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Abstract— This paper addresses the problem of cooperative
guidance design for aircraft defense systems involving a target,
a defender, and an attacker, using a super-twisting algorithm
and barrier Lyapunov function. The system dynamics involve
unknown functions, which are treated like disturbances and
estimated using an observer. Imposing practical assumptions
on the lateral accelerations of the vehicles, we propose a
robust guidance design also to constrain the system states by
definite bounds. We derived the controller using generalized
triangle guidance concepts that provide these bounds for the
states. Guidance commands are derived without any kind of
linearizations that enable a wider domain of applicability of
the proposed approach. The convergence is analyzed using a
Lyapunov function. Simulation results are presented to study
the efficacy of the proposed approach.

I. INTRODUCTION

Protecting civilian and military assets against highly so-
phisticated missile attackers is of utmost importance and con-
cern. The required defense mechanisms need to counteract
advanced attacker vehicles, which are intelligent with high
maneuverability. Existing guidance and control schemes to
combat such unforeseen attacks using active defenses can be
broadly categorized as line-of-sight (LOS) obeying guidance
laws, interactive game theoretic approaches, and non-linear
control strategies, like sliding modes and barrier Lyapunov
function (BLF) based designs. The sliding mode control is
known for its robust performance in systems (refer [1]) but
introduces a high-frequency chattering in the actuation cir-
cuitry. To overcome this issue, the higher-order sliding mode
theory has been developed; see [2]. In this paper, we design a
guidance strategy for the three-body engagement mechanism
involving a target, a defender, and an attacker using a higher-
order sliding mode algorithm; the super twisting algorithm
(STA). The novelty lies in constraining the system states
using a barrier Lyapunov function and proving this combined
approach’s finite time convergence.

The initial works to address target defense using a guided
interceptor can be traced to [3]. These initial proportional
guidance schemes using the LOS strategy work well for
noise and disturbance-free scenarios and require various
acceleration restrictions. To address these issues, non-linear
LOS guidance laws have been investigated, [4], [5]. The
three-body engagement mechanism involving a target, a
defender, and an attacker was introduced in [6]. It has been
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proven for its efficacy via different control strategies like
the linear quadratic differential game theory in [7] and [8],
optimal control in [9] and [10] and sliding mode control in
[11]. The work in [12] presents a detailed study of these
control strategies for cooperative nonlinear aircraft defense
systems. We design a robust STA-based guidance control
using the generalized triangle guidance rule developed in
[12]. These rules constrain the flight path angle between
the target, defender, and attacker by a permissible range. To
achieve this constraint along with a robust yet continuous
control law, we propose the BLF-based STA design.

A BLF is a non-linear, scalar function defined on an open
region and strictly constrains the trajectories by its bounds
[13]. It thus provides an elegant approach to restrict the
system states. The function itself can be used to design
non-linear control for a large class of systems (see [14]
and [12]), or it can be coupled with other control methods
like sliding modes to complement its features, for example,
[15], [16], and [17]. In [14], the non-linear control is de-
signed for attitude regulation in spacecraft and [12] addresses
guidance control for three body engagement mechanisms.
It is observed that BLF-based control is not robust to
system perturbations, and hence as seen in [14] and [12],
a disturbance observer is used to estimate and compensate
for the disturbance via the control. Coupling BLF and SMC
overcomes this problem, and robust control can be designed
as seen in [15], [16] and [17]. The approach in [15] is a novel
adaptive gain formulation using BLF wherein the bounds of
disturbance are not required to be known, as is the case in
conventional SMC design. A similar approach for adaptive
STA is presented in [18]. We are designing STA with variable
gains imposing state constraints via the BLF for the problem
under consideration. To the best of our knowledge, such a
design is not reported in the literature yet.

It is observed that guidance control for the three-agent
setup was addressed for the first time using BLF in [12].
The non-linear control developed in it faces vulnerability to
high control amplitude and ensures asymptotic convergence
of its trajectories. In this paper, we build upon the methods
from [12] for a robust control design to achieve finite time
convergence of the states. The main contribution of this
paper is STA-based control design to achieve finite time
convergence along with constrained states using BLF. The
gains of STA are time-varying and finitely bounded. The
resulting control is simple, with no possibility of unbounded
shoot-up. A disturbance term which is a function of the
attacker vehicle’s acceleration, is estimated using a finite
time disturbance observer. The closed loop convergence is
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proved using Lyapunov analysis, and simulation results are
presented to validate our theory.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a three-body air combat situation involving the
attacker (interceptor), defender, and target (an aircraft) as
shown in Fig. 1. The target is a protected entity and is to be
safeguarded from the attacker via the defender’s deployment
to neutralize the attacker before it reaches the vicinity of
the target. Assume that these three entities are point-mass
vehicles in the inertial coordinate system XIOYI . We denote
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Fig. 1: Engagement geometry for three-body problem.

