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Abstract— We study the class of first-order algorithms in
which the optimization variable is updated using information
from three previous iterations. While two-step momentum algo-
rithms akin to heavy-ball and Nesterov’s accelerated methods
achieve the optimal convergence rate, it is an open question
if the three-step momentum method can offer advantages
for problems in which exact gradients are not available. For
strongly convex quadratic problems, we identify algorithmic
parameters which achieve the optimal convergence rate and
examine how additional momentum terms affects the trade-
offs between acceleration and noise amplification. Our results
suggest that for parameters that optimize the convergence
rate, introducing additional momentum terms does not provide
improvement in variance amplification relative to standard
accelerated algorithms.

Index Terms— Convex optimization, gradient descent, heavy-
ball method, Nesterov’s accelerated algorithms, noisy gradients,
performance tradeoffs.

I. INTRODUCTION

Accelerated first-order optimization algorithms [1]–[4] are
widely used in a variety of large-scale optimization set-
tings [5]–[7], due to their favorable asymptotic behavior [8]–
[12] while maintaining low per-iteration complexity. The
trade-off between acceleration and robustness has been well
studied [13]–[20], determining that increased acceleration
comes at the price of increased sensitivity to noise. Previous
work [21], [22] establishes a fundamental limitation on the
product of noise amplification and settling time imposed by
condition number, and [23] examines a parameterized family
of two-step momentum algorithms that enable systematic
trade-offs between these quantities.

We extend [22] by analyzing the steady-state variance of
the error in the optimization variable in the presence of
additive white noise perturbing the iterations for a class of
three-step accelerated algorithms, where the current estimate
of the optimal solution xt is updated using three previous
iterates. This type of noise is used to model uncertainty due
to roundoff, quantization, and communication errors [24].
For strongly convex quadratic problems, we analyze the
effect of the additional momentum term on sensitivity to
noise by providing upper and lower bounds on variance
amplification in terms of the convergence rate.

Our results show that additional momentum stretches the
distance between upper and lower bounds on noise amplifica-
tion. Among the family of parameters which achieve the op-
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timal rate of convergence, the smallest worst-case noise am-
plification corresponds to the standard heavy-ball algorithm,
thus an additional momentum term is not advantageous.
Adding additional momentum offers no advantage in terms
of convergence rate, and increases the maximal achieved
contribution to noise amplification. While the minimal noise
amplification does decrease slightly, the scale is insignificant
compared to the increase in the worst-case. Ultimately we
conclude that while adding an additional history term to the
standard gradient decent scheme can be beneficial, including
further history terms is offers no advantage in convergence
rate or steady state variance.

The rest of the paper is structured as follows. In Section II,
we provide the problem formulation. In Section III, we
present our results regarding convergence rate and steady-
state variance amplification. In Section IV we provide con-
ditions for stability and linear convergence along with the
proofs of all results.

II. MOTIVATION AND BACKGROUND

We study convergence rate and noise amplification of first-
order algorithms for unconstrained strongly convex optimiza-
tion problems

minimize
x

f(x). (1)

In particular, we examine the class of algorithms that utilize
information from three previous iterations to update the
optimization variable xt,

xt+3 = β2x
t+2 + β1x

t+1 + β0x
t −

α∇f
(
γ2x

t+2 + γ1x
t+1 + γ0x

t
)

+ wt
(2)

Here t is the iteration index, α is the stepsize, βk and γk are
the algorithmic parameters, and wt is a white noise with

E[wt] = 0, E[wt(wτ )T ] = Iδ(t− τ). (3)

First-order optimality conditions impose the following con-
straints on parameters βk and γk

2∑
k=0

βk = 1,

2∑
k=0

γk = 1. (4)

Under these conditions, for γ0 = β0 = 0, we recover
familiar first-order algorithms with the following choices of
remaining parameters: (i) gradient descent (γ1 = β1 = 0,
γ2 = β2 = 1); (ii) Polyak’s heavy-ball method (γ1 = 0,
γ2 = 1); and (iii) Nesterov’s accelerated algorithm (γ1 = β1,
γ2 = β2).
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Relative to these standard algorithms, we introduce ad-
ditional momentum terms in (2) to examine tradeoffs be-
tween convergence rate and noise amplification. While two-
step momentum algorithms achieve the optimal convergence
rate [8], it is an open question if the three-step momentum
method can offer advantages in terms of noise amplification.

