
Resource Sharing with Autonomous Agents in
Cloud-Edge Computing Networks via Mechanism

Design
Sajad Parvizi, Mina Montazeri and Hamed Kebriaei, Senior Member, IEEE

Abstract—Executing computation tasks through cloud–edge
collaboration has emerged as a promising method to enhance the
quality of service for applications. Typically, cloud servers and
edge servers are selfish and rational. Therefore, it is crucial to
develop incentive mechanisms that maximize cloud server profit
and simultaneously motivate idle edge servers to participate in
the task executing process while edge servers, as autonomous
agents, choose their resource-sharing levels by themselves.
This paper addresses the challenges of resource limitations
and heterogeneity in edge computing by proposing a novel
mechanism that integrates contract theory with Stackelberg
game properties considering asymmetric information and the
autonomous nature of edge servers. To propose an optimal
mechanism, we design a linear form of reward function such
that the mechanism’s goals are met. The mechanism allows edge
servers to autonomously decide their level of resource contri-
bution while ensuring the maximization of the cloud server’s
utility. The proposed mechanism not only facilitates efficient
resource utilization but also guarantees the truthful and rational
participation of edge servers. Initially, the proposed mechanism
is conceptualized as a non-convex functional optimization with
a dual continuum of constraints. However, we illustrate that
by deriving an equivalent representation of the constraints, it
can be transformed into a convex optimal control problem.
Simulation results demonstrate the efficiency of our proposed
incentive mechanism approach.

Index Terms—Cloud-Edge, resource sharing, autonomous
edge servers, incentive mechanism, incomplete information.

I. INTRODUCTION

The advent of smart devices and the increasing demand
for computationally intensive tasks have necessitated the
development of more efficient computing solutions. Edge
computing has emerged as a promising approach to address
these challenges, offering a way to augment the computa-
tional capabilities of cloud servers, which often overload
during peak demand periods and lead to a decrease in the
Quality of Service (QoS) provided to users [1]. Recognizing
the limitations inherent in cloud computing resources, the
collaboration between cloud computing and edge computing
has been identified as a critical strategy for significantly

Sajad Parviziand Hamed Kebriaei are with the School of ECE, College
of Engineering, University of Tehran, Tehran, Iran.
Mina Montazeri is with the School of ECE, College of Engineering,
University of Tehran, Tehran, Iran, and also with the Urban Energy Systems
Laboratory, Swiss Federal Laboratories for Materials Science and Technol-
ogy, Dübendorf, Switzerland.

reducing computation latency and overall system costs [2],
[3].

However, incorporating edge computing into existing cloud
architectures presents its own set of challenges. Edge servers,
unlike their cloud counterparts, are often limited by their
computational resource and energy budgets [4]. These limi-
tations are primarily due to the smaller processors used in
edge devices and the diverse processor architectures they
employ, making resource management a complex task [5].
The heterogeneity and resource limitations of edge servers
necessitate innovative approaches to effectively utilize these
idle resources to support cloud computing tasks. By doing so,
it is possible to alleviate the computing overhead and reduce
task latency on cloud servers, thereby optimizing the overall
performance of the computing ecosystem [6].

Some studies have investigated the common scenario of
cloud-edge collaboration, where the mobile users offload the
computation tasks to the cloud server and the cloud server
requests the assistance of the edge server when necessary [7],
[8]. Most of them aim to improve the QoS of the system,
i.e., reduce the computation latency [9], energy consump-
tion [10], and more. However, considering the consumption
of computation and energy resources, the edge servers as
autonomous agents may be unwilling to share their limited
resources without any incentive [11], [12]. Therefore, it
becomes crucial to develop incentive mechanisms, which can
encourage idle edge servers to participate in the resource-
sharing process.

