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Abstract— We study model predictive control (MPC) prob-
lems for stochastic LTI systems, where the noise distribution is
unknown, compactly supported, and only observable through
a limited number of i.i.d. noise samples. Building upon re-
cent results in the literature, which show that distributional
uncertainty can be efficiently captured within a Wasserstein
ambiguity set, and that such ambiguity sets propagate exactly
through the system dynamics, we start by formulating a novel
Wasserstein Tube MPC (WT-MPC) problem. We then show
that the WT-MPC problem: (1) is a direct generalization
of the (deterministic) Robust Tube MPC (RT-MPC) to the
stochastic setting; (2) through a scalar parameter, it interpolates
between the data-driven formulation based on sample average
approximation and the RT-MPC formulation, allowing us to
optimally trade between safety and performance; (3) admits a
tractable convex reformulation; and (4) is recursively feasible.
We conclude with a numerical comparison of WT-MPC and
RT-MPC.

I. INTRODUCTION

Tube MPC is an effective control strategy for systems
affected by uncertainty that decomposes the system dynamics
into two components: (1) a nominal (unperturbed) dynamics,
which is utilized for predictions, and (2) an error dynamics,
which lies in a tube (e.g., a sequence of polytopes) that
contains all possible trajectories of the uncertainty [1].

When the noise has bounded support, and in the absence
of additional statistical information on the noise (e.g., sam-
ples), robust optimization is employed to formulate a Robust
Tube MPC (RT-MPC) problem (see [2], [3] and references
therein). However, as the construction results from a worst-
case analysis, RT-MPC may often be too conservative. Alter-
natively, if statistical information about the noise is available,
Stochastic Tube MPC (ST-MPC) schemes have been pro-
posed to reduce the conservatism of RT-MPC [4], by relaxing
the robust constraints into probabilistic chance constraints
with a pre-specified constraint violation probability. While
generally intractable, such probabilistic constraints can be
dealt with via specific approximations or (often conservative)
bounds [5]–[8] if the noise distribution is known, or via
scenario-based optimization if the noise distribution is only
observable through samples [9]. While alleviating some of
the RT-MPC conservatism, the two ST-MPC approaches
suffer from a major limitation: by considering a specific noise
distribution (e.g., Gaussian), ST-MPC methods fail to guaran-
tee robustness against different (plausible) noise distributions
or against distribution shifts. To address this shortcoming,
more general uncertainty descriptions, which can account for
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distributional uncertainty, i.e., uncertainty about probability
distributions, have been recently proposed [10]–[15].

In this paper, we build upon the recent paradigms of
Wasserstein Distributionally Robust Optimization [16], [17]
and (Optimal Transport-based) Distributional Uncertainty
Propagation [18], [19], and we formulate a novel Tube
MPC, which we coin Wasserstein Tube MPC (WT-MPC)
with Distributionally Robust Conditional Value-at-Risk (DR-
CVaR) constraints. Assuming that the noise distribution is
compactly supported and only observable through a limited
number of i.i.d. noise samples, we show that:

• the distributional uncertainty in the state can be ex-
pressed as the superposition of a deterministic con-
trolled nominal trajectory and an autonomous Wasser-
stein tube composed of a sequence of Wasserstein ambi-
guity sets which are exactly (in closed-form) propagated
through the system dynamics;

• through one scalar parameter, WT-MPC can interpolate
between the data-driven formulation based on sample
average approximation and RT-MPC, allowing us to
optimally trade between safety and performance;

• even in the presence of a small number of samples,
WT-MPC can ensure a desired robustness level for the
closed-loop system, a smaller closed-loop cost (i.e.,
increased performance) compared to RT-MPC, and good
computational complexity.

• WT-MPC is recursively feasible.

A. Mathematical Preliminaries and Notation

Throughout the paper, P(W) denotes the space of proba-
bility distributions supported on the set W ⊆ Rd, δx denotes
the Dirac delta distribution at x ∈ Rd, and x ∼ P denotes the
fact that x is distributed according to P. Moreover, [i : N ],
with i ≤ N , denotes the set {i, . . . , N}, and the symbols ⊕
and ⊖ denote the Minkowski sum and Pontryagin difference
of sets, respectively (see [1, Section 3.1]). Finally, given a
matrix A, A† denotes its Moore-Penrose pseudoinverse.

