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Abstract— Coverage control refers to the problem of simulta-
neously deploying a mobile robotic network and assigning tasks
distributed in the environment to each robot. We focus on a
natural extension of this problem, where tasks must be serviced
by teams of robots from different classes. We leverage the
connection between the assignment part of the coverage control
problem and the theory of optimal transport to formulate and
study a general coverage control problem by heterogeneous
robotic teams, with possibly constraints on the utilization rate
of each robot. The optimization of the assignment maps and of
the utilization rates are shown to be convex problems, amenable
to finite-dimensional deterministic or stochastic optimization
methods. The optimization of the robot states or locations is
subject to local minima as in the standard coverage control
problem, but can be performed locally using deterministic or
stochastic gradient descent, in a manner similar to Lloyd’s
method. Numerical simulations illustrate the flexibility of the
formulation and the behavior of the algorithms.

I. INTRODUCTION

A fundamental problem for mobile robotic networks is to
devise scalable strategies that allocate the limited resources
of the robots to a set of tasks to be performed. One
instantiation of this problem is the coverage control problem
[1], which can be interpreted as simultaneously assigning
tasks in the environment to particular robots and moving the
robotic network to service these tasks most efficiently. As
shown in [1], a gradient descent approach based on Lloyd’s
method [2] leads to a distributed deployment algorithm for
the robots that locally minimizes the coverage cost, with each
robot assigned to the tasks in its Voronoi cell, i.e., the tasks
it can service at the lowest cost among all robots.

Since [1], many extensions to the original coverage control
formulation have been formulated and studied. The cover-
age control problem with additional load-balancing or area
constraints is considered in [3], [4], which may prevent
robots to be over- or under-utilized. It is shown that the
task assignment subproblem is solved by generalized Voronoi
diagrams, also known as power diagrams [5] when the
underlying service cost is quadratic in the distance. The
connection between these results and semi-discrete optimal
transport (OT) [6]–[8] is made explicitly in [9], [10], which
also emphasizes the computational and operational benefits
of using stochastic optimization methods. More recently, a
coverage control problem with equipartitioning constraint is
again investigated from an OT point of view in [11]. Note
that OT-based models, as well as related mean-field games
and control models, have also been very actively investigated
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in the last decade for the control of large ensembles of agents,
see, e.g., [12]–[17]. In contrast however, this paper focuses
on coverage control for relatively small robotic networks, but
a possibly continuous distribution of tasks.

This paper also relates to coverage control problems for
robots with heterogeneous capabilities [18], [19] and to the
(relatively sparse) literature on coverage control by teams of
robots [20]–[22]. An application is treated in [10] with tasks
of different types that can be serviced by pairs of heteroge-
neous robots. Jiang et al. [20] consider a coverage control
problem where each task must be serviced by two robots
from a homogeneous group, motivated by applications such
as mobile bistatic radar systems. Their algorithm relies on
higher-order Voronoi diagrams [23]. In [21], locations must
be covered by different types of sensors carried by mobile
robots, with a specific cost function that allows a solution
directly in terms of standard Voronoi diagrams. Finally, our
model also relates to the economic literature on matching for
teams [24], [25], where agents from different groups form
teams carrying out tasks. Although the aspect of optimizing
the agent states is absent, the matching component of these
models is also strongly related to OT theory.

Contributions: We formulate a new coverage control
problem where each task needs to be serviced by a heteroge-
neous team of robots or agents. We decompose the problem
into three nested optimization component: optimizing the
agent-team assignment, the utilization rates of the agents,
and finally the states or locations of the agents. This decom-
position allows us to establish a direct link between the first
component and the theory of multi-marginal OT (MMOT).
In contrast to [3], [4], [10], [11], we include in the second
component the possibility of optimizing the agent utilization
rates, subject to convex constraints. Overall we show that
these first two components are convex optimization problems
that can be solved by descent methods on finite-dimensional
spaces. We describe stochastic versions of these methods,
which have the advantage of avoiding the computation of
integrals over generalized Voronoi cells, and lead to adaptive
algorithms when the task distribution is unknown and only
samples are observed. The optimization over the agents’
positions remains difficult, as in the original coverage control
problem, but also amenable to deterministic and stochastic
gradient descent methods to find locally optimal solutions.

The rest of the paper is organized as follows. A general
team coverage control problem is formulated in Section II
and compared to the standard coverage control problem.
Section III adresses the assignment optimization component
of the problem via MMOT. Section IV considers the problem
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of optimizing the agents’ utilization rates and states, and Sec-
tion V presents some illustrative simulation results. Finally,
we conclude in Section VI. Due to space constraints, some
proofs are only sketched or omitted.