To design incentive mechanisms, game-theory-based re-
search was developed to analyze the interactions between
independent and selfish players aiming to maximize utilities
for all players involved in the game [13]. Particularly, [14]
and [15] model the interaction process between the cloud
server and edge servers as a Stackelberg game, where the
goal is to maximize the utility of both the edge servers and
the cloud server. Although the cloud server, as the leader,
provides the payment strategy and the edge servers, as the
followers, determine the amount of computational work, it
is assumed that the cloud server has complete information
about the edge servers. The resource-sharing capability of an
edge server depends on several factors, such as the residual
computational resources and the execution cost based on
hardware architecture. However, the above-mentioned factors

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 3063

are generally private information, available only to the edge
server itself but not to the cloud server. In other words, the
information is asymmetric. Contract theory, as a powerful
theoretical tool, is employed to address incentive design
problems in scenarios with asymmetric information [16]. The
authors in [17], [18], and [19] investigated contract-based
incentive mechanisms for computing resource sharing in edge
computing networks. In these studies, the cloud server allo-
cates a resource-sharing level and the corresponding incentive
reward to each edge server as functions of their announced
private information. This is done to motivate edge servers to
participate in the resource-sharing process and ensure truthful
announcing of the private information of edge servers. How-
ever, it is unlikely that edge servers, as autonomous agents,
let the mechanism choose their resource-sharing levels for
them. Motivated by the challenges mentioned in Stackelberg
and contract theory methods, [20] develop a mechanism
which ensures both truthful announcing of private informa-
tion by the agent and their rational participation while the
participation level is determined by the agent. Although [20]
introduces a general mechanism, these two features make
the mentioned mechanism an excellent choice for addressing
resource-sharing problems in real-world scenarios.

In this study, inspired by [20], we develop a mechanism
for addressing the resource-sharing problem. Specifically,
we propose a computation latency minimization formulation
by collaborating with edge servers and a cloud server to
perform computational tasks. The cloud server, acting as
the designer, designs only a reward function in the presence
of information asymmetry to achieve the following goals:
1) Maximize the cloud server’s utility function, 2) Allow
edge servers to decide on their resource-sharing levels, and
3) Guarantee the participation of edges servers and also
truthful announcing of edges servers’ private information
in the mechanism. We demonstrate that the cloud server
can achieve these objectives by employing a linear form of
the reward function, incorporating two decision functions.
Following the design of the reward function by the cloud
server, each edge server determines its optimal announced
private information and resource-sharing level based on its
actual private information and the incentive reward function
communicated by the cloud server. Subsequently, each edge
server receives a reward based on these two variables. To
close to reality, we assume the private information of each
edge server is drawn from a specific continuous distribution
known to the cloud server. This scenario presents us with
a non-convex double continuum of incentive constraints.
We demonstrate that achieving the mechanism, which ful-
fills all previously mentioned properties, involves solving a
constrained non-convex functional optimization problem. To
solve this optimization, we derive a relationship between
the decision functions of the cloud server, allowing us to
reformulate the functional optimization as a convex optimal
control problem.

The rest of this paper is structured as follows. The system

model is described in Section II. Then, we formulate the
mechanism for the resource-sharing problem in Section III.
We introduce a special form of reward function in Section
IV and illustrate that solving the optimal mechanism entails
addressing a non-convex optimization problem. Furthermore,
we demonstrate the transformation of this problem into
an equivalent convex optimal control problem using math-
ematical reformulation techniques. Simulation results are
demonstrated in Section V. Finally, Section VI presents the
conclusion.

II. SYSTEM MODEL

During peak times, computational tasks can be shared
from the cloud server to edge servers and processed by edge
servers with idle computing resources. These edge servers
can include devices like smartphones or parked vehicles. To
encourage these potential servers to participate and share
their unused resources, cloud servers should create an ef-
ficient incentive mechanism that compensates for the cost of
resource sharing by these edge servers.

The proposed cloud-edge framework is presented in Fig
1. We consider a scenario in which there exists one Cloud
Server (CS) and N Edge Servers (ESs). In order to obtain
multiple resources of ESs, the CS will offer an incentive
reward that can encourage the ESs to share computing
resources to reduce the latency of computational tasks. How-
ever, the ESs who participate in edge computing networks
decide on their computing resource sharing for doing the task.
Furthermore, each ES has a private parameter in its utility
function, referred to as the ES’s “type”, which is not known
to the CS. Although it is feasible for ESs to share type, they
can announce their type incorrectly to receive more incentive
rewards, as the announced type may not necessarily match
the actual type. Thus, the CS designs a reward function in
which each ES receives a reward based on its announced
type.

