance [25]. To establish the convergence of 𝜃 to the true
parameter 𝜃, we impose a classical condition.

Assumption 1: (Persistence of Excitation) The filtered re-
gressor Ω : R≥0 → R𝑞×𝑛 is persistently exciting (PE), that
is, there exist positive constants 𝛼, 𝛼 and 𝑇 such that

𝛼 𝑇 𝐼 ⪯
∫ 𝑡+𝑇

𝑡

Ω(𝜏)Ω⊤ (𝜏)𝑑𝜏 ⪯ 𝛼 𝑇 𝐼, (18)

for all 𝑡 ≥ 0. ⋄
Remark 3: Assumption 1 essentially says that even if

Ω(𝜏)Ω𝑇 (𝜏) can be singular at each 𝜏, it is cumulatively
positive-definite over a finite and receding time window. An
obvious concern is that if 𝑥 converges to 0, 𝜙(𝑥) converges
to the constant vector 𝜙(0), which may render Assumption 1
unachievable. There are two ways to deal with this issue. One
is to add a probing signal, which leads to the so-called dual
control [25]. The other is to design a reference signal for 𝑥

to track such that Ω is PE (see an example in Section V). ⋄
The PE condition is closely related to uniformly complete

observability (UCO) of linear time-varying systems (LTV)
(see, e.g., Definition 3.3.3 in [5] or the definition in [26]).
In what follows we exploit such a property to conclude
convergence of 𝜃 to 0 in the presence of the DAG.
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Theorem 2: Consider the same closed-loop system as in
Theorem 1 under Assumption 1. Then 𝜃 converges to 0
exponentially. ⋄

V. An Illustrative Example

Consider the path-following kinematic model (see e.g.,
Section 8.8 in [19]), described by the equations

¤𝑦 = 𝑉𝑐 sin𝜓,
¤𝜓 = − 𝜅

1− 𝜅𝑦
𝑉𝑐 cos𝜓 +𝜔, (19)

where 𝑦 is the lateral deviation from the desired path8; 𝜓

is the deviation between the yaw angle of the agent and the
direction of the desired path; 𝜔 is the angular speed of the
yaw angle, which is used as a control input; 𝑉𝑐 is the speed
at the center of rotation; and 𝜅 is the curvature of the path
at the location of the agent.

Fig. 2. Graphical illustration of 𝑦, 𝜓, and 𝜅 .

The model is valid for path-following problems (such as
dual-wheel robots, quadrotors operated in planar space) in
which the rotation of the agent can be independently con-
trolled and the speed of advance is approximately constant.
The task is twofold: to follow the path by letting 𝑦 track a C2

reference signal 𝑟 (with 𝑟 , ¤𝑟 , and ¥𝑟 known), and to identify
the unknown curvature 𝜅.

In what follows, we assume that the curvature of the
desired path is constant (see [27] for a solution for the time-
varying curvature scenario), the curvature is relatively small
compared to 𝑦 (i.e. 𝑦 ≪ 1

𝜅
) (in which case 1

1−𝜅𝑦 ≈ 1+ 𝜅𝑦),
and the angular deviation 𝜓 ≪ 1 (therefore sin𝜓 ≈ 𝜓). This
allows simplifying the model into the form of equation (1),
yielding

¤𝑥1 = 𝑥2,

¤𝑥2 = 𝜙⊤ (𝑦,𝜓)𝜃 +𝑢, (20)

where 𝑥1 ≜ 𝑦 − 𝑟 , 𝑥2 ≜ 𝑉𝑐𝜓 − ¤𝑟 , 𝑢 ≜ 𝑉𝑐𝜔 − ¥𝑟 , 𝜙⊤ (𝑦,𝜓) ≜
𝑉2
𝑐 [cos(𝜓), 𝑦 cos(𝜓)] , and 𝜃⊤ ≜ [−𝜅,−𝜅2]. The tracking

problem is therefore converted to the stabilization problem
discussed in the previous sections. Furthermore, let 𝜅 = −0.3
(unknown to the controller), 𝑉𝑐 = 1 and 𝑟 (𝑡) = 0.14sin(2𝜋×
0.2𝑡).

To demonstrate the advantages of the DAG in compar-
ison with a classical static adaptation gain, consider two
controllers with the same control law (𝑘𝐿 = 1, 𝑘𝜙 = 1.6,

8See the illustration in Fig. 2.

𝑄 = diag(2,1)), the same feedthrough matrix Γ = 𝐼, ex-
cept that the classical controller does not have the strictly
passive subsystem (12a), whereas for the DAG controller,
the triple (𝐻,𝐹,𝐺) is a realization of the SPR transfer
function 𝑇(𝐻𝜉 )𝑣 (𝑠) ≜ diag

(
1500

0.05𝑠+1 ,
500

0.05𝑠+1

)
. Time histories of

the states of system (20) controlled by the two controllers
are plotted in Fig. 3. One can see from the plots that
only the controller with DAG can identify the parameters
𝜃1 =−𝜅 = 0.3 and 𝜃2 =−𝜅2 =−0.09 within the 12-sec interval
and the classical controller shows a large tracking error
(𝑥1) due to slow parameter adaptation (verified by the slow
convergence of 𝜃). One can, of course, use a larger constant
Γ for faster adaptation, whereas this may impact robustness
[28]. To see this, we set Γ = 103𝐼 for the classical controller
so that its identification capability is comparable to the DAG
controller with Γ = 𝐼. To investigate their robustness against
noise, we consider a high-frequency noise (represented by
0.01sin200𝑡) element-wise added to the measurement of 𝑥.
It can be observed from Fig. 4 that with a much larger Γ the
classical controller can achieve similar tracking performance
as the DAG controller, whereas the parameter estimation is
much more sensitive to high-frequency noise due to the large
Γ.

VI. Conclusions and Future Work
This paper has proposed a continuous-time adaptive con-

troller design exploiting a class of identifiers with dynamic
adaptation gains. Such a class of identifiers have the same
signal properties as the classical pure integral-type iden-
tifiers, which guarantees boundedness of the closed-loop
signals and convergence of the state to zero. In addition,
under the classical PE condition, the parameter estimation
error converges to zero exponentially. The paper also presents
an intuitive interpretation of the role of the DAG in the
identifier loop. A path-following example has been presented
to demonstrate the effectiveness of the DAG in improving
parameter convergence.

Systematic quantitative analysis to rigorously explain such
performance improvement will be the focus of the next step
of this work.
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