In this paper, we study this question for the class QLm of
m-strongly convex L-smooth quadratic objective functions,

f(x) =
1

2
xTQx − qTx (5)

where m and L are parameters of strong convexity and
Lipschitz continuity, Q ∈ Rn×n is the symmetric positive
definite Hessian matrix,

mI � Q � LI

and κ := L/m is the condition number.

A. Modal decomposition

For quadratic objective function (5), the gradient ∇f(x) =
Qx−q is an affine function of x and (2) with constant algo-
rithmic parameters admits an LTI state-space representation,

ψt+1 = Aψt + Bwt

yt = Cψt.
(6a)

Here, yt := xt − x? is the distance to the optimal solution
x? = Q−1q, ψt is the state vector,

ψt =
[

(yt)T (yt+1)T (yt+2)T
]T (6b)

and A, B, C are constant matrices determined by,

A =

 0 I 0
0 0 I
−D0 −D1 −D2


B =

[
0 0 I

]T
, C =

[
I 0 0

]
Dk = αγkQ − βkI, k = {0, 1, 2}.

(6c)

The eigenvalue decomposition of the Hessian matrix,
Q = V ΛV T , can be used to bring matrices in (6) into
their block diagonal forms. Here, V is an orthogonal matrix
of the eigenvectors of Q, Λ is a diagonal matrix of the
corresponding eigenvalues, and the change of variables,

x̂ := V Tx, ŵ := V Tw (7)

allows us to transform system (6) into a family of n decou-
pled subsystems parameterized by the ith eigenvalue λi of
the Hessian matrix Q ∈ Rn×n,

ψ̂t+1
i = Â(λi)ψ̂

t
i + B̂ŵti

ŷti = Ĉψ̂ti .
(8a)

The ith component of the vector ŵ is given by ŵi and

Â(λi) =

 0 1 0
0 0 1

−d0(λi) −d1(λi) −d2(λi)


B̂ =

[
0 0 1

]T
, Ĉ =

[
1 0 0

]
dk(λi) = αγkλi − βk, k = {0, 1, 2}.

(8b)

Since the two-step momentum algorithm is obtained by
setting d0(λi) = 0 for each i, it is of interest to examine
the influence of d0(λi) on the convergence rate and noise
amplification.

B. Convergence rate and noise amplification

System (6) is stable if eigenvalues of matrices Â(λi) have
real parts with absolute value less than one for each i =
1, . . . , n. The characteristic polynomial of Â(λi) in (8b) is
determined by,

Fλi
(z) = z3 + d2(λi)z

2 + d1(λi)z + d0(λi). (9)

In Section IV, we utilize the Jury stability criterion [25]
to determine the conditions for stability and ρ-exponential
stability of system (6). We recall that exponential stability
implies

‖ψt − ψ?‖ ≤ cρt‖ψ0 − ψ?‖ (10)

where the convergence rate is given by

ρ = max
λ∈[m,L]

|eig(Â(λ))|. (11)

For LTI system (6), the solution of the algebraic Lyapunov
equation

P = APAT + BBT (12)

can be used to compute the steady-state variance of the error
in the optimization variable,

J := lim
t→∞

1

t

t∑
k=0

E
(
‖xk − x?‖2

)
=

n∑
i=1

Ĵ(λi). (13)

Here, P denotes the steady-state covariance matrix of ψt

P = lim
t→∞

E
[
ψt(ψt)T

]
(14)

and an explicit expression for the contribution of the ith
eigenvalue λi of Q to the variance amplification,

Ĵ(λ) = trace
(
ĈP̂ (λi)Ĉ

T
)
. (15)

is obtained in Section IV-A by solving the decoupled family
of algebraic Lyapunov equations for P̂ (λi).