Rewarding Strategy

Private Information (type)

Shared computing resource

Edge Servers

Cloud Server

Fig. 1: The information flow in the Cloud-Edge framework

A. Utility of ESs

Considering that the hardware architecture of the ESs’s
device to share the computing resource may be different
from each other, they incur different costs in sharing their

3064

resources. With the different hardware architectures, the ESs
can be considered to be heterogeneous. By defining θ as a
parameter related to the hardware architecture of ESs’ device,
the ES utility function is formulated as follows [19]:

U(θ, x,R(x, θ̂)) = R(x, θ̂)− θ c x2, (1)

where x ∈ R+ is the shared resources, c is the unit cost of
energy consumption, θ ∈ Θ with Θ = [θ, θ̄] is the private
information of the ES and is treated as its actual type, and
θ̂ ∈ Θ is the announced type which is not necessarily equal
to the actual type, i.e. θ. R(x, θ̂) is the incentive reward
function that each ES receives from the CS. Although neither
the CS nor other ESs don’t know the ES’s type, its cumulative
distribution F (θ) is common knowledge.

B. Utility of CS

By leveraging the amount of resources shared by ESs,
the task processing delay can be reduced. The decreased
processing delay that CS has for executing computational
tasks is calculated as [19], [18]:

g(x) =
D

fc
− D

fc + x
, (2)

where fc is the amount of CS’s computing resource, and
D represents the average total size of the computational
task, which can be estimated based on the historical tasks.
Finally, the CS’s utility from the participation of each ES is
as follows:

V (x,R(x, θ̂)) = g(x)−R(x, θ̂) (3)

III. PROBLEM FORMULATION

The objective of CS is to employ a suitable ES with
sufficient computation resources to decrease task processing
delay while maximizing the utility function defined in (3).
Meanwhile, the goal of each ES is to optimize its utility
defined in (1). However, by comparing equations (3) and (1),
for the CS entity, R(x, θ̂) functions as a cost, impacting their
utility negatively when maximizing it and conversely, for the
ES entities, R(x, θ̂) represents a profit, positively influencing
their utility when maximizing it. This discrepancy in the
interpretation of the same variable as a cost for one party
and a profit for the other intensifies the conflicting interests
between the CS and ES entities, ultimately shaping their
strategic decisions and interactions.

Meanwhile, since the private information (type) of each ES
determines its cost and the amount of its resource sharing,
it is essential for the CS to have accurate information to
evaluate the performance of each ES. To motivate ESs to
participate and guarantee ESs announce their types truthfully,
the CS designs the incentive function R(x, θ̂) to ensure
mutual benefit for both the CS and ES. Following is a
definition of these constraints.

Definition 1. A mechanism is Individually Rational (IR) if the
ES’s utility is non-negative by announcing its type truthfully:

U(θ, x,R(x, θ)) ≥ 0 ∀θ ∈ [θ, θ̄]. (4)

Compared with the non-participate state in which the
utility is always zero, each ES is willing to share resources in
return for the incentive reward, as long as the IR constraint
is satisfied.

Definition 2. A mechanism is Incentive Compatible (IC) if
the ES achieves equal or higher utility by announcing its type
truthfully:

U(θ, x,R(x, θ)) ≥ U(θ, x,R(x, θ̂)) ∀θ, θ̂ ∈ [θ, θ̄]. (5)

With IC inequality, for a self-interested ES with actual type
θ, truthful announcing of type is the best choice since this
situation best fits into its actual type and brings it maximal
utility. Therefore, the optimal profit maximization mechanism
can be obtained by solving the following maximization
problem [20]:

max
R(x,θ̂)

Eθ[V (x,R(x, θ̂))], (6a)

s.t. x(θ, r1(θ̂)) = argmax
x̃

U(θ, x̃, R(x̃, θ̂)) (6b)

U(θ, x,R(x, θ)) ≥ 0 ∀θ ∈ [θ, θ̄],
(6c)

U(θ, x,R(x, θ)) ≥ U(θ, x,R(x, θ̂))∀θ, θ̂ ∈ [θ, θ̄],
(6d)

where constraint (6b) represents the best response of ES to
determine its sharing resource, and (6c),(6d) represent the IR
and IC constraints, respectively.