Notation: For m a positive integer, [m] represents the
set {1, . . . ,m}. If x1, . . . , xm are are column vectors, then
col(x1, . . . , xm) denotes the larger column vector obtained
by stacking x1, . . . , xm. The Euclidean norm is denoted | · |.

II. PROBLEM STATEMENT

A. Formulation

Consider a scenario where tasks or events are distributed
according to a probability distribution µ supported on a set
Z ⊂ Rd, for some integer d. A vector z ∈ Z is identified
with a task and could include the location of the task,
but also other attributes, discrete or continuous, such as its
importance, type, etc. The distribution µ is assumed known
for now. To service the tasks, we have n classes of agents,
which can represent different types of robots, sensors, etc.
Class i, for i ∈ [n], has Ni agents, and agent j in class
i has a state denoted gji , for j ∈ [Ni]. This state could
represent the agent’s location, but also other characteristics,
e.g., the quality of its sensors. Including all classes, we have
N1+. . .+Nn := N agents. The vector gi = col(g1i , . . . , g

Ni
i )

denotes the states of the agents in class i, i ∈ [n], and
g = col(g1, . . . , gn) denotes the states of all agents. Let
G denote the set of admissible agent states g.

A task z needs to be serviced by a team of n agents,
including one agent from each class. We denote N = [N1]×
. . .×[Nn] the set of tuples, each representing a different team
of n agents. Tuples in N are ordered by lexicographic order.
In some classes one index could correspond to not using an
agent from the class, so that one can capture the possibility
of forming teams with effectively less than n members.
For a team described by a tuple J := (j1, . . . , jn) ∈ N,
there is a cost c(z, j1, . . . , jn; g), also written more concisely
c (z,J ; g), for servicing a task z when the agents have states
g. In the following, we use 1J to denote a vector in RN with
n components equal to 1 at the positions corresponding to
j1, . . . , jn, for the same ordering of components as in g, and
the other N − n components equal to 0.

Within each class, the workload among agents should be
balanced according to desired utilization rates, so that agent j
in class i should be used at rate aji ≥ 0, with

∑Ni

j=1 a
j
i = 1

for all i ∈ [n]. This constraint can help ensure that some
agents are not used excessively while others remain idle.
Depending on the scenario, aji may alternatively represent a
probability of agent j in class i being used [9], a proportion
of the workspace’s volume assigned to the agent [3], etc.
As for g, we define ai = col(a1i , . . . , a

Ni
i ) for i ∈ [n] and

a = col(a1, . . . ,an) ∈ ∆ ⊂ RN , where ∆ = ∆1× . . .×∆n

and ∆i is the probability simplex of dimension Ni − 1, for
all i ∈ [n]. Let Ti : Z → [Ni] denote a map assigning
to each task z an agent Ti(z) in class i, for i ∈ [n]. Let
T = (T1, . . . , Tn) : Z → N. The constraints on utilization
rates can be written (Ti)#µ = ai, for i ∈ [n], where (Ti)#µ

denotes the pushforward of the measure µ by Ti, i.e.,

µ(T−1
i (j)) = aji , ∀i ∈ [n],∀j ∈ [Ni]. (1)

In other words, the set T−1
i (j) ⊂ Z of tasks in Z assigned to

agent j in class i should have measure aji . The constraints
(1) on the map T are written more succinctly as T#µ = a.

The team coverage control cost associated to agent states
g, utilization rates a and assignment T , is then defined as

H(g,a,T ) = (2){∫
Z
c(z, T1(z), . . . , Tn(z); g) dµ(z) if T#µ = a,

+∞ otherwise,

capturing the utilization rate constraints in the cost function.
Let A ⊂ RN be a closed convex set capturing constraints on
the utilization rates. For example, we may have the freedom
to choose a as long as each agent in class i is used a fraction
at least 1/(2Ni) of the time, in which case A is defined by
the inequalities aji ≥ 1/(2Ni), for all i ∈ [n] and j ∈ [Ni].
Then, a coverage control problem may be formulated as

inf
g∈G

inf
a∈∆∩A

inf
T :Z→N

H(g,a,T ), (3)

to find the best possible task-team assignment, agent uti-
lization rates and agent states minimizing the expected cost
of servicing the tasks. One may also want to solve partial
versions of Problem (3), keeping the agent states g and/or the
utilization rates a fixed (i.e., G and/or A can be singletons).