In this paper, we focus on two classes of transformations
of probability distributions: pushforward via linear transfor-
mations and the convolution with a delta distribution.

Definition 1. Let P ∈ P(W) and A ∈ Rm×d. The
pushforward of P via the linear map x 7→ Ax is denoted
by A#P, and is defined by (A#P)(B) := P(A−1(B)), for
all Borel sets B ⊂ AW (where AW is the image of the set
W through the linear map A).

Intuitively, if x ∼ P, then A#P is the probability distri-
bution of the random variable y = Ax.
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Example 1. Let P̂ = 1
n

∑n
i=1 δx̂(i) be an empirical distri-

bution supported on the samples {x̂(i)}ni=1. Then, A#P̂ =
1
n

∑n
i=1 δAx̂(i) is empirical as well, supported on the propa-

gated samples {Ax̂(i)}ni=1.

Moreover, given x ∼ P on Rd and y ∈ Rd, x + y is
distributed according to the convolution δy∗P defined below.

Definition 2. Let P ∈ P(Rd) and y ∈ Rd. Then, the
convolution of P and δy is denoted by δy ∗P, and is defined
by (δy ∗ P)(A) = P(A⊖ y), for all Borel sets A ⊂ Rd.

II. WASSERSTEIN TUBE MPC

We consider the discrete-time linear time-invariant system

xt+1 = Axt +But + wt

ut = Kxt + ct,
(1)

where A ∈ Rd×d, B ∈ Rd×m are known, the initial condition
x0 ∈ Rd is known and deterministic, and the stochastic noise
sequence {wt}t∈N ⊂ Rd is i.i.d. according to an unknown
distribution P. Moreover, we consider a fixed stabilizing
feedback gain matrix K, i.e., A+BK is Schur stable.

Assumption 1.
(i) P has compact support W = {ξ ∈ Rd : Fξ ≤ g}.

(ii) The origin belongs to W , i.e., 0 ∈ W .
(iii) We have access to n0 i.i.d. samples {ŵ(i)}n0

i=1 from P.

Since we only have access to a finite number of samples
from the unknown noise distribution P, we are faced with
distributional uncertainty, i.e., uncertainty about probability
distributions. In what follows, we employ the methods devel-
oped in [18], [19], which lay the foundation to capture and
propagate distributional uncertainty in dynamical systems.

A. Capture and Propagate Distributional Uncertainty

We start by defining, for any t ∈ N, the vector w[t−1] =[
w⊤

t−1 . . . w⊤
0

]⊤
. Then, the distributional uncertainty in

the state xt is naturally inherited from the distributional
uncertainty in the noise trajectory w[t−1]. Therefore, in order
to capture the distributional uncertainty in xt, we first need
to capture the distributional uncertainty in w[t−1], and then
to propagate it, through the system dynamics (1), to xt.

We start by constructing n ∈ N noise sample trajectories

ŵ
(i)
[t−1] :=

[
(ŵ

(i)
t−1)

⊤ . . . (ŵ
(i)
0 )⊤

]⊤
, for i ∈ [1 : n], using

the n0 available noise samples. Since the noise is i.i.d., we
can easily construct such sample trajectories by letting each
entry ŵ

(i)
j , with j ∈ {0, . . . , t − 1} and i ∈ {1, . . . , n},

be an arbitrary sample from {ŵ(i)}n0
i=1. We then define the

empirical probability distribution on the product set Wt =
W ⊗ . . .⊗W , with t terms,

P̂[t−1] :=
1

n

n∑
i=1

δ
ŵ

(i)

[t−1]

.