IV. PROBLEM SOLUTION

Solving optimization (6) is not straightforward due to the
nonconvex double continuum constraint imposed by the (6d).
Furthermore, unlike previous works in which CS had more
flexibility in designing contract items and determining the
ES’s resource sharing, in the proposed work ESs decide on
their participation level in sharing resources. For this reason,
designing a typical optimal reward function identical to that
found in the literature is not feasible, thus prompting us to
consider a special form for the reward function. First, we
consider a linear form for incentive reward function and
then by presenting several lemmas and theorems obtain an
equivalent simplified reformulation for optimization problem
(6).

In the proposed profit maximization mechanism, the CS
adopts the following form of the reward function [20]:

R(x, θ̂) ≡ r1(θ̂)x+ r2(θ̂), (7)

where r1(θ̂) represents the reward factor of resource sharing
subsidized by the CS and r2(θ̂) represents the bias reward of
CS to ES that only depends on ES’s announced type.

Proposition 1. Consider the constraint (6b). The optimal
computing resource that each ES shared with CS to maximize
its utility is given by:

x(θ, r1(θ̂)) =
r1(θ̂)

2cθ
. (8)

3065

Proof. We can rewrite constraint (6b) as

x(θ, r1(θ̂)) = argmax
x̃

[r1(θ̂)x̃+ r2(θ̂)− θ c x̃2]. (9)

For optimality, we set ∂U(θ,x̃,R(x̃,θ̂))
∂x̃ = 0, which yields:

x(θ, r1(θ̂)) = r1(θ̂)
2cθ . Moreover, since ∂2U(θ,x̃,R(x̃,θ̂))

∂x̃2 =
−2cθ < 0, the second derivative is negative.

Replacing R(x, θ̂) from equation (7) and x(θ, r1(θ̂)) from
equation (8), Optimization (6) can be rewritten as following
optimization problem.

max
r1(θ̂),r2(θ̂)

∫ θ̄

θ
[
D

fc
−

2cθ̂D

r1(θ̂) + 2cθ̂fc
−

r21(θ̂)

2cθ̂
− r2(θ̂)]f(θ̂)dθ̂,

(10a)

s.t.
r21(θ)

4cθ
+ r2(θ) ≥ 0, ∀θ ∈ [θ, θ̄], (10b)

r21(θ)

4cθ
+ r2(θ) ≥

r21(θ̂)

4cθ
+ r2(θ̂), ∀θ, θ̂ ∈ [θ, θ̄]. (10c)

Lemma 1. In optimization (10), the IR constraint is sat-
isfied for all θ if IR is binding for θ = θ̄, which means
U(θ̄, x, R(x, θ̄)) = 0.

Proof. Differentiating U with respect to θ, we have:

dU

dθ
=

dU

dx

dx

dθ
− cx2. (11)

The first term of equation (11) equals zero due to the first-
order condition and hence, we have: dU

dθ ≤ 0. Thus, using IC
constraint, we have:

U(θ, x, r1(θ), r2(θ)) ≥ U(θ, x, r1(θ̄), r2(θ̄))

≥ U(θ̄, x, r1(θ̄), r2(θ̄)). (12)

Furthermore, IR should be binding, otherwise, we could
decrease r2(θ) for all θ ∈ [θ, θ̄] by ϵ > 0, which would
satisfy all constraints of (10) and also increase the utility of
CS.