the flight path angles for the target, defender, and attacker by
γt, γd, γa, respectively, and their respective velocities by Vt,
Vd, Va. Here and in all other notations further, we use the
subscripts t, d, a to represent the target, the defender, and
the attacker, respectively. The line-of-sight (LOS) angle and
the relative separation between these vehicles are denoted by
λij , and rij , respectively, where the subscript ij = ta, da, td
corresponds to the respective pairs. Fig. 1 represents all
these variables geometrically demonstrating their physical
meanings.

We consider the following kinematic equations of relative
engagement among adversaries to formulate the mathemati-
cal model of the engagements. For the three relative engage-
ments, the range rates are given by

ṙij = Vj cos (γj − λij)− Vi cos (γi − λij) ,

and for the corresponding LOS rates, we have

rij λ̇ij = Vj sin (γj − λij)− Vi sin (γi − λij).

The heading angles are governed by

γ̇i =
ai
Vo

, |ai| ≤ amax
i ,

where ai denotes the lateral accelerations of the ith adver-
sary, which is assumed to be bounded by amax

i .
Using these dynamics, we can derive the dynamics of the

LOS angles λda, λtd and λta as follows:

λ̈da =− 2ṙdaλ̇da

rda
− cos (γd − λda)

rda
ad +

cos (γa − λda)

rda
aa.

(1a)

λ̈ta =− 2ṙtaλ̇ta

rta
− cos (γt − λta)

rta
at +

cos (γa − λta)

rta
aa

(1b)

λ̈td =− 2ṙtdλ̇td

rtd
− cos (γt − λtd)

rtd
at +

cos (γd − λtd)

rtd
ad.

(1c)

The reader can refer [12] for the detailed derivations of
these equations. We begin with the following assumption to
formulate the problem addressed in this paper.

Assumption II.1. The target’s speed is assumed to be
constant and satisfy Vd ≈ Va ≫ Vt.

The problem under consideration is stated as follows:

Problem 1. Consider the generic geometric rule; General-
ized Triangle Guidance, stated in [12], employing the team
of the target, the defender, and the attacker, for successful
interception of the attacker before its arrival within the
target’s proximity. Design a robust and continuous guidance
law for the target and defender team to enforce this rule,
with certain angle constraints, that ensures the capture of
the attacker by the defender.

We state the following Lemmas, which will be used in
further analysis.

Lemma II.2. [13, Lemma 2]: An asymmetric barrier
Lyapunov function given by

Vo(x) =
1− q(x)

2
log

(
γ2
1

γ2
1 − x2

)
+

q(x)

2
log

(
γ2
2

γ2
2 − x2

)
,

(2)
for a continuous function x(t) ∈ R with decision rule defined
by

q(x) =

{
1, if x(t) > 0,
0, if x(t) ≤ 0,

(3)

is positive definite for −γ1 < x(t) < γ2, Vo(x) = 0 for
x = 0 and satisfies Vo(x) ∈ C1. The constant γ′

is, i = 1, 2
are the imposed bounds on x.

Lemma II.3. For all a > b, a, b ∈ R, the following
inequality is satisfied:

−
(

b2

a2 − b2

)
≤ − log

(
a2

a2 − b2

)
.

For proof of the Lemma, please refer [19, Lemma 2].

III. PROPOSED STA BASED CONTROL

This section presents the guidance design for the target and
the defender. The angle that the defender-target team aims
to perpetuate for a successful interception of the attacker is
defined by ϕ(t) = Φ(t) − Φ0 where Φ(t) = π + λda − λtd
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and Φ0 is the reference angle. Its dynamics can be obtained
using (1a) and (1c) as follows:

ϕ̈(t) =
−2ṙda(t)λ̇da(t)

rda(t)
+

2ṙtd(t)λ̇td(t)

rtd(t)

+
cos(γt(t)− λtd(t))

rtd(t)
at(t)

−
(
cos(γd(t)− λtd(t))

rtd(t)
+

cos(γd(t)− λda(t))

rda(t)

)
ad(t)

+ d(t), (4)

where d(t) =
cos(γa(t)− λda(t))

rda(t)
aa(t). This term is un-

known as the attackers acceleration is not measurable. Hence,
assuming it is bounded, a higher order sliding mode distur-
bance observer is used to estimate disturbance term, d using
(1a). The observer dynamics are given by