III. MAIN RESULTS

We next summarize our main results. In Theorem 1, we
present general bounds on the smallest and largest modal
contributions to the variance amplification

Ĵmin := min
λ
Ĵ(λ), Ĵmax := max

λ
Ĵ(λ)

for any set of stabilizing parameters

θ := {α, β0, β1, β2, γ0, γ1, γ2}. (16)

In Theorem 2, we characterize the set of parameters that
achieve the optimal rate of convergence and, in Theorem 3,
we provide bounds for Ĵmin and Ĵmax for these parameters.

We first present upper and lower bounds on modal con-
tributions Ĵ(λ) to the variance amplification for any set of
stabilizing parameters θ.
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Theorem 1: Let the parameters θ be such that the three-
step momentum algorithm (6) achieves the linear conver-
gence rate ρ for all f ∈ QLm. Then the modal contribution
Ĵ(λ) to the steady-state variance amplification satisfies

16ρ2

(1 + ρ)5
≤ Ĵ(λ) ≤ 1 + 4ρ2 + ρ4

(1− ρ2)5
. (17)

In contrast, for the two-step momentum algorithm we have

4ρ

(1 + ρ)3
≤ Ĵ(λ) ≤ 1 + ρ2

(1− ρ2)3
. (18)

Introducing the third momentum term d0 decreases the
lower bound while increasing the upper bound. Essentially,
additional momentum widens the range of best-case and
worst-case noise amplification, as we would expect to result
from the introduction of an additional degree of freedom.

We now examine the effect of additional momentum terms
on noise amplification for parameters designed to optimize
convergence rate. First, we describe the parameters that
achieve this rate for the three-step momentum algorithm.

Theorem 2: For strongly convex quadratic objective func-
tion f ∈ QLm with the condition number κ := L/m,
the optimal convergence rate of the three-step momentum
algorithm (6) is given by

ρ = 1 − 2√
κ + 1

.

This convergence rate is only achieved by the following set
of parameters,

β0 = −d0, β1 = −ρ4+d0ρ2+d0
ρ2 β2 = ρ4+ρ2−d0

ρ2

γ0 = 0 γ1 = d0
ρ2+d0

γ2 = ρ2

ρ2+d0

α = 4ρ+4d0ρ
−1

L−m , d0 ∈ [−ρ3, ρ3].
(19)

The parameters in Theorem 2 are expressed in terms of
d0, where stability requirements impose d0 ∈ [−ρ3, ρ3];
see Section IV-A. The optimal convergence rate matches the
one achieved by the Polyak’s heavy-ball method (which is
recovered for d0 = 0). Furthermore, our result implies that
any set of stabilizing parameters θ with γ0 6= 0, which allows
d0(λ) to vary with λ, yields slower rate of convergence.

We next present noise amplification bounds for the algo-
rithmic parameters provided in Theorem 2.

Theorem 3: For the three-step momentum algorithm (6)
with the parameters provided in Theorem 2, the modal
contribution Ĵ(λ) to the steady-state variance amplification
satisfies,

1 + ρ+ ρ2

2(1 + ρ)5
≤ Ĵ(λ) ≤ 1 + 4ρ2 + ρ4

(1− ρ2)5
. (20)

For the two-step momentum algorithm we have

1

1− ρ4
≤ Ĵ(λ) ≤ 1 + ρ2

(1− ρ2)3
. (21)

Since the optimal convergence rate ρ in Theorem 2 de-
pends on the condition number κ, the above bounds can be
expressed in terms of κ. The following corollary extends the

bounds on the product between modal contributions to the
variance amplification and the settling time for the two-step
momentum method [21], [22] to the three-step momentum
method with parameters that optimize the convergence rate.