B. Relation to Standard Coverage Control and Example

For n = 1 class, and generally under additional restrictions
on the cost function and agent states, we recover the coverage
control problem of [1]. Standard assumptions are that Z is
compact and convex, representing locations in 2D or 3D
space, and that for each agent j, gj1 ∈ Z. The cost is taken as
c(z, j; g) = c̃(|z − gj1|), for c̃ a strictly increasing function,
and the measure µ is assumed to have a density f . The
rates a are unrestricted. The minimizations over a and T
are then implicit (and do not appear in [1]), with the region
Vj = T−1

1 (j) for each j given by the Voronoi cell [23]

Vj = {z ∈ Z : |z − gj1| ≤ |z − gk1 |, ∀k},

so that the overall cost function can be directly written

Hcov(g) =

N∑
j=1

∫
Vj

c̃(|z − gj |)f(z)dz. (4)

In [3], [4], under similar assumptions, the coverage control
problem is considered for a fixed. The map T is still implicit,
because it can shown by direct arguments that the region
V c̃
j = T−1

1 (j) for each j is then a generalized Voronoi cell

V c̃
j (w) = {z : c̃(|z − gj1|)− wj ≤ c̃(|z − gk1 |)− wk, ∀k},

for some vector of weights w ∈ RN . The shape of V c̃
j (w)

now depends on the choice of c̃. The fact that these results
follow from OT theory is discussed in [9], [10], and gener-
alized in Section III. More recently, [11] also discusses the
case aj1 = 1/n, ∀j ∈ [N ], from the OT point of view.
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Next is an example illustrating the formulation.
Example 1: Suppose Z = R2 × {0, 1} (so Z ⊂ R3), so

that z = (x, τ) ∈ Z represents both the location (via x ∈ R2)
and the type (via τ ∈ {0, 1}) of the task, e.g., task of type
0 consists in measuring both the temperature and humidity
at x, whereas task of type 1 requires measuring a radiation
level. We have n classes of mobile sensors, and interpret the
states gji ∈ R2 as the sensor locations. A task of type τ = 0
is associated with a service cost

c0(x, j1, . . . , jn; g) = max
1≤i≤n

{∣∣∣x− gji
i

∣∣∣2} , (5)

penalizing the largest squared distance to the task’s location
among the agents in the team.

On the other hand, the cost for a task with type τ = 1 is

c1(x, j1, . . . , jn; g) =

∏n
i=1 |x− gjii |2

α1 + α2

∑
k ̸=l |g

jk
k − gjll |2

, (6)

for some positive constants α1, α2, where the numerator
encourages forming teams of sensors that are close to the
task’s location, but the denominator captures an interference
cost between sensors of different classes.

Let µ0 and µ1 be two probability measures on R2 spec-
ifying the distributions of the tasks with τ = 0 and τ = 1
respectively, and let ν0 and ν1 be two positive numbers with
ν0 + ν1 = 1, specifying the respective frequencies of tasks
with τ = 0 and τ = 1. Then the integral cost in (2) reads

1∑
i=0

νi

∫
R2

ci(x,T (x, i); g)dµi(x)

for T : Z → N satisfying some additional constraints (1).

III. SOLVING THE ASSIGNMENT PROBLEM

Assume g and a in this section are fixed. The remaining
minimization problem in (3) over the maps T : Z → N reads

inf
T1,...,Tn

∫
Z

c(z, T1(z), . . . , Tn(z); g) dµ(z).

s.t. (Ti)# µ = ai, 1 ≤ i ≤ n.

(7)

This problem is an MMOT problem [6], in its Monge for-
mulation, i.e., the optimization variables are the measurable
functions Ti : Z → [Ni] for i ∈ [n].

A. Characterization of the Monge Map

Let S := Z×N, Γ(S) be the set of positive Borel measures
over S, and πZ denote the projection from S to Z, i.e.,
πZ(z, j1, . . . , jn) = z. Similarly πi denotes the projection
from S to [Ni], for i ∈ [n]. The Kantorovitch relaxation
of Problem (7) above is the following optimization problem
over transport plans γ ∈ Γ(S)

inf
γ∈Γ(S)

∫
S

c(z, j1, . . . , jn; g) dγ(z, j1, . . . , jn)

s.t. (πz)#γ = µ, (πi)#γ = ai, i ∈ [n].

(8)

The constraints in (8) impose that the marginals of γ be
µ, a1, . . . , an. Since these marginals are probability distri-
butions, γ must also be a probability distribution over S.