ż0 = −2ṙdaλ̇da

rda
− cos (γd − λda)

rda
ad + v0,

v0 = −λ2L
(1/3)
da |z0 − λ̇da|(2/3)sign(z0 − λ̇da)

−µ2(z0 − λ̇da) + z1,
ż1 = v1,

v1 = −λ1L
(1/2)
da |z1 − v0|(1/2)sign(z1 − v0)

−µ1(z1 − v0) + z2,
ż2 = −λ0Lda sign(z2 − v1)− µ0(z2 − v1),

d̂ = z1,


(5)

where the coefficients λ2 > λ1 > λ0 > 0, µ2 > µ1 > µ0 >
0, and Lda is a Lipschitz constant such that |ḋ| ≤ Lda. The
sign function is defined as sign(x) = |x|

x for all x ̸= 0 and
sign(x) = [1,−1] for x = 0. This disturbance observer is
considered from [20] wherein it is proved that d̂ → d in a
finite time.

Consider the auxiliary input u(t) = a1at − a2ad, where

a1 =
cos(γt(t)− λtd(t))

rtd(t)
, (6)

a2 =

(
cos(γd(t)− λtd(t))

rtd(t)
+

cos(γd(t)− λda(t))

rda(t)

)
. (7)

Define the states x1(t) = ϕ(t) and x2(t) = ϕ̇(t). The
dynamics of angle ϕ, given by (4), can be represented as

ẋ1(t) = x2(t),

ẋ2(t) =
−2γ̇da(t)λ̇da(t)

rda(t)
+ 2γ̇td(t)λ̇td(t)

rtd(t)
+ u(t) + d(t).

}
(8)

The state x1(t) is required to be bounded as follows:

−γ1 < x1(t) < γ2, ∀ t ≥ 0, (9)

where γ1 = 3π/2−Φ0 and γ2 = Φ0 − π/2. We impose the
following assumption on the system dynamics.

Assumption III.1. Initial state x1(0) satisfies bounds (9),
i.e. −γ1 < x1(0) < γ2.

Further, we also consider measured x1(t) and x2(t) and
exact estimation of d(t) using (5) for the purpose of control
design. The following Theorem III.2 develops the main

result for robust control of the three-body planar engagement
system with the state constraints.

Theorem III.2. Consider dynamics of the three body planar
engagement given by (8) satisfying Assumptions II.1 and
III.1 with measured states x1(t) and x2(t) and the state
constraint, given by (9). Let the estimation d̂(t) be obtained
using the observer (5) ensuring d(t) − d̂(t) = 0 within a
finite time. Consider the control input u(t) given by

u(t) =
2ṙda(t)λ̇da(t)

rda(t)
− 2ṙtd(t)λ̇td(t)

rtd(t)

− k1(t)|s(t)|1/2sign(s(t))− k2(t)

∫ t

0

sign(s(τ))dτ

− k3s(t)− k4(t)

∫ t

0

s(τ)dτ − x2 − d̂(t), (10)

with variable gains k1(t) and k2(t) = k4(t) satisfying

k1(t) = k11

(
1− q(x1)

δ21 − s(t)2
+

q(x1)

δ22 − s(t)2

)−1/4

, (11)

k2(t) = k4(t) = k22

(
1− q(x1)

δ21 − s(t)2
+

q(x1)

δ22 − s(t)2

)−1

, (12)

for positive constant gains k11, k22, k3 and

δi =
γi√
2
, (13)

for i = 1, 2. The sliding manifold is defined as

s(t) = x1(t) + x2(t). (14)

Function q(x1) is as given in (3). Then, switching deviations
s(t) will converge to zero within a finite time and satisfy the
bounds −δ1 < s(t) < δ2 for all t ∈ [0,∞). This implies
that x1(t) will satisfy the bounds (9) for all t ∈ [0,∞)
and in turn, the control u(t) ensures that the defender will
maintain an angle of Φ0 with respect to attacker and target,
and subsequent interception of the attacker is guaranteed
before it captures the target.