Corollary 1: For the three-step momentum algorithm (6)
with the parameters provided in Theorem 2, the product
between modal contribution to the variance amplification
Ĵ(λ) and the settling time Ts = 1/(1− ρ) satisfies

O(
√
κ) ≤ Ĵ(λ)× Ts ≤ O(κ3). (22)

For the two-step momentum method we have

O(κ) ≤ Ĵ(λ) × Ts ≤ O(κ2). (23)

Corollary 1 shows that the interval to which Ĵ(λ) × Ts
belongs widens for the three-step momentum algorithm.
Since the upper bound in (22) is tight, for the parameters
that optimize the convergence rate the variance amplification
increases relative to the two-step momentum method.

The next section defines the ρ-convergence region and
provides proofs of all results.

IV. PROOFS

A. Defining the ρ-convergence region

We first describe the stability region as defined by pa-
rameters dk defined in (8b). System (8) is stable when the
roots of the characteristic equation (9) have absolute value
less than one. The Jury stability criterion [25] applied to
the characteristic polynomial (9) consist of the following
necessary conditions

F (1) = 1 + d2 + d1 + d0 > 0

(−1)3F (−1) = 1 − d2 + d1 − d0 > 0

|d0| < 1

|d20 − 1| > |d0d2 − d1|

(24)

which motivate us to define the following values

a := 1− d0 + d1 − d2 ≥ 0
b := 1 + d0 + d1 + d2 ≥ 0
c := 1 − d20 − d1 + d0d2 ≥ 0
d := 1 − d20 ≥ 0

(25)

which must be positive to guarantee stability. The resulting
three dimensional stability region is shown in Figure 1a.

Repeating the process for the scaled characteristic equation

Fλ(ρz) = ρ3z3 + d2(λ)ρ2z2 + d1(λ)ρz + d0(λ) (26)

yields the conditions

ρ3 − d2ρ
2 + d1ρ − d0 ≥ 0 (27a)

ρ3 + d2ρ
2 + d1ρ + d0 ≥ 0 (27b)

ρ6 − d1ρ
4 + d0d2ρ

2 − d20 ≥ 0 (27c)

ρ6 − d20 ≥ 0 (27d)

for ρ-convergence.
While the ρ-convergence region is non-convex, the non-

convexity appears exclusively in d0 as seen in Figure 1a. If
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(a) (b)

Fig. 1: Figure (a) shows the three dimensional stability region
in d0, d1, and d2. Different shades of blue correspond to the
level sets of d0. Figure (b) shows the d0 level sets ∆ρ(d0)
of ρ-convergence region for ρ = 0.8, d0 ∈ [−ρ3, ρ3]. At
d0 = ±ρ3, the convergence region collapses to a single line,
and at d0 = 0, ∆ρ(0) recovers the two step ρ-convergence
region.

Fig. 2: Level sets of the stability region and the ρ-
convergence region at ρ = 0.7, at d0 = 0.1, as defined by
the positivity constraints of (25) and (27).

we examine the stability region for a fixed d0, the region
is a convex triangle defined by first three constrains given
in (27), denoted ∆ρ(d0), as seen in Figure 2. As expected,
setting d0 = 0 recovers the two dimensional stability triangle
described in [22].

We have labeled the vertices of the ρ-convergence region
Xρ, Yρ, and Zρ as shown in Figure 2. For a fixed d0, the
d1, d2 coordinates of these vertices are given by

Zρ : d2 = −d0ρ−2, d1 = −ρ2
Yρ : d2 = 2ρ + d0ρ

−2, d1 = ρ2 + 2d0ρ
−1

Xρ : d2 = −2ρ + d0ρ
−2, d1 = ρ2 − 2d0ρ

−1.
(28)

Similarly, the edges of the stability and ρ-convergence re-
gions occur along the lines where the constraints in (25)
and (27) respectively are exactly zero.