It describes the joint probability that a task is of type z
and serviced by the agents (j1, . . . , jn). The problem (8)
is a relaxation of (7), because (7) results by restricting γ
to measures “induced by deterministic maps”, i.e., of the
form γ = (idZ, T1, . . . , Tn)#µ, for some maps Ti, with idZ
denoting the identity map on Z.

An important feature of the Kantorovitch relaxation (8)
is that it is a linear programming problem, hence admits a
nice duality theory [6]. Denote L1

µ(Z) the set of µ-integrable
functions on Z. The dual problem of (8) reads

sup
φ∈L1

µ(Z),w∈RN

∫
Z

φ(z)dµ(z) +

n∑
i=1

Ni∑
j=1

wj
i a

j
i

s.t φ(z) + wj1
1 + . . . wjn

n ≤ c(z, j1, . . . , jn; g),

for µ-almost all z ∈ Z, ∀j1 ∈ [N1], . . . , jn ∈ [Nn].

(9)

The sum appearing in the constraint of (9) can be rewritten
more compactly as wj1

1 + . . . wjn
n = wT1J , for w ∈ RN

with components ordered as for g and a, and the double sum
in the objective as wTa. In view of the constraint in (9), it
is sufficient to maximize over functions φ of the form

φc(z;w) = min
J∈N

{c(z,J ; g)−wT1J }, (10)

since any feasible φ must satisfy φ ≤ φc(·;w) pointwise.
We can then define the dual function hg,a : RN → R by

hg,a(w) =

∫
Z

min
J∈N

{c(z,J ; g)−wT1J } dµ(z) +wTa,

and rewrite the dual problem (9) more simply as the finite-
dimensional optimization problem

sup
w∈RN

hg,a(w). (11)

We then have the following strong duality result.
Theorem 3.1: If c(·, ·; g) is lower semi-continuous in z

and lower bounded, the infimum in (8) is attained, and its
value is equal to the supremum in (11). Moreover, if Z is
compact, then for any a ∈ ∆, the supremum in (11) is
achieved for some finite vector w∗ ∈ RN .

Proof: The fact that the minimum is attained in (8) and
that the optimal primal and dual values are equal follows
from OT theory [6, Section 2.1]. In general, under our
assumptions the maximum in the dual (9) is achieved for
some extended value function φ : Z → R̄ and w ∈ R̄N ,
where R̄ = (R ∪ {−∞}) [7, Section 2.4]. Indeed, some
components of w equal to −∞ can occur for instance when
the support of µ is unbounded and some components of a are
zero. However, when Z is compact we can follow the same
argument as in [17, Lemma 9] in the two-marginal case to
show that an finite maximizer w exists, for any a.

Define now for any w ∈ RN and any tuple J ∈ N the
following regions of Z

V c
g (J ;w) := {z ∈ Z such that for all L ∈ N, (12)

c(z,J ; g)−wT1J ≤ c(z,L; g)−wT1L},
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generalizing Voronoi cells [23]. For w ∈ RN , for each z ∈ Z,
denote Jg(z,w) ∈ N a tuple achieving the minimum in

Jg(z,w) ∈ argmin
L∈N

{c(z,L; g)−wT1L}. (13)

When multipe tuples achieve the minimum in (13), we sup-
pose for concreteness that we choose the smallest according
to the lexicographic ordering. Then, for any given w ∈ RN ,
the map z 7→ Jg(z,w) associates to each point in Z a unique
tuple in N, i.e., defines a mapping Z → N.

The next assumption is useful to simplify the discussion.
Assumption 1: For any pair of tuples J ,K ∈ N and any

w ∈ RN , the set{
z ∈ Z s.t. c(z,J ; g)−wT1J = c(z,K; g)−wT1L

}
has µ-measure zero.
The sets of Assumption 1 correspond to the intersections of
the cells (12) and to elements z where the minimization (13)
has multiple solutions. The assumption allows us to neglect
the influence of the choice of tuple for these points on the
overall cost. Next we characterize the optimal solution to (7).

Theorem 3.2: Suppose that Z is compact and that As-
sumption 1 holds. Let w∗ be a maximizer of the dual
problem (11). Then the minimum values in (7) and (8) are
equal and attained. The map z 7→ Jg(z,w

∗) defined by (13),
with ties resolved arbitrarily (e.g., by choosing the smallest
tuple according to the lexicographic ordering) minimizes (7).
It also induces an optimal plan for (8).