We capture the distributional uncertainty in w[t−1] via
Wasserstein ambiguity sets, i.e., balls of probability distribu-
tions, defined using the Wasserstein distance, and centered at

the empirical distribution P̂[t−1]. For Q ∈ P(Wt), the (type-
1) Wasserstein distance between Q and P̂[t−1] is defined by

W ∥·∥2(Q, P̂[t−1]) := inf
π∈Π

∫
Wt×Wt

∥x1 − x2∥2 dπ(x1, x2),

where Π := Π(Q, P̂[t−1]) is the set of all probability distribu-
tions over Wt×Wt with marginals Q and P̂[t−1]. The seman-
tics are as follows: we seek the minimum cost to transport
the probability distribution Q onto the probability distribution
P̂[t−1], when transporting a unit of mass from x1 to x2

costs ∥x1−x2∥2. Intuitively, W ∥·∥2(Q, P̂[t−1]) quantifies the
discrepancy between Q and P̂[t−1] and it naturally provides
us with a definition of ambiguity in P(Wt). Specifically,
the Wasserstein ambiguity set (henceforth simply referred to
as ambiguity set) of radius ε, centered at P̂[t−1], and with
support Wt is defined by

B∥·∥2
ε (P̂[t−1]) := {Q ∈ P(Wt) : W ∥·∥2(Q, P̂[t−1]) ≤ ε}.

In words, Bc
ε(P̂[t−1]) includes all probability distributions on

Wt onto which P̂[t−1] can be transported with a budget of
at most ε. Such ambiguity sets are shown in [18], [19] to be
a very natural and principled tool to capture distributional
uncertainty, enjoying powerful geometrical, statistical, and
computational features and guarantees. Moreover, they are
easily propagated through linear maps, and the result of the
propagation is itself an ambiguity set.

Remark 1. The ambiguity radius ε is a tunable parameter
that encapsulates the robustness (or risk aversion) level.
Higher ε translates to more distributions being captured
within B∥·∥2

ε (P̂[t−1]), and consequently more robustness
against unforeseen noise realizations being introduced.

We are now ready to study the propagation of the distribu-
tional uncertainty from the noise w[t−1] to the state xt. With
the aim of formulating a Tube MPC (see [1, Chapter 3.2]),
we start by rewriting the state as xt = zt + et, i.e., the sum
of a deterministic nominal state zt, and a stochastic error
state et. This gives rise to the equivalent system dynamics

zt+1 = Azt +Bvt (2a)
vt = Kzt + ct (2b)

et+1 = AKet + wt, (2c)

with AK := A + BK, and with initial conditions z0 = x0

and e0 = 0. Such state separation will allow us to represent
the distributional uncertainty in the state trajectory as the
superposition of the deterministic controlled nominal state
trajectory zt and an autonomous Wasserstein tube. To do so,
we start by rewriting the error dynamics (2c) in the form

et = Dt−1w[t−1]

Dt−1 :=
[
I AK . . . At−1

K

]
.

(3)

Moreover, we denote by {ê(i)t }ni=1 the n error state samples,
obtained by feeding into (3) the n noise sample trajectories
{ŵ(i)

[t−1]}
n
i=1, i.e.,

ê
(i)
t := Dt−1ŵ

(i)
[t−1], ∀i ∈ [1 : n].
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The following proposition shows that the distributional
uncertainty in xt can be exactly captured.

Proposition 1. Let Assumption 1 hold, and consider the lin-
ear control system (1), with i.i.d. noise {wt}t∈N. Moreover,
let B∥·∥2

ε (P̂[t−1]) capture the distributional uncertainty in the
noise trajectory w[t−1]. Then the distributional uncertainty
in xt is exactly captured by the ambiguity set

St := B
∥·∥2◦D†

t−1
ε (P̂xt

), (4)

centered at P̂xt
:= 1

n

∑n
i=1 δzt+ê

(i)
t

, and with support zt⊕Et,
for Et := Dt−1Wt.

The proof of this and all subsequent results are deferred
to the online extended version [20].