From this we observe that the values a, b, and c as defined
in (25) have intuitive geometric interpretations as seen in
Figure 2. We can now use these values to express Ĵ(λ) in
terms of a, b, and c.

Lemma 1: For strongly convex quadratic objective func-
tion f ∈ QLm, the modal contribution Ĵ(λ) to the steady-
state variance amplification of system (8) with stabilizing

parameters θ, is given by

Ĵ(λ) =
(1 + d0(λ))a(λ) + (1− d0(λ))b(λ)

2a(λ)b(λ)c(λ)
(29)

The Lemma is proven by solving (12) for the decoupled
system given in (8), and simplifying the result using the
definitions of a, b, and c in (25).

B. Proof of Theorem 1

We first establish the upper bound on Ĵ(λ) given in both
Theorems 1 and 3.
Proof: For a fixed d0, Ĵ is convex in a, b, c on the positive
orthant, which is required for stability. Given that a, b, c are
affine functions of d1 and d2, Ĵ is convex in d1, d2 and must
achieve it’s maximum at one of the vertices Xρ, Zρ, Yρ.

The (d1, d2) coordinates of the vertices defined in (28)
allow us to determine Ĵ(λ) at each vertex. Exact function
forms are omitted due to length. We define the following
maximal value of Ĵ(λ) for fixed d0

Ĵmax(d0) =
ρ4
(
2|d0|ρ(1− ρ2) + (ρ2 − d20)(1 + ρ2)

)
(ρ4 − d20)(ρ− |d0|)2(1− ρ2)3

(30)

achieved by Ĵ at Yρ for d0 ≥ 0 and at Xρ for d0 ≤ 0, which
is in turn maximized at d0 = −ρ3

max
d0

max
λ

Ĵ(λ) =
1 + 4ρ2 + ρ4

(1− ρ2)5
. (31)

We will now prove the lower bound given in Theorem 1.
Consider the decomposition

Ĵ(λ) = Fbc(λ) + Fac(λ)

Fbc(λ) :=
(1 + d0(λ))

2b(λ)c(λ)
, Fac(λ) :=

(1− d0(λ))

2a(λ)c(λ)

(32)

where in future references we drop the dependence on λ for
ease of notation.

Proof: The lower bound is obtained by bounding
Fac(λ) and Fbc(λ), introduced in (32), independently, taking
advantage of the inequality

min
λ

[Fac(λ) + Fbc(λ)] ≥ min
λ

[Fac(λ)] + min
λ

[Fbc(λ)] .

(33)

For any (d1, d2) interior to ∆ρ(d0) it is possible to move
along the line of constant c and increase either a or b
until the either the XρZρ or the ZρYρ edge of ∆ρ(d0) is
reached. Thus Fac and Fbc must each be minimized along
the XρZρ and ZρYρ edges of ∆ρ(d0) respectively. Using the
equality constraints which define these edges, we present the
following lower bounds on Fac and Fbc.

Proposition 1: For any d0 ∈ [−ρ3, ρ3], Fac and Fbc are
lower bounded by

Fac ≥
8ρ2

(1 + ρ)5
Fbc(c) ≥

8ρ2

(1 + ρ)5
. (34)

Proof: Using the relations given in (27) it is possible
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to determine the minimums of Fac and Fbc for a fixed d0,
and then further minimize the results with respect to d0.

The propositions above combined with (33) complete
the proof. By evaluating the minimums of Fac along XρZρ
and Fbc along ZρYρ at d0 = 0, and evaluating the upper
bound Ĵmax(d0) given in (30) at d0 = 0 provides upper and
lower bounds for the two step case.

C. Proof of Theorem 2
Proof: Choosing parameters βk and γk amounts to

placing a line in 3-D space of d0, d1, d2, parameterized by λ,
which must remain within the ρ-convergence region defined
in (27), as seen in Figure 1a. Based on the endpoints of this
line at eigenvalues m and L, the largest permissible condition
number κ is determined by

κ =
αL

αm
=

1 + d0(L) + d1(L) + d2(L)

1 + d0(m) + d1(m) + d2(m)
, (35)

based on the equalities in (4). In order to maximize κ for a
given ρ, we wish to choose endpoints which maximize this
ratio.