Proof: Problem (8) is a relaxation of (7), so its
minimum value is no greater than that of (7) and it is
sufficient to show that the plan induced by the map of the
theorem achieves the minimum in (8). Pick w∗ maximizing
(11), which exists by Theorem 3.1 for Z compact. By
strong duality [6, Proposition 2.1.5], an optimal γ must be
concentrated on the set

{(z,J ) ∈ Z× N : φc(z,w∗) + (w∗)T1J = c(z,J ; g)}.

By definition of φc in (10), this implies that for µ-almost all
z, J must attain the minimum in (13) when there is a unique
minimizer. When the minimizer is not unique, an optimal
plan may randomize over the minimizing tuples, however by
Assumption 1, choosing one minimizer deterministically for
such z has no impact on the expected cost. This concludes
the proof.

B. Deterministic Optimization Approach

By Theorem 3.2, the assignment optimization problem is
essentially solved by identifying a vector w∗ maximizing h.
This can be done using the following result.

Proposition 1: The function hg,a : RN 7→ R is concave.
A supergradient s(w) ∈ RN of hg,a at w ∈ RN is given by

s(w) = a−
∫
z∈Z

1Jg(z,w) dµ(z), (14)

i.e., s(w)ji = aji − µ(T−1
i (j,w)), ∀i ∈ [n],∀j ∈ [Ni],

where Ti(·,w) is the ith map defined by (13), for i ∈ [n].

Proof: We write h instead of hg,a to simplify the
notation. We have

h(w) =

∫
Z

min
J∈N

{c(z,J ; g) +wT (a− 1J )}dµ(z). (15)

The function inside the integral (15) is the minimum of linear
functions of w, hence concave in w. Because concavity is
preserved by the integration, hg,a is indeed concave.

For the expression of the supergradient, let w̄ ∈ RN , and
consider w ∈ RN . We have by (15)

h(w) ≤
∫
Z

c (z,Jg(z, w̄); g)−wT1Jg(z,w̄) dµ(z) +wTa

=

∫
Z

c(z,Jg(z, w̄); g)− w̄T1Jg(z,w̄) dµ(z) + w̄Ta

+ (w − w̄)T
(
a−

∫
z∈Z

1Jg(z,w̄) dµ(z)

)
,

i.e., h(w) ≤ h(w̄) + (w − w̄)T s(w̄), ∀w ∈ RN ,

showing that s(w̄) is indeed a supergradient of h at w̄.
With the regions (12) defined and under Assumption 1,

we can also rewrite the dual function as

h(w) =

N1∑
j1=1

. . .

Nn∑
jn=1

∫
V c
g (j1,...,jn;w)

(
c(z, j1, . . . , jn; g)

− wj1
1 − . . .− wjn

n

)
dµ(z) +

n∑
i=1

Ni∑
j=1

wj
i a

j
i .

Moreover, the components of the supergradient (14) of hg,a

can be expressed more explicitly as

s(w)ji = aji−
N1∑

j1=1

. . .

Ni−1∑
ji−1=1

Ni+1∑
ji+1

. . .

Nn∑
jn

µ(V c
g (j1, . . . , ji−1, j, ji+1, . . . , jn;w)). (16)

In words, for the computation using (16) of the supergradient
component i ∈ [n], j ∈ [Ni], we “freeze” the index j for
class i, and sum over the µ-probabilities of the cells obtained
by letting the other indices vary. Since the intersections of
these cells have probability zero by Assumption 1, this is also
the probability of the union of the cells for all the teams that
include agent j of class i in their composition.

Maximization of hg,a to obtain an optimal vector w∗ can
then be performed using supergradient-based optimization
methods [26, Section 7.5]. In particular, using a supergradient
ascent algorithm, we initialize w0 ∈ RN arbitrarily, e.g.,
w0 = 0, and follow the iterations,

wk+1 = wk + γks(wk), for k ≥ 0, (17)

where γk are some appropriately chosen stepsizes. These
iterates converge to a maximizer w∗ for a variety of choices
of sequence γk, for instance those satisfying the conditions

γk ≥ 0,

∞∑
k=0

γk = +∞,

∞∑
k=0

γ2
k < 0, (18)

such as γk = α
β+k for some α, β > 0. This stepsize sequence

has the advantage of being very simple to implement, as it
does not depend on the current value of the iterate.
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C. Stochastic Optimization Approach