Remark 2. Expression (4) reveals that the distributional
uncertainty in the state trajectory can be represented in
the probability space P(Rd) as the superposition of the
nominal state trajectory δzt (the probabilistic representa-

tion of zt) and the Wasserstein tube B
∥·∥2◦D†

t−1
ε (P̂et), with

center P̂et := 1
n

∑n
i=1 δê(i)t

and support Et. This follows
immediately from [19, Corollary 8], which ensures that

St = δzt ∗ B
∥·∥2◦D†

t−1
ε (P̂et). Wasserstein tubes are a natural

generalization of the standard robust tubes (used in RT-
MPC), as explained next. Let diam(Et) denote the diameter
of Et, measured using the distance ∥·∥2◦D†

t−1. Then, through
the choice of ε, ranging from 0 to diam(Et), the Wasserstein

tube B
∥·∥2◦D†

t−1
ε (P̂et) interpolates between the empirical dis-

tribution 1
n

∑n
i=1 δê(i)t

and the probabilistic representation of
the robust tube Et, i.e., the set of all distributions δξ, ∀ξ ∈ Et.

In what follows, we inspect the four components of (4).
• Ambiguity radius ε. This quantity is naturally inherited

from the ambiguity set B∥·∥2
ε (P̂[t−1]) that models the

distributional uncertainty in the noise trajectory.
• Center P̂xt

. This is an empirical distribution over the n

points {zt + ê
(i)
t }ni=1. Notice that the position of these

points in Rd is controlled by the feedforward input ct.
• Transportation cost ∥ · ∥2 ◦ D†

t−1. This is defined as(
∥ · ∥2 ◦D†

t−1

)
(ξ) := ∥D†

t−1ξ∥2, and it influences the
shape of the ambiguity set, as explained next. Using the
SVD decomposition Dt−1 = UΣV ⊤, with {σi}di=1 the
singular values of Dt−1 and {ui}di=1 the orthonormal
columns of U , the transportation cost boils down to

∥D†
t−1(x1 − x2)∥2 =

√√√√ d∑
i=1

1

σ2
i

∣∣u⊤
i (x1 − x2)

∣∣2. (5)

This shows that the cost of moving probability mass
from the center distribution in the direction ui costs
∥x1 − x2∥/σi. The feedback gain matrix K has an
indirect influence on the amount of mass moved in
this direction through the singular value σi of the
matrix Dt−1 (e.g., the higher the value of σi, the more
probability mass is moved in the direction ui).

• Support set zt⊕Et. Since W is compact and polyhedral,
we have that the set zt ⊕Et is compact and polyhedral,
and can be written as

zt ⊕ Et = {ξ ∈ Rd : Ftξ ≤ gt + Ftzt}. (6)

for some qt ∈ N, Ft ∈ Rqt×d, and gt ∈ Rqt . Moreover,
Ft and gt can be obtained from the following iteration:
Et = AKEt−1 ⊕W , E0 = {0}.

Remark 3. The inspection of the ambiguity set (4) reveals
that the feedforward term ct can control (through zt) the
position in Rd of the center distribution P̂xt

. However, ct
has no influence over the shape and size of the ambiguity
set (i.e., the transportation cost and radius). In particular,
these are exclusively influenced by the feedback gain matrix
of K (through D†

t−1). For more details on the decomposition
of the roles of ct and K, we refer to [18, Section IV].

B. Distributionally Robust CVaR Constraints

Armed with the closed-form expression St for the am-
biguity set that captures the distributional uncertainty in
the state xt, we can now study how to impose constraints.
Specifically, we define the polyhedral constraint set X :={
x ∈ Rd : maxj∈[1:J] a

⊤
j x+ bj ≤ 0, J ∈ N

}
, and we want

to guarantee that, for some γ ∈ (0, 1), the Distributionally
Robust Conditional Value-at-Risk (DR-CVaR) constraint

sup
Q∈St

CVaRQ
1−γ

(
max
j∈[1:J]

a⊤j xt + bj

)
≤ 0 (7)

is satisfied (see [18, Equation (1)] for the definition of
CVaR). Such constraints are very natural for control tasks
in the face of distributional uncertainty, where safety is of
interest. We motivate this in what follows.

• Safety considerations. CVaR constraints are by now
standard in risk averse optimization. From [21] we know
that (7) implies the following nonconvex distributionally
robust chance constraint (DR-CC):

inf
Q∈St

Q(xt ∈ X ) ≥ 1− γ.