Theorem 1. The solution of (r1(θ̂), r2(θ̂)) in optimization
(10) is IC if and only if both of the following conditions
hold:

r′1(θ̂) ≤ 0 ∀θ̂ ∈ [θ, θ̄], (13)

r2(θ̂) =

∫ θ̄

θ

r21(θ̂)

4cθ2
|
θ̂=θ=y

dy − r21(θ̂)

4cθ̂
(14)

Proof. We divide the proof of this theorem into two parts, the
forward direction “If”, and the backward direction, “Only If”.
To show “If” part, according to relation (14), IC constraint
(10c) can be re-written as:

r21(θ)

4cθ
+

∫ θ̄

θ

r21(θ̂)

4cθ2
|θ̂=θ=ydy −

r21(θ)

4cθ
≥ (15)

r21(θ̂)

4cθ
+

∫ θ̄

θ̂

r21(θ̂)

4cθ2
|θ̂=θ=ydy −

r21(θ̂)

4cθ̂
.

For θ > θ̂, (15) can be re-written as:∫ θ

θ̂

r21(θ̂)

4cθ2
|θ̂=θ=ydy ≤ r21(θ̂)

4c
(
1

θ̂
− 1

θ
). (16)

Moreover, for θ < θ̂, we have:∫ θ̂

θ

r21(θ̂)

4cθ2
|θ̂=θ=ydy ≥ r21(θ̂)

4c
(
1

θ
− 1

θ̂
), (17)

which both equations (16) and (17) hold true due to the
monotonicity of r1(θ).

To show the “Only If” part, first we prove that truthfulness
implies monotonicity of r1(θ). Considering two different
mathematical interpretations of IC constraint; one where an
ES of type θ announces its type as θ̂, denoted by ICθ,θ̂;
and another where an ES of type θ̂ announces its type as θ,
denoted by ICθ̂,θ, we have:

r21(θ)

4cθ
+ r2(θ) ≥

r21(θ̂)

4cθ
+ r2(θ̂) (ICθ,θ̂), (18)

r21(θ̂)

4cθ̂
+ r2(θ̂) ≥

r21(θ)

4cθ̂
+ r2(θ) (ICθ̂,θ). (19)

By subtraction of equations (18) and (19), we get:

r21(θ)− r21(θ̂)

4c
(
1

θ
− 1

θ̂
) ≥ 0,

where if θ > θ̂ then r1(θ) ≤ r1(θ̂) , which implies
monotonicity of r1(θ). To derive equation (14), we can
rearrange equations (18) and (19) as follows:

r21(θ̂)− r21(θ)

4cθ
≤ r2(θ)− r2(θ̂) ≤

r21(θ̂)− r21(θ)

4cθ̂
(20)

by considering θ̂ = θ + ϵ and dividing throughout equation
(20) by ϵ, and letting ϵ → 0, we have:

1

4cθ

d

dθ
[r21(θ)] ≤ − d

dθ
r2(θ) ≤

1

4cθ

d

dθ
[r21(θ)] (21)

Thus,
d

dθ
r2(θ) = − 1

4cθ

d

dθ
[r21(θ)]. (22)

Integrating equation (22) with respect to θ from θ to θ̄ we
have:

r2(θ̄)− r2(θ) =

∫ θ̄

θ

[− 1

4cy

d

dy
(r21(y))]dy. (23)

So we have:

r2(θ) =

∫ θ̄

θ

[
1

4cy

d

dy
(r21(y))]dy + r2(θ̄). (24)

Considering U(θ̄, x(θ̄, r1(θ̄)), r1(θ̄), r2(θ̄)) = 0 from
Lemma 1, the integration by parts of equation (24) gives
us:

r2(θ) =

∫ θ̄

θ

r21(y)

4cy2
dy − r21(θ)

4cθ
. (25)

Thus, optimization (10) can be rewritten as follows:

max
r1(θ̂),r2(θ̂)

∫ θ̄

θ
[
D

fc
−

2cθ̂D

r1(θ̂) + 2cθ̂fc
−

r21(θ̂)

2cθ̂
− r2(θ̂)]f(θ̂)dθ̂,

(26)

s.t. r′1(θ̂) ≤ 0 ∀θ̂ ∈ [θ, θ̄],

r2(θ̂) =

∫ θ̄

θ

r21(θ̂)

4cθ2
|θ̂=θ=ydy −

r21(θ̂)

4cθ̂
.