The computation of the supergradient (14) requires in-
tegrating µ over the generalized Voronoi cells (12), see
(16). This can be difficult for general distributions and cost
functions c, and moreover the number of cells increases
exponentially with the number of classes. An alternative is to
replace the gradient algorithm (17) by a stochastic gradient
ascent algorithm. The algorithm presented next generalizes
the one proposed in [9], [10] to the team assignment problem.
We initialize w0 arbitrarily, e.g., taking w0 = 0. Then, we
replace the expectation with respect to µ in (14) by a sample
to get the stochastic iterates, for k ≥ 0,

wk+1 = wk + γksk, with sk := a− 1J (zk,wk), (19)

where γk is a sequence of stepsizes, and {zk}k≥0 are inde-
pendent samples distributed according to µ. These elements
zk could be artificial samples generated for numerical opti-
mization, or alternatively these samples could correspond to
the sequential occurence of tasks/events in the environment
according to µ, in which case (19) allows the agents to
improve their assignments over time, as more events are
observed [10]. In both cases the distribution µ does not
need to be explicitly known, if one can generate or observe
samples from it. The following result follows from standard
stochastic approximation theory [10].

Proposition 2: If the stepsizes {γk}k≥0 satisfy the condi-
tion (18) and the elements zk are independent and distributed
according to µ, then the iterates (19) converge toward a
maximizer of hg,a with probability one.

Further discussion of stochastic optimization for (two-
marginal) OT can be found in [27]. One can use instead
an averaged stochastic gradient method, or average multiple
supergradient samples in (19) for each gradient step, etc.

D. Assigning Teams to Tasks

Computing the iterates (19) requires solving after each
sample zk, k ≥ 0, the minimization problem (13) over tuples
in N. Once an optimal or close to optimal w∗ has been
identified, the same problem has to be solved for each task
z for which we want to assign a team of n agents. For a
general cost function c, this requires finding the minimum
of N1 × . . .×Nn numbers, which scales exponentially with
the number of classes. Still, in practical applications where
n may be relatively small, a brute force search can be
feasible. As discussed in [10], for n = 1, when the agents
communicate via a network, a simple floodmin algorithm
can be used to find the minimum of N numbers held by the
N agents. For two or more classes however, each number
involved in the minimization is associated with a specific
team, so the floodmin algorithm needs to be implemented
at the level of the teams, and each agent should be able to
consider all potential teammates from other classes.

The detailed investigation of distributed algorithms to
solve the minimization problem (19) for specific applications
and cost structures is left for future work. For example,

suppose that c can be decomposed as

c(z, j1, . . . , jn; g) = cn(j1) +

n∑
i=2

ci(ji−1, ji), (20)

omitting z and g to simplify the notation. For concreteness,
consider the case n = 2, and the fact that

min
j1,j2

{c1(j1) + c2(j1, j2)} = min
j1

{c1(j1) + C2(j1)},

with C2(j1) := min
j2

{c2(j1, j2)}.

For each agent j1, C2(j1) can be computed over the net-
work of class 2 agents by floodmin. Then a floodmin
algorithm can be executed over the network of class 1
agents for the minimization over j1. Overall, this requires
N1 + 1 execution of the floodmin algorithm, as well as
some connection between the networks of classes 1 and 2.
This approach can be immediately generalized by dynamic
programming to exploit the structure (20) and reduce the
exponential growth of the minimization the problem.

Remark 1: If the cost function c decomposes as
c(z, j1, . . . , jn; g) =

∑n
i=1 ci(z, ji; g), then the minimiza-

tion over T decomposes into n independent standard (two-
marginal) OT problems, and one can leverage standard
coverage control results, although the optimization over g
still couples the problems.

IV. HIGHER LEVEL OPTIMIZATION

A. Optimization over the Agent Utilization Rates

Once the inner assignment optimization problem over T
in (3) is solved, consider the reduced function

H1(g,a) = min
T :Z→N

H(g,a,T ).

We still fix g and now address the problem of minimizing
H1(g,a) with respect to the marginals ai, i ∈ [n], over the
convex set ∆ ∩A. We have the following result.

Theorem 4.1: The function a 7→ H1(g,a) is convex.
Moreover, suppose that Z is compact, and consider ā in ∆.
Let w̄∗ be a maximizer of hg,ā in (11) for this given ā.
Then w̄∗ is a subgradient of H1(g, ·) at ā.