Using Proposition 1, this guarantees that xt ∈ X , with
probability 1−γ, for all the noise trajectory distributions
in B∥·∥2

ε (P̂[t−1]). Additionally, (7) guarantees that xt ∈
X in expectation for the most averse noise realizations
of probability γ. This naturally controls the distance of
xt from X for the remaining probability γ. Differently,
notice that if we only impose the DR-CC, then xt could
be arbitrarily far from X with probability γ.

• Computational tractability. Using results from distri-
butionally robust optimization (see [16] and [17]), in
Proposition 2 we show that the DR-CVaR constraint (7)
can be exactly reformulated as a finite set of determin-
istic convex constraints.

Proposition 2. Let Assumption 1 hold. Then, the con-
straint (7) is equivalent to the following set of convex
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constraints, whose feasible region we denote by Γt:

∀i ∈ [1 : n], ∀j ∈ [1 : J + 1] :

τ ∈ R, λ ∈ R+, si ∈ R, ζij ∈ Rqt
+

λεn+
∑n

i si ≤ 0

α⊤
j (zt + ê

(i)
t ) + βj(τ) + ζ⊤ij

(
gt − Ftê

(i)
t

)
≤ si∥∥∥∥D†

t−1

(
(D†

t−1)
⊤D†

t−1

)−1 (
F⊤
t ζij − αj

)∥∥∥∥
2

≤ λ,

with αj := aj/γ and βj(τ) := (bj + γτ − τ)/γ, for j ∈ [1 :
J ], as well as αJ+1 := 0 and βJ+1(τ) := τ .

Proposition 2 guarantees that the following equivalence

sup
Q∈St

CVaRQ
1−γ

(
max
j∈[1:J]

a⊤j xt + bj

)
≤ 0 ⇐⇒ zt ∈ Γt (8)

holds. Interestingly, (8) reveals that the DR-CVaR constraint
on the distributionally uncertain state xt can be equivalently
reformulated as a set of deterministic constraints on the
nominal state zt. In the rest of the paper, we will write
z ∈ Γt to denote the fact that there exist τ ∈ R, λ ∈ R+, si ∈
R, ζij ∈ Rqt

+ , for i ∈ [1 : n] and j ∈ [1 : J+1], which satisfy
the constraints in Proposition 2 for zt = z.

C. MPC with DR-CVaR Constraints

We are now ready to formulate our Wasserstein Tube MPC
(WT-MPC). We let N ∈ N denote the MPC horizon of
interest, and we use the subscript k|t, for k ∈ [0 : N ],
to denote the (open-loop) predicted dynamics at time k
given the (closed-loop) time step t. Moreover, as required by
engineering applications, we consider the robust constraint
ut ∈ U on the input, for all t ∈ N. Then, the WT-MPC reads

min

N−1∑
k=0

(
∥zk|t∥2Q + ∥vk|t∥2R

)
s. t. ck|t, vk|t ∈ Rm, zk|t ∈ Rd ∀k ∈ [0 : N ]

zk+1|t = Azk|t +Bvk|t ∀k ∈ [0 : N − 1]

vk|t = Kzk|t + ck|t ∀k ∈ [0 : N − 1]

vk|t ∈ U ⊖KEk ∀k ∈ [0 : N − 1]

zk|t ∈ Zk ∀k ∈ [1 : N − 1]

zN |t ∈ Zf

z0|t = xt,

with
• Initial condition z0|t = xt. The open-loop nominal state

z0|t is initialized at the (measured) closed-loop state
value xt (leaving e0|t = 0). This guarantees that the
open-loop dynamics are exactly as in (2).

• Nominal constraint sets Zk. The choice Zk := Γk

guarantees that the DR-CVaR constraint (7) is satisfied
by xk|t (recall the equivalence (8)). In this case, the
constraint zk|t ∈ Γk will be enforced through the set
of constraints provided in Proposition 2. Consequently,
the WT-MPC will inherit the decision variables τ ∈
R, λ ∈ R+, si ∈ R, ζij ∈ Rqt

+ , ∀i ∈ [1 : n],∀j ∈ [1 :
J + 1]. However, this choice does not ensure recursive

feasibility. In Section III we show that this issue can be
resolved through an appropriate constraint tightening,
which results in a choice Zk ⊊ Γk.