3066

Definition 3. h(t) ≡ f(t)
1−F (t) is known as the hazard rate of t

in the statistics literature [21] that captures the probability at
which an event is expected to occur at a time t, considering
that it has not been taken place yet.

Proposition 2. The optimal solution to the optimization
problem in (26) is the same as the following optimization
solution.

max
r1(θ̂)

∫ θ̄

θ
[
D

fc
−

2cθ̂D

r1(θ̂) + 2cθ̂fc
−

r21(θ̂)

4cθ̂
+

r21(θ̂)

4cθ̂2

1

h(θ̂)
]f(θ̂)dθ̂,

(27a)

s.t. r′1(θ̂) ≤ 0, (27b)

Proof. Replacing r2(θ̂) from equation (26) in the utility
function of CS, we have:

V =

∫ θ̄

θ

[
D

fc
− 2cθ̂D

r1(θ̂) + 2cθ̂fc
− r21(θ̂)

2cθ̂
(28)

−
∫ θ̄

θ̂

[
r21(θ̂)

4cθ2
|θ̂=θ=y]dy +

r21(θ)

4cθ
]f(θ̂)dθ̂

The integration by parts of the term∫ θ̄

θ

∫ θ

θ
[kθ(x(y, r1(y)), y)dy]f(θ̂i)dθ̂i gives us:∫ θ̄

θ

[∫ θ̄

θ̂

r21(θ̂)

4cθ2
|θ̂=θ=ydy

]
f(θ̂)dθ̂ = (29)

∫ θ̄

θ

r21(θ̂)

4c(θ̂)2
1− F (θ)

f(θ)
f(θ̂)dθ̂.

Considering definition of h(θ̂) in Definition 3, equation (28)
can be rewritten as follow:

V =

∫ θ̄

θ
[
D

fc
−

2cθ̂D

r1(θ̂) + 2cθ̂fc
−

r21(θ̂)

4cθ̂
+

r21(θ̂)

4c(θ̂)2

1

h(θ̂)
]f(θ̂)dθ̂. (30)

Notice that, optimization problem (27) is formulated as a
calculus of variations problem [22]. By defining the variable
u(θ̂) = r′1(θ̂), optimization Problem (27) appears in the
form of an optimal control problem in dynamic optimization,
with state variables r1(θ̂) and control variables u(θ̂). Subse-
quently, the optimal control problem can be formulated as
follows:

max
r1(θ̂)

∫ θ̄

θ
[
D

fc
−

2cθ̂D

r1(θ̂) + 2cθ̂fc
−

r21(θ̂)

4cθ̂
+

r21(θ̂)

4cθ̂2

1

h(θ̂)
]f(θ̂)dθ̂,

(31a)

s.t. r′1(θ̂) = u(θ̂), (31b)

u(θ̂) ∈ U ≡ [u, 0], (31c)

where u < 0 is a large (finite but otherwise arbitrary) control
constraint. We can solve it by calculating the Hamiltonian
function as follows:

H(θ̂, r1(θ̂), u(θ̂), λ(θ̂)) = (32)

[
D

fc
− 2cθ̂D

r1(θ̂) + 2cθ̂fc
− r21(θ̂)

4cθ̂
+

r21(θ̂)

4cθ̂2
1

h(θ̂)
]f(θ̂) + λu(θ̂),

where λ is a Lagrange multiplier. As proved in [23], given
that r1

′(θ̂) represents a linear function of r1(θ̂) and u(θ̂),
and considering that the cost function of optimization (31)

TABLE I: Utility of cloud server for different total sizes of
computational tasks

D = 200 D = 250 D = 300 D = 350 D = 400
Utility of

cloud server 1.15 0.95 0.57 0.47 0.38

is concave while U constitutes a convex set, r1(θ̂) are
the solution of the optimization (31) if and only if the
prescribed conditions, recognized as the Minimum Principle,
are satisfied.