Proof: By Kantorovitch duality, H1(g,a) is equal to
(9), a supremum of linear functions of a, hence convex in
a. Now let a, ā ∈ ∆, and assume Z to be compact. Let w∗

be a maximizer in (11) of hg,a and w̄∗ be a maximizer of
hg,ā. By strong duality and the definition of w∗

H1(g,a) = hg,a(w∗) ≥ hg,a(w̄∗),

and moreover by the definition above (11) of hg,ā, we
have hg,a(w̄∗) = hg,ā(w̄∗) + (w̄∗)T (a − ā). Applying
Kantorovitch duality again, we get

H1(g,a) ≥ H1(g, ā) + (w̄∗)T (a− ā),

and since this inequality holds for any a, w̄∗ is indeed a
subgradient of H1(g, ·) at ā.

Since ∆ ∩ A is closed and convex, we can now use a
projected subgradient method to minimize a 7→ H1(g,a).
We initialize the algorithm with some ã0 ∈ ∆. Then for
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any k ≥ 0, we first project ãk onto ∆ ∩ A, by solving
the convex minimization problem mina∈∆∩A ∥a− ãk∥2, to
obtain a feasible vector ak. Then we iterate as

ãk+1 = ak − γkw
∗
k,

where w∗
k is a maximizer of hg,ak (computed using the

methods of Section III), and γk is a sequence of stepsizes as
discussed in Section III-B, which allows ak to converge to
a minimizer of H1(g, ·) as k → ∞. Note that hg,a(w) =
hg,a(w + λ1N ) for any constant λ ∈ R, so we can always
pick w∗

k such that (w∗
k)

T1N = 0, which may simplify
the projection step. Having converged to an optimum a∗,
a corresponding optimum assignment T is then specified by
Theorem 3.2 with w∗ a maximizer of hg,a∗

.

B. Optimization over the Agent States

Finally, define the function

H2(g) = min
a∈∆∩A

min
T :Z→N

H(g,a,T ), (21)

where for any g a minimizing a and T can be computed by
following the methods outlined in the previous subsection.
Then Problem (3) asks to minimize H2. We assume in this
section that G = Rm, for some integer m. In contrast to
the previous subproblems, H2 is not a convex function of
g in general, which is a source of computational difficulties
in location optimization problems [23, Chapter 9] and in the
original coverage control problem. Typically, available opti-
mization methods only attempt to identify a local minimum.

As a heuristic, we consider the following alternating
minimization approach, based on the same principle as the
well-know Lloyd’s method [2] used originally in [1] for
coverage control. We initialize the states at some g0 ∈ G.
Then, at given states gk for k ≥ 0, we compute optimal a∗

k

and T ∗
k minimizing (21). Fixing a and T at these values,

we update gk by following the gradient step

gk+1 = gk − ηk

∫
Z

∂

∂g
c(z, T ∗

k,1(z), . . . , T
∗
k,n(z); gk) dµ(z),

(22)

for some stepsizes ηk, assuming that taking the derivative
inside the integral is valid. If c(z, j1, . . . , jn; g) depends only
on the states gjii , i ∈ [n] of the agents in team (j1, . . . , jn),
then computing

∫
Z

∂

∂gj
i

c dµ for agent j in class i requires
an integration only over the cells of the teams to which the
agent belongs. Still, computing such integrals is challenging,
and since they can be interpreted again as expectations with
respect to µ, one can replace (22) by the stochastic gradient
version

gk+1 = gk − ηk
∂

∂g
c(zk, T

∗
k,1(zk), . . . , T

∗
k,n(zk); gk), (23)

where {zk}k≥0 are independent samples distributed accord-
ing to µ. We do not state a convergence result for the scheme
(23) in this paper, but illustrate its behavior numerically in
the next section.

Remark 2: In [3] or more recently in [11], descent meth-
ods similar to (22) are proposed for n = 1 and their

convergence studied under some further assumptions. In
[11], the rates are fixed to aj1 = 1/N (equipartition), and
simulations suggest that adding of the rate constraints can
help the descent method escape local minima and minimize
the total coverage (4), compared to the standard Lloyd
method where rate constraints are not present. Nonetheless,
the original coverage control problem and the equipartitioned
one have different global optima, and the gap between these
optima can be significant when the standard problem benefits
from cells whose µ-measure are very different. Then, adding
an equipartition constraint may prevent finding good optima
for the unconstrained problem, whereas the formulation (3)
allows more freedom in the selection of the rates.