We will now determine parameters which achieve optimal
rate of convergence by considering endpoints (d0, d1, d2)(m)

and (d0, d1, d2)(L) which achieve κ = (1+ρ)2

(1−ρ)2 .
In the case d0(λ) is fixed, with γ0 = 0, it is straightforward

to verity the optimal line placement lies along the XρYρ edge
of the ρ-convergence region, defined (27c).

Using the (d1, d2) coordinates of endpoints Xρ and Yρ
given in (28) in conjunction with (35) yields κ = (1+ρ)2

(1−ρ)2
which is independent of d0 and matches the optimal. By
solving the equations dk(λ) = −βk + αλγk at m and L we
produce the parameters given in (19).

We will now examine the case where γ0 is strictly non-
zero. Suppose we are given d0(m) and d0(L).

Considering the definition of κ given in (35), it is evident
that increasing d0(L) should increase κ; however as d0(L)
increases the convergence region ∆ρ(L) shifts, resulting in
a decrease in d1(L) and d2(L). In order to quantify this
trade-off, we consider the following question: As d0(L) is
increased to d0(m)+∆d0 , how are (d1(L), d2(L)) affected?

Given that we wish (d0, d1, d2)(L) to be greater than
(d0, d1, d2)(m), it suffices to consider lines with the m
endpoint on the XρZρ edge and the L endpoint along the
ZρYρ edge and d0(L) > d0(m).

As we increase αλ incrementally by ελ, d1 must continue
to satisfy the constraint (27c) which requires

d1(m+ ελ) = d1(m) + γ1ελ ≤
ρ2 + (d0(m) + γ0ελ)(d2(m) + γ2ελ)ρ−2

− (d0(m) + γ0ελ)2ρ−4
(36)

and results in following the constraint on γ1 in terms of γ0

γ1 ≤ [dmax
1 (m)− d1(m)]

+ d0(m)γ2ρ
−2 + d2(m)γ0ρ

−2 − 2d0γ0ρ
−4.

(37)

Fig. 3: Overlaid d0 level sets of ∆ρ(d0) at ρ = 0.9, for
d0(m) = −ρ3/3 and d0(L) = ρ3/3 in red and blue
respectively. In black and gray we see two examples of
a parameterized line (d2(λ), d1(λ)) which runs from the
Xρ(m)Zρ(m) edge to the Zρ(L)Yρ(L) edge. We can see
that in order to satisfy the constraint (27c) as d0 changes, the
d1/d2 slope must be more negative than one might expect,
and (d1, d2)(L) are both smaller than they would be at the
Yρ(m) vertex.

Using the relations

γ2 = 1− γ1 − γ0
dmax
1 = ρ2 − 2d0(m)ρ−1

d2(m) = −ρ− d1(m)ρ−1 − d0(m)ρ−2
(38)

we can express (37) as a functions solely of d0(m), d1(m),
and ρ.

Setting (d1, d2)(m) along XρZρ and (d1, d2)(L) along
ZρYρ, together with definitions of γk, requires

2ρ3 + 2d1(m)ρ−∆d2ρ
2 + ∆d1ρ−∆d0 = 0

γ0∆d1 = γ1∆d0

γ1∆d2 = (1− γ1 − γ0)∆d1 .

(39)

We can now solve the system of equations given in (37)
and (39), where we have chosen to set γ1 equal to its upper
bound, as in order to maximize d1(L) an d2(L) we wish to
make γ1/(1− γ1 − γ0) large, which is achieved by making
γ1 as large as allowed.