Proof: We begin by taking derivative of (14) with
respect to time, and substituting from (8), to get

ṡ = x2 +
−2γ̇daλ̇da

rda
+

2γ̇tdλ̇td

rtd
+ u+ d. (15)

Here and further, we denote the functions by the first
argument for simplicity. Consider the Lyapunov function
candidate, given by V = V1 + V2, where

V1 =
1− q

2
log

(
δ21

δ21 − s2

)
+

q

2
log

(
δ22

δ22 − s2

)
, (16)

V2 = 2k2|s|+ k4s
2 +

z2

2
+

1

2
(k1|s|1/2sign(s) + k3s− z)2,

(17)

where ż = −k2sign(s) − k4s. The function V1 is the
asymmetric barrier Lyapunov function from Lemma II.2 and
V2 is as defined for the modified super-twisting algorithm in
[21]. Hence V is positive definite for −δ1 < s(t) < δ2 and
continuously differentiable for all {s ∈ (−δ1, δ2)|s ̸= 0}. We
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assume that initial value of s given by s(0) = s0 satisfies
−δ1 < s0 < δ2. Taking time derivative of V , and substituting
ṡ from (15) and u from (10), we get

V̇ =

(
1− q

δ21 − s2
+

q

δ22 − s2

)
s(−k1|s|1/2sign(s)

− k2

∫ t

0

sign(s(τ))dτ − k3s− k4(t)

∫ t

0

s(τ)dτ)

− 1

|s|1/2
ξTQ1ξ − ξTQ2ξ,

where ξ =
[
|s|1/2sign(s) s z

]T
,

Q1 =
k1
2

 2k2 + k21 0 −k1
0 2k4 + 5k23 −3k3

−k1 −3k3 1

 ,

Q2 = k3

 k2 + 2k21 0 0
0 k4 + k23 −k3
0 −k3 1

 . Here we have

used d − d̂ = 0. Substituting k2 = k4 from (12) results
in

V̇ =

(
1− q

δ21 − s2
+

q

δ22 − s2

)
s(−k1|s|1/2sign(s)

− k3s)−
1

|s|1/2
ξTQ1ξ − ξT Q̄2ξ, (18)

where Q̄2 = k3


k2 + 2k21 0 0

0 k4 + k23 −k3 −
k22

2k2k3

0 −k3 −
k22

2k2k3
1

 .

Assume that the trajectory of s, beginning at |s0|, converges
to a value s̄ < s0. Thus we will satisfy

k22(δ
2
i − s20) < k2 = k4 < k22(δ

2
i − s̄2), (19)

where δi = {δ1, δ2} depending on value of q. The matrices
Q1 and Q̄2 are positive definite if the conditions

4k2k4 > (8k2 + 9k21)k
2
3, (20)

k22 >
1

k23(δ
2
i − s̄2)3

+
2

(δ2i − s20)
2
, (21)

and ki > 0 (i = 1, .., 4) are satisfied. Refer to Remark 1 for
design of these gains. Thus, with the validity of the Lyapunov
function V1 according to Lemma II.2, we can infer that V̇ ≤
0. We now prove the finite time convergence of s to zero.

Substituting k1 from (11), the first term of (18)
simplifies to,

(
1−q

δ21−s2
+ q

δ22−s2

)
s(−k1|s|1/2sign(s)) =

−
(

(1−q)s2

δ21−s2
+ qs2

δ22−s2

)3/4

k11. Using this and Lemma II.3, we
can write

V̇ = −k32V1 − k112V
3/4
1 − α1V

1/2
2 − α2V2, (22)

where α1 =
λ
1/2
min(P )λmin(Q1)

λmax(P )
, α2 =

λmin(Q̄2)

λmax(P )
and

P =
1

2

 4k2 + 2k21 k1k3 −k1
k1k3 2k4 + k23 −k3
−k1 −k3 2

 .

Thus, we get
V̇ ≤ −κ1V

1/2 − κ2V,

where κ1 = min{2k11V 1/4
1 , α1} and κ2 = min{−k3, α2}.

This inequality is valid as all the elements of κ1 and κ2

are finitely bounded and we have used the relation (V1 +

V2)
1/2 ≤ V

1/2
1 +V

1/2
2 . Further, based on finite time conver-

gence results of [22], we can imply that s will converge to

zero in finite time T ≤ 2

3κ1

ln(κ1V
1/2(s(0))) + κ2

κ2
. Also,

the bounds −δ1 < s < δ2 are satisfied for all time t.
Consider the case x1 > 0. It implies that the upper

bound s < δ2 is satisfied. Substituting from (14), we get
the constraint x1+x2 < δ2. Using the system dynamics (8),

ẋ1 < −x1 + δ2. (23)

Consider a Lyapunov function candidate V3 = 1
2x

2
1. Taking

time derivative and substituting (23), we get

V̇3 ≤ −x2
1 +

δ22
2

+
x2
1

2
.

Here we used Young’s inequality to simplify the term δ2x1.