ṙ1(θ̂) =
∂

∂λ
H(θ̂, r1(θ̂), u(θ̂), λ(θ̂)), (33a)

λ̇(θ̂) =
∂

∂r1
H(θ̂, r1(θ̂), u(θ̂), λ(θ̂)), (33b)

u(θ̂) = argmin
u∈U

H(θ̂, r1(θ̂), u(θ̂), λ(θ̂)), (33c)

λ(θ̄) = 0. (33d)

Numerical iterative algorithms can be utilized to solve this
optimal control problem. In particular, we employ the Gradi-
ent Projection Algorithm to address problem (33) [24]. The
solution of problem (33) concludes to the optimal reward
factor r1(θ̂). Also, by substituting optimal r1(θ̂) in (14), the
optimal bias reward r2(θ̂) is obtained.

V. SIMULATION

In this section, we provide numerical results to validate the
proposed mechanism. The unit cost of energy consumption
is c = 1. The computing resource of the CS is denoted as
fc = 10GHz [18], [17]. Assume that the types of ESs, θ are
distributed in range [4, 6] uniformly.

Figure 2 shows the optimal utility, reward, and shared
resource of various edge server types, considering different
total sizes of computational tasks. the task size of CS is set
with different values from set D = [200 250 300 350 400]GB.
As shown in Figure 2.(a), with the increase of task size D,
the larger reduced execution latency will be achieved, leading
to more utility of the CS. On the contrary, as shown in Table
I, the utility of cloud server decreases by increasing of task
size D. Figure 2.(a) also shows that U(θ̄, x, R(x, θ̄)) = 0
which is consistent with Lemma 1. Figure 2 shows all the
optimal utility, reward, and shared resource decrease with the
edge servers’ type in the proposed mechanism. Therefore, the
edge servers can choose the hardware with lower θ to increase
their utility. Figure 2(c) also presents that the first variable
of the reward function (i.e. r1) decreases with the increase
of edge servers’ type, which is consistent with r′1(θ̂) ≤ 0 in
Proposition 2.

VI. CONCLUSION

In this paper, we successfully address the challenges of
resource limitations and heterogeneity in edge computing by
developing an incentive mechanism that utilizes the principles
of contract theory and Stackelberg game properties. This
mechanism is designed to handle the asymmetric information
and autonomous nature of edge servers, motivating their
participation in computation task execution through a well-
structured reward function. By allowing edge servers to
decide their level of resource contribution autonomously, the
mechanism ensures the maximization of the cloud server’s
utility while promoting efficient resource utilization and
truthful participation from the edge servers. We overcame the
inherent nonconvexity of the optimization problem derived
from the proposed mechanism by employing a mathematical

3067

Fig. 2: Utility, reward, and shared resource across various
edge server types, considering different total sizes of com-
putational tasks.

reformulation technique, transforming the problem into an
equivalently convex optimal control problem. The simulation
results further validate the effectiveness of the proposed
incentive mechanism, demonstrating its potential to enhance
the quality of service in cloud-edge collaborative environ-
ments significantly.

REFERENCES

[1] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2016.

[2] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[3] Y. Li, B. Yang, H. Wu, Q. Han, C. Chen, and X. Guan, “Joint offloading
decision and resource allocation for vehicular fog-edge computing
networks: A contract-stackelberg approach,” IEEE Internet of Things
Journal, vol. 9, no. 17, pp. 15 969–15 982, 2022.

[4] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: a survey on architectures, infrastructure, and algorithms,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[5] H. Gu, L. Zhao, Z. Han, G. Zheng, and S. Song, “Ai-enhanced cloud-
edge-terminal collaborative network: Survey, applications, and future
directions,” IEEE Communications Surveys & Tutorials, 2023.