Thus we obtain γ0, γ1, ∆d1 and ∆d2 as functions of
d0(m), d1(m) and ∆d0 . The definitions are not included
due to complexity. Along the XρYρ edge, with ∆d0 = 0, we
have ∆d1 = 4d0ρ

−1 and ∆d2 = 4ρ. Using the symbolic
computation engine Mathematica we can verify that, for
d1(m) ∈ [−ρ2, ρ2 − d0(m)ρ−1],

(∆d0 + ∆d1 + ∆d2) ≤ 4ρ+ 4d0(m)ρ−1

with equality only in the case ∆d0 = 0 and d1(m) = ρ2 −
d0(m)ρ−1, the d1 coordinate of Xρ.

Repetition of this process for ∆d0 < 0 and for endpoints
not on the XρZρ ZρYρ edges is straightforward.

D. Proof of Theorem 3

Proof: As stated in Section IV-C, the only parameters
which achieve optimal rate of convergence place (d1, d2)
along the XρYρ edge of the ρ-convergence region, for any
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Fig. 4: Plots of ĴXY (m; d0) and ĴXY (L; d0) as functions of
d0, normalized by κ = (1+ρ)2

(1−ρ)2 , for ρ = 0.9 for values of d0 ∈
[−ρ3, ρ3]. The upper bound given in (30) is shown in black,
showing the bound is achieved at every d0. Figure (b) shows
the true minimum of Ĵ(λ) over λ, computed numerically,
in blue, while the lower bound given by the sum of (40)
and (41) is shown in black.

fixed d0 ∈ [−ρ3, ρ3]. We introduce the notation ĴXY (λ; d0)
to refer to the modal contributions to variance amplification
for these specific parameters.

The upper bound on ĴXY (λ; d0) has already been proven
in Section IV-B. Notice that since our parameters place
(d1, d2)(L) at the Yρ vertex, the upper bound given in (30)
is achieved.

The lower bound, similarly to the lower bound of Theo-
rem 1, is obtained by bounding Fac(λ) and Fbc(λ) indepen-
dently, first for fixed d0, and then for any d0.

Proposition 2: Along the XρYρ edge of ∆ρ(d0), with
fixed d0 Fac achieves the minimum value

Fac ≥
(1− d0)ρ4

2(1− ρ2)(1 + ρ)2(d0 + ρ)2(r̂o2 − d0)
. (40)

and Fbc is lower bounded by

Fbc ≥
(2d0ρ

4)

(1 + d0)(1− ρ2)(d0 + ρ2)3
. (41)

While minimizing the sum of (40) and (41) over d0 is
quite difficult, we can determine a loose lower bound by
replacing d0 with the maximum d0 = ρ3 and the minimum
d0 = 0 where appropriate, resulting in

ĴXY (λ) ≥ 1 + ρ+ ρ2

2(1 + ρ)5
. (42)

V. CONCLUDING REMARKS

We study the class of three-step momentum algorithms
that generalize heavy-ball and Nesterov’s accelerated meth-
ods. For strongly convex quadratic problems, we have es-
tablished algorithmic parameters which achieve the optimal
convergence rate. Our results demonstrate that an additional
momentum terms allowing increases the upper bound on
modal contributions to variance amplification. Future work
involves fully characterizing the Pareto-optimal curve of
convergence rate and variance amplification for three-step
momentum algorithms.
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between convergence rate and noise amplification for momentum-
based accelerated optimization algorithms,” 2022. [Online]. Available:
https://arxiv.org/abs/2209.11920

[23] B. V. Scoy and L. Lessard, “The speed-robustness trade-off for first-
order methods with additive gradient noise,” 2021, arXiv:2109.05059.

[24] B. T. Polyak, “Comparison of the convergence rates for single-step
and multi-step optimization algorithms in the presence of noise,”
Engineering Cybernetics, vol. 15, no. 1, pp. 6–10, 1977.

[25] E. I. Jury, “A simplified stability criterion for linear discrete systems,”
Proceedings of the IRE, vol. 50, no. 6, pp. 1493–1500, 1962.

1305