• Terminal nominal set Zf . In Section III we explain how
this set should be chosen to ensure recursive feasiblity.

• Input constraint sets U ⊖ KEk. Since uk = K(zk +
ek)+ ck = vk +Kek, and since ek is supported on Ek,
this choice guarantees that uk ∈ U is satisfied.

Remark 4. The only difference between WT-MPC and RT-
MPC stands in the choice of the nominal constraint sets.
Recall that in RT-MPC these sets are chosen as X ⊖Ek [2].
Since the DR-CVaR constraint (7) relaxes the set X , and
since (7) is equivalent to zk ∈ Γk, we have that X ⊖ Ek ⊂
Γk. Therefore, WT-MPC reduces the conservatism of RT-
MPC (at the expense of a pre-defined constraint violation
probability). Finally, WT-MPC is a direct generalization of
the RT-MPC to the stochastic setting. Indeed, through the
choice of ε, the WT-MPC interpolates between the data-
driven formulation based on sample average approximation,
for ε → 0, and the RT-MPC formulation, for ε → diam(EN ).
This follows immediately from Remark 2.

III. RECURSIVE FEASIBILITY

Since the WT-MPC problem is solved in a receding hori-
zon fashion, it is fundamental to ensure that it is recursively
feasible. As pointed out in the previous section, the choice
Zk = Γk, with Γk defined in Proposition 2, does not
guarantee recursive feasibility. To see this, recall from (8)
that zk|t ∈ Γk is equivalent to xk|t satisfying the DR-CVaR
constraint (7). The latter, in turn, guarantees that xk|t ∈ X
only with high probability, i.e., for almost (but not) all
possible noise realizations. Since WT-MPC is initialized at
the closed-loop state xt, there is a low, but strictly positive
probability of infeasibility. Notice that this issue does not
appear in RT-MPC, which robustifies against all possible
noise realizations by imposing the constraint zk|t ∈ X ⊖Ek.
Such conservative choice, which considers the support of the
noise, automatically guarantees recursive feasibility.

In what follows, we will show that an appropriate con-
straint tightening resolves this issue. We start by defining
the nominal constraint sets as

Zk :=

k⋂
p=1

(
Γp ⊖

(
k−1⊕
r=p

Ar
KW

))
, ∀k ∈ [1 : N ]. (9)

By construction, we have that Zk ⊂ Γk. Such constraint
tightening is consistent with the stochastic MPC literature.
Specifically, (9) is closely related to what is done in [5] to
guarantee recursive feasibility.

Remark 5. Using the fact that X ⊖ Ek ⊂ Γk, it can
be easily derived that X ⊖ Ek ⊂ Zk. This shows that
the constraint tightening (9), which guarantees recursive
feasibility (see Theorem 3), results in a WT-MPC problem
which is generally less conservative than RT-MPC.

The nominal constraints zk|t ∈ Zk can be easily enforced
in the WT-MPC problem (see Remark 6 in the online

2039



Fig. 1: Tubes evolution along the prediction horizon. The red and
green solid lines denote the nominal state trajectory under the
RT-MPC and WT-MPC policies, respectively. Black dashed lines
represent random realizations of the error trajectory. The pink areas
denote the robust tube {Ek}Nk=0 and the light green areas denote
the tube {X −Γk}Nk=0 constructed numerically using Proposition 2.
The grey area represents the terminal invariant set.

extended version [20]). For recursive feasibility, we need the
following standard assumption on the terminal nominal set.

Assumption 2. There exists a terminal set Zf satisfying:
(i) KZf ⊆ U ⊖KEN .

(ii) AKZf ⊕AN
KW ⊆ Zf .

(iii) Zf ⊆ ZN .

Conditions (i)-(iii) in Assumption 2 are naturally inherited
from robust MPC [2], and they guarantee that Zf is forward
invariant at time N , robustly with respect to the initial
condition, for zero control input.

Theorem 3. Let Assumption 1 hold, let Zk be defined as
in (9), and let Zf satisfy Assumption 2. Then, WT-MPC is
recursively feasible.

In addition to recursive feasibility, whenever the ambiguity
set B∥·∥2

ε (P̂[0]) contains the true distribution P of the noise,
Theorem 3 guarantees that the closed-loop system satisfies
xt ∈ X , with probability 1− γ, ∀t ∈ N.