[6] Y. Zhang, X. Lan, J. Ren, and L. Cai, “Efficient computing resource
sharing for mobile edge-cloud computing networks,” IEEE/ACM
Transactions on Networking, vol. 28, no. 3, pp. 1227–1240, 2020.

[7] H. Hu, D. Wu, F. Zhou, X. Zhu, R. Q. Hu, and H. Zhu, “Intelligent
resource allocation for edge-cloud collaborative networks: A hybrid
ddpg-d3qn approach,” IEEE Transactions on Vehicular Technology,
2023.

[8] H. Yuan and M. Zhou, “Profit-maximized collaborative computation
offloading and resource allocation in distributed cloud and edge
computing systems,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 3, pp. 1277–1287, 2020.

[9] T. Liu, L. Fang, Y. Zhu, W. Tong, and Y. Yang, “A near-optimal ap-
proach for online task offloading and resource allocation in edge-cloud
orchestrated computing,” IEEE Transactions on Mobile Computing,
vol. 21, no. 8, pp. 2687–2700, 2020.

[10] J. Chen, Z. Chang, X. Guo, R. Li, Z. Han, and T. Hämäläinen,
“Resource allocation and computation offloading for multi-access edge
computing with fronthaul and backhaul constraints,” IEEE Transac-
tions on Vehicular Technology, vol. 70, no. 8, pp. 8037–8049, 2021.

[11] S. Luo, X. Chen, Z. Zhou, X. Chen, and W. Wu, “Incentive-aware
micro computing cluster formation for cooperative fog computing,”
IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp.
2643–2657, 2020.

[12] G. Li and J. Cai, “An online incentive mechanism for collaborative task
offloading in mobile edge computing,” IEEE Transactions on Wireless
Communications, vol. 19, no. 1, pp. 624–636, 2019.

[13] T. Mahn, M. Wirth, and A. Klein, “Game theoretic algorithm for
energy efficient mobile edge computing with multiple access points,” in
2020 8th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud). IEEE, 2020, pp. 31–38.

[14] H. Zhou, Z. Wang, N. Cheng, D. Zeng, and P. Fan, “Stackelberg-
game-based computation offloading method in cloud–edge computing
networks,” IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16 510–
16 520, 2022.

[15] J. Lee, D. Kim, and D. Niyato, “Market analysis of distributed
learning resource management for internet of things: a game-theoretic
approach,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8430–
8439, 2020.

[16] S. Parvizi, M. Montazeri, and H. Kebriaei, “Contract-based demand
response mechanism for commercial and industrial customers,” IEEE
Transactions on Automation Science and Engineering, 2024.

[17] C. Su, F. Ye, T. Liu, Y. Tian, and Z. Han, “Computation offloading in
hierarchical multi-access edge computing based on contract theory and
bayesian matching game,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 11, pp. 13 686–13 701, 2020.

[18] Z. Zhou, H. Liao, B. Gu, S. Mumtaz, and J. Rodriguez, “Resource
sharing and task offloading in iot fog computing: A contract-learning
approach,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 4, no. 3, pp. 227–240, 2019.

[19] N. Zhao, W. Du, F. Ren, Y. Pei, Y.-C. Liang, and D. Niyato, “Joint
task offloading, resource sharing and computation incentive for edge
computing networks,” IEEE Communications Letters, vol. 27, no. 1,
pp. 258–262, 2022.

[20] M. Montazeri, H. Kebriaei, and B. N. Araabi, “A tractable truthful
profit maximization mechanism design with autonomous agents,” IEEE
Transactions on Automatic Control, 2024.

[21] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, “Algorithmic
game theory, 2007,” Google Scholar Digital Library Digital Library.

[22] A. Calogero et al., “Notes on optimal control theory with economic
models and exercises,” 2013.

[23] D. Bertsekas, Dynamic programming and optimal control: Volume I.
Athena scientific, 2012, vol. 1.

[24] J. Preininger and P. T. Vuong, “On the convergence of the gra-
dient projection method for convex optimal control problems with
bang–bang solutions,” Computational Optimization and Applications,
vol. 70, 2018.

3068