For example, suppose d = 1 and take c̃(x) = x2 in (4). Let
K > 2 and µ =

(
1− 1

K

)
δ0 +

1
K δK , where δx denotes the

Diract measure. Hence, most of the distribution is placed at 0,
but a fraction 1/K of this distribution is placed at position K
on the line. Suppose that we have two agents. The optimum
coverage control cost for (4) is 0 and can be achieved by
placing one agent at 0 and one agent at K. On the other
hand, using properties of one-dimensional OT [8], one can
show that the optimal cost for the problem with equipartition
constraint and sensors placed at x1 and x2 ≥ x1 is

1

2
x2
1 +

(
1

2
− 1

K

)
x2
2 +

1

K
(K − x2)

2,

which is minimized by x1 = 0 and x2 = 2. The coverage
cost (4) for this placement is 1

K (K−2)2, which tends to +∞
as K to +∞. So one can find examples where the optimal
solution for the equipartioned problem can be arbitrarily bad
for the unconstrained coverage control problem.

V. SIMULATIONS

To illustrate the overall optimization method of Section
IV-B, consider a problem with n = 2 classes, with N1 = 5
agents in class 1 and N2 = 3 agents in class 2. The set Z is
the square [0, 1]2 in R2, and the agent states gji correspond
to positions in R2. The distribution µ is assumed uniform
over Z. We impose the constraints a11 ≥ 0.3 and a12 ≥ 0.4
on the utilization rates of the first agent in each class, as
well as aj1 ≥ 0.1 and aj2 ≥ 0.2 for all the other agents.
Simulations are performed both for the maximum cost (5),
and the multiplicative cost (6), in the latter case with α1 =
1 and α2 = 0. The 3 nested gradient ascent and descent
algorithms are implemented using decreasing stepsizes.

The evolution of the cost function H2 with the number of
steps of the stochastic gradient algorithm (23) is shown on
Fig. 1. The cost for the initial configuration g, with optimized
rates, is approximately 15 × 10−2 for (5) and 9.1 × 10−3

for (6). The final costs after 100 steps are approximately
7.6 × 10−2 and 3.8 × 10−3. Fig. 2 shows the optimal cells
of the different teams, when the agents are in their initial
and final locations. Recall that at each step of the iterations
(23), the cells are re-optimized and in particular satisfy the
rate utilization constraints. The final optimal utilization rates
are a1 ≈ [0.3, 0.31, 0.16, 0.1, 0.13], a2 ≈ [0.4, 0.35, 0.25]
for the cost (5), and a1 ≈ [0.3, 0.18, 0.15, 0.16, 0.21]T ,
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Fig. 1. Evolution of the constrained coverage cost H2 from (21) with the
number of iterations k for the stochastic gradient descent algorithm (23).
Left: assignment cost (5). Right: assignment cost (6). The same sequence
of decreasing stepsizes 0.05/(1 + 0.5k) was used in both cases.

Fig. 2. Optimal rate-constrained assignment maps for the initial (left
column) and final (right column) agent configurations, for the cost (5) (top
row) and (6) (bottom row). The red and blue dots represent the positions
of the agents in each class (on the top right figure, one blue and one red
agent are superposed). Each colored region is assigned to a specific team
of two agents, one from each class (so there can be at most 15 regions; the
specific team assignments are not indicated in each region to preserve the
readability of the figure).

a2 ≈ [0.4, 0.33, 0.27]T for the cost (6). Despite the appar-
ent complex shapes of the cells, the computations remain
tractable when using stochastic optimization methods.

VI. CONCLUSION

This paper formulates and adresses a general coverage
control problem for teams of agents, including the optimiza-
tion of the regions assigned to the teams, of the agent utiliza-
tion rates, and of the agent states. The first two optimization
problems are convex and efficiently solvable, for very general
underlying cost functions and task distributions, by stochastic
optimization methods. The global optimization of the agent
states is generally non-convex, but again local optima can
be found efficiently by stochastic descent methods. A more
in-depth analysis of the various convergence properties and
rates for the three subproblems is left for future work.
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for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[2] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[3] J. Cortés, “Coverage optimization and spatial load balancing by robotic
sensor networks,” IEEE Transactions on Automatic Control, vol. 55,
no. 3, pp. 749–754, 2010.

[4] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Distributed algorithms
for environment partitioning in mobile robotic networks,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 8, pp. 1834–1848, 2011.

[5] F. Aurenhammer, “Power diagrams: properties, algorithms and appli-
cations,” SIAM Journal on Computing, vol. 16, no. 1, pp. 78–96, 1987.
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[27] A. Genevay, M. Cuturi, G. Peyré, and F. Bach, “Stochastic optimiza-

tion for large-scale optimal transport,” Advances in neural information
processing systems, vol. 29, 2016.

5831