IV. NUMERICAL EXPERIMENTS

To numerically validate the proposed WT-MPC, we con-
sider the following system

xk+1 =

[
1 1
0 1

]
xk +

[
0.5
1

]
uk + wk,

borrowed from [2], with initial condition x0 = [−5,−2]⊤.
We let the support of the uncertainty W be the box
[−0.15, 0.15]⊗ [−0.15, 0.15], and we consider a noise which
is uniformly distributed over W , i.e., wt ∼ U (W), ∀t ∈ N.
Moreover, we assume to have access to a dataset consisting
of n disturbance trajectories of length N = 10, for n ∈
{10, 20, 50}. For the WT-MPC problem, we consider the

Fig. 2: Effect of Wasserstein radius (top panel) and number of
samples (bottom panel) on the empirical frequency of violation
during in open-loop. The case ε = 0.01 is almost-identical to ε = 0,
hence it is not reported to ease the plot readability.

stage cost ∥zk|t∥2Q + ∥vk|t∥2R with Q = [ 1 0
0 1 ], and R = 0.1.

Moreover, we consider the state constraint set

X = {x ∈R2 : max{
[
1 0

]
x− 2,

[
−1 0

]
x− 10,[

0 1
]
x− 2,

[
0 −1

]
x− 2} ≤ 0},

and the input constraint set U = {u ∈ R : −1 ≤ u ≤ 1}.
Finally, we set γ = 0.2 in the DR-CVaR (7), and we choose
an ambiguity radius ε ∈ {0, 0.01, 0.1, 1}. We compare:

• RT-MPC, which robustifies against all possible noise
realizations within the support set W .

• WT-MPC, which exploits the availability of data (the n
noise trajectories), and robustifies against distributional
uncertainty by tuning the ambiguity radius ε.

A. Open-Loop Analysis

We first compare the two methods in open-loop. Fig. 1
compares the open-loop behaviour of the system under the
RT-MPC policy and the WT-MPC policy. Through the DR-
CVaR constraint (7), WT-MPC relaxes the robust constraints
into probabilistic ones, allowing a fraction of the state error
trajectories {ek}Nk=0 to result in a user-defined probability
of violating the constraint xk ∈ X . This is equivalent to
considering the tube {X −Γk}Nk=0, which is visibly smaller
than to the robust tube {Ek}Nk=0.

In the second open-loop experiment, we compute the
empirical probability of violating the constraint xt ∈ X ,
∀t ∈ [1 : N ], for 10000 noise trajectory realizations. For
each parameter configuration (n, ε) we repeat the procedure
500 times, each time considering a different realization of the
center distribution P̂[t−1]. Fig. 2 shows a parametric study
of the WT-MPC policy by tuning the ambiguity radius ε (for
fixed n = 20) and the number of noise sample trajectories n
(for fixed ε = 0.01). We see that the constraint satisfaction
increases with larger radii (i.e., more distributional robust-
ness) and larger sample sizes (i.e., more knowledge about
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the true noise distribution). However, we observe that ε has
a higher influence on the frequency of violations compared to
n. This is primarily due to the fact that we use a very limited
amount of noise sample trajectories: only n ∈ {10, 20, 50}
from the distribution of w[N−1], which lives in dimension
Nd = 20. Using few samples can be highly desirable in
real-time applications, since a higher n translates to more
constraints in the WT-MPC (see Proposition 2), and therefore
a higher computational complexity. In that case, Fig. 2 shows
that this can be done without sacrificing robustness, by
simply picking a higher radius, which comes at no added
computational complexity of the WT-MPC problem.

B. Closed-Loop Analysis

Next, we compare the performance of the two methods in
closed-loop for a control task of length T = 15. Again,
we consider n ∈ {10, 20, 50} (for fixed ε = 0.01) and
ε ∈ {0, 0.01, 0.1, 1} (for fixed n = 20), and for each
parameter configuration we repeat the procedure 100 times,
each time considering differents realization of the noise. The
out-of-sample performance in terms of both the empirical
probability of violating the constraint xt ∈ X , ∀t ∈ [1 : T ],
and the closed-loop cost are reported in Fig. 3.