This gives us V̇3 ≤ −1

2
V3 for all V3 > θ := δ22 . This

implies that the trajectory of x1 starting in the set −γ1 <
x1(0) < γ2 remain in the set {x1 ∈ R : V3 ≤ θ}, i.e.
x1 < γ2, ∀ t ≥ 0. A similar analysis will prove the relation
that x1 > −γ1, ∀ t ≥ 0. Thus, Φ follows the reference value
of angle Φ0 and it implies interception of the attacker before
it actually reaches near the target based on the results proven
in [12, Theorem 1]. This completes the proof. □

Owing to the fact that the defender and the target lateral
acceleration need to satisfy the equation (10), one can have
infinitely many choices for these two. The individual ex-
pressions for defender and target lateral accelerations, which
minimize instantaneous control effort, can be obtained in
[23], and are given by

at =
a1Γ

2u

a22 + a21Γ
2
, ad = − a2u

a22 + a21Γ
2
, Γ =

wt

wd
. (24)

Here wt and wd denote the positive weights assigned to the
at and ad, respectively, for optimization, depending on the
vehicle capability.

Remark 1. It is noted that s̄ = 0 and the gains ki (i =
1, .., 4) are always positive. A simple calculation verifies
that 0 < k22 will satisfy (21). It can be further bounded
by k22 << 1 to avoid high gains. Further, as k2 = k4 is
large compared to k1, it satisfies (20) for a small k3 ≈ k1.

The control gains in the resulting continuous control law,
though variable, are finitely bounded with minimal variation.

IV. SIMULATION RESULTS

In this section, we present the validation of the proposed
guidance strategy for various three-body engagement scenar-
ios. We consider the speeds of the attacker and defender as
200 m/s and the target has a speed of 100 m/s. The lateral
accelerations of the defender and attacker are assumed to
not exceed 20 g, while that of the target is bounded by 10 g.
The attacker is assumed to employ a proportional navigation
guidance strategy with a navigation constant of N = 3.
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However, attacker dynamics are unknown to the defender
and the target. The circle, diamond, and square markers in
the trajectory plots denote the initial positions of the target,
defender, and attacker, respectively. The guidance commands
for target and defender are obtained using (24), where the
term u(t) is the same as defined in (10). The gains of the
proposed controller are chosen as k11 = k2 = 1, k22 = 0.005
and Γ = 1 based on the requirements of satisfying necessary
conditions.

We assume that there is an initial separation between
the target and defender after which we commence the
engagement. When the defender is launched by the target
itself, the initial LOS angle and relative distances of both
defender and target with respect to the interceptor will be
the same. However, this distance might be different when
the defender is launched from another platform. We initiated
these numerical simulations with rta = 5 km, λta = 0◦,
rtd = 300 m and λtd = −70◦.

For the first case, the initial launch angles of the de-
fender, the target, and the attacker are 0◦, 60◦, and 180◦,
respectively, while the desired value of the angle to be
maintained by the target and defender is chosen as Φ0 =
220◦. The asymmetric constraint bounds for angle ϕ are
ϕ ∈ [−50◦, 130◦].

Simulation results for this case are plotted in Fig. 2, which
depicts the trajectories of all entities, their corresponding
lateral acceleration profiles, and the variation of angle Φ
throughout the engagement in Fig. 2c. It can be seen from
Fig. 2a that the defender intercepts the attacker before it
could achieve its mission of capturing the target. The lateral
acceleration are within desired bounds as shown in Fig. 2b.
The sliding surface converges to zero in finite time of less
than 2 seconds.

To evaluate the performance of the guidance strategy for
the symmetric case, we also performed another numerical
simulation with the attacker’s initial separation and LOS
angle with respect to the target to be the same as before.
The results for this case are presented in Fig. 3. It can be
seen from Fig. 3a that the defender can again capture the
attacker, with lateral acceleration, as shown in Fig. 3b. The
convergence of angle Φ to π is shown in Fig. 3c.

V. CONCLUSIONS

In this paper, we proposed a novel super-twisting algo-
rithm based state-constrained control for a three-agent system
comprising a target, a defender, and an attacker. The control
design (guidance law) was developed on the basis of a barrier
Lyapunov function and resulted in a simple, continuous,
finitely bounded guidance law. The STA ensures finite-time
convergence of the sliding manifold and exponential con-
vergence of the states. The generalized triangle rule ensures
successful interception of the attacker by the defender before
the attacker hits the target. This barrier function based STA
design is generic and can be implemented for a large class of
linear and non-linear second-order mechanical systems. This
guidance scheme can be investigated further to overcome the
necessity of the disturbance observer.
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Fig. 2: Interception of the attacker by a defender with
proposed guidance strategy using Φ = 220◦.
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