Fig. 3 strengthens the observation made in the open-
loop analysis: even in the presence of a small number of
samples n, we can ensure (1) a desired robustness level for
the closed-loop system, (2) smaller closed-loop cost (i.e.,
increased performance) compared to RT-MPC, and (3) good
computational complexity, by simply adjusting the value of
ε. In the bottom plot of Fig. 3, we observe that WT-MPC
returns a policy which optimally trades between safety (i.e.,
constraint violation) and performance (i.e., closed-loop cost).
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Stochastic tubes in model predictive control with probabilistic con-
straints. IEEE Transactions on Automatic Control, 56(1):194–200,
2010.

[8] Matthias Lorenzen, Fabrizio Dabbene, Roberto Tempo, and Frank
Allgöwer. Constraint-tightening and stability in stochastic model pre-
dictive control. IEEE Transactions on Automatic Control, 62(7):3165–
3177, 2016.

[9] Lukas Hewing and Melanie N Zeilinger. Scenario-based probabilistic
reachable sets for recursively feasible stochastic model predictive
control. IEEE Control Systems Letters, 4(2):450–455, 2019.

[10] Insoon Yang. Wasserstein distributionally robust stochastic control:
A data-driven approach. IEEE Transactions on Automatic Control,
66(8):3863–3870, 2020.

Fig. 3: Closed-loop analysis. Effect of sample size (top-left panel)
and Wasserstein radius (top-right panel) on the frequency of viola-
tion in closed-loop. Closed-loop cost sensitivity to the two tuning
knobs is reported in middle-left panel and middle-right panel,
respectively. The bottom plot reports the trade-off between safety
and performance as a function of Wasserstein radius.

[11] Christoph Mark and Steven Liu. Data-driven distributionally
robust mpc: An indirect feedback approach. arXiv preprint
arXiv:2109.09558, 2021.

[12] Marta Fochesato and John Lygeros. Data-driven distributionally robust
bounds for stochastic model predictive control. In 2022 IEEE 61st
Conference on Decision and Control (CDC), pages 3611–3616. IEEE,
2022.

[13] Francesco Micheli, Tyler Summers, and John Lygeros. Data-driven
distributionally robust mpc for systems with uncertain dynamics. In
2022 IEEE 61st Conference on Decision and Control (CDC), pages
4788–4793. IEEE, 2022.

[14] Atharva Navsalkar and Ashish R Hota. Data-driven risk-sensitive
model predictive control for safe navigation in multi-robot systems.
In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 1442–1448. IEEE, 2023.

[15] Alireza Zolanvari and Ashish Cherukuri. Data-driven distributionally
robust iterative risk-constrained model predictive control. In 2022
European Control Conference (ECC), pages 1578–1583. IEEE, 2022.

[16] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distribu-
tionally robust optimization using the wasserstein metric: Performance
guarantees and tractable reformulations. Mathematical Programming,
171(1-2):115–166, 2018.

[17] Soroosh Shafieezadeh-Abadeh, Liviu Aolaritei, Florian Dörfler, and
Daniel Kuhn. New perspectives on regularization and computation
in optimal transport-based distributionally robust optimization. arXiv
preprint arXiv:2303.03900, 2023.

[18] Liviu Aolaritei, Nicolas Lanzetti, and Florian Dörfler. Capture,
propagate, and control distributional uncertainty. arXiv preprint
arXiv:2304.02235, 2023.

[19] Liviu Aolaritei, Nicolas Lanzetti, Hongruyu Chen, and Florian Dörfler.
Distributional uncertainty propagation via optimal transport. arXiv
preprint arXiv:2205.00343, 2023.

[20] Liviu Aolaritei, Marta Fochesato, John Lygeros, and Florian Dörfler.
Wasserstein tube mpc with exact uncertainty propagation. arXiv
preprint arXiv:2304.12093, 2023.

[21] Arkadi Nemirovski and Alexander Shapiro. Convex approximations
of chance constrained programs. SIAM Journal on Optimization,
17(4):969–996, 2007.

2041


