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Abstract— The study of theoretical conditions for recovering
sparse signals from compressive measurements has received a
lot of attention in the research community. In parallel, there
has been a great amount of work characterizing conditions
for the recovery of both the state and the input to a linear
dynamical system (LDS), including a handful of results on
recovering sparse inputs. However, existing sufficient conditions
for recovering sparse inputs to an LDS are conservative and
hard to interpret, while necessary and sufficient conditions have
not yet appeared in the literature. In this work, we provide (1)
the first characterization of necessary and sufficient conditions
for the existence and uniqueness of sparse inputs to an LDS, (2)
the first necessary and sufficient conditions for a linear program
to recover both an unknown initial state and a sparse input,
and (3) simple, interpretable recovery conditions in terms of
the LDS parameters. We conclude with a numerical validation
of these claims and discuss implications and future directions.

I. INTRODUCTION

A foundational concept in systems theory is that of
observability, the condition guaranteeing uniqueness of the
initial state of a system given knowledge of the inputs and
a sufficient number of measurements from the output [1].
Introduced later was the more stringent notion of strong
observability, which further guarantees the uniqueness of the
initial condition even in the presence of unknown inputs, and
is known to be equivalent to the system having no invariant
zeros [2]. These conditions have been used to concisely
characterize conditions under which either the initial state
or inputs to a system, or both, can be recovered, even in
the absence of the other [3], [4], [5], [6]. Of particular
relevance to time-critical applications is the development of
deadbeat or finite-time input reconstructors, which in the
discrete setting have been formulated in terms of solutions
to a block Toeplitz system [4].

A linear system is, in particular, a compact means of
describing a linear relationship y = Ψu between a sequence
of inputs u and a sequence of observations y, from which
even in the most optimistic circumstances generic u can
only be reconstructed up to kerΨ. However, by assuming
that u is sparse in an appropriate sense, established results
in sparse recovery provide favorable guarantees on exact
reconstruction via convex optimization. The most common
such case considered is when u is assumed to have support of
size not greater than s, and is termed regular sparsity. Other
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support-based notions of sparsity include block [7], group
[8], and tree-based sparsity [9], and are each subsumed by
the more general notion of model-based sparsity [10].

For each of these sparsity patterns, the literature has
provided tailored optimization problems and recovery guar-
antees, with varying levels of robustness to noise, ease of
checking, and conceptual nuance. For many applications in
the noiseless setting, simple ℓ1-minimization has proven to
be the approach of choice due to its relative conceptual ease,
implementability as a linear program, and favorable perfor-
mance even when compared with tailored regularizers [11].
For regular sparsity, the necessary and sufficient condition for
successful unique recovery is the satisfaction of the so-called
nullspace property (NUP), which requires vectors in the
nullspace of Ψ to have smaller ℓ1 norm on s-sparse supports
than on the complement of s-sparse supports (see Def. 1).
Recent results have even shown that for any support-based
notion of sparsity, there exists a straightforward extension of
the NUP, termed the generalized nullspace property, which
provides necessary and sufficient guarantees [12].

In light of the success of this approach to signal recon-
struction, recent literature has provided tailored algorithms
for sparse recovery in linear dynamical systems (LDSs),
where the assumption of sparsity has been variously made
on the initial conditions [13], [14], [15], [16], dynamics
[17], measurement noise [18], and inputs [19], [20], [21],
[22]. Even with all of this prior work, there are few existing
guarantees on the performance of these algorithms, and the
guarantees that have been produced are typically probabilistic
in nature or make restrictive assumptions on the sparsity
patterns, such as the state and inputs being simultaneously
sparse with respect to an orthogonal dictionary. As a result,
many results for the general, noiseless setting, including
the establishment of necessary and sufficient guarantees,
have not yet appeared in the literature. Our focus in this
work is on establishing such guarantees for the basis-pursuit
style optimization problem introduced in [20], where no
assumption is made on the initial state, but the support of the
inputs is restricted to a generalized sparsity pattern. Existing
conditions for even the basic version of this problem are
very conservative, and necessary and sufficient conditions
have not yet made an appearance.

In this work, we consider the problem of jointly inferring
the initial state x0 and sparse inputs (u0, . . . ,uN−1) of an
LDS Σ = (A,Ψ,C) without a feedthrough term, i.e.,

xk+1 = Axk +Ψuk, xk ∈ Rn,uk ∈ Rm

yk = Cxk, yk ∈ Rp, suppuk ∈ ∆
(1)

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6493



where ∆ is a generalized sparsity pattern (see Def. 2), from
N + 1 measurements (y0, . . . ,yN ). In particular, this work
makes the following contributions:

1) Necessary and sufficient conditions for uniqueness of
x0 and sparse uk given yk, 0 ≤ k ≤ N .

2) Necessary and sufficient conditions for the ℓ1-
minimization approach of [20] to uniquely recover x0

and sparse uk given yk, 0 ≤ k ≤ N .
3) Interpretable conditions which are respectively nec-

essary or sufficient for unique solutions to the ℓ1-
minimization approach of [20] in terms of the system
parameters.

4) Illustration of the accuracy of these conditions and pro-
vision of intuition for when they are most informative
through simulations of random LDSs.

II. PRELIMINARIES

A. Notation

1) Sets and Vector Spaces: Define N = {0, 1, 2, . . .},
[[n]] := {0, 1, 2, . . . , n − 1}. We use capital script letters to
denote vector subspaces V ⊆ Rn. When V,U ⊆ Rn, we
denote V + U := {v + u : v ∈ V,u ∈ U} ⊆ Rn and
V⊥ := {x ∈ Rn : ∀v ∈ V, ⟨x,v⟩ = 0}.

2) Matrix Operations: For any matrix A and subspace
U , define AU := {Ax : x ∈ U}. A−1 is defined to be the
inverse matrix of A if it exists, and for any affine subspace
V ⊆ Rn, A−1V := {x ∈ Rm : Ax ∈ V}. We likewise
denote the Moore-Penrose pseudoinverse as A+.

3) Supports and Norms: For x ∈ Rm, denote supp(x) :=
{i ∈ [[m]] : xi ̸= 0}. Denote column i of a matrix A to be
Ai, and block column i if A is a block matrix. For any
subset S ⊆ Ω, we define the set complement Sc := Ω \ S,
and denote AS the submatrix of A ∈ Rn×m with columns
(AS)i = ASi

. If S = (Sk) is a tuple of sets and Γ is a
block matrix, denote ΓS the block matrix with block columns
(ΓS)k = (Γk)Sk

. For a block vector U , (US)k = (Uk)Sk
.

Likewise if S, S′ are two tuples of sets with the same length,
define S ∪ S′ the tuple of sets s.t. (S ∪ S′)k = Sk ∪ S′

k. We
denote the ℓ0 semi-norm as ∥x∥0 := | supp(x)| and the ℓ1
and ℓ2 norms as ∥ · ∥1 and ∥ · ∥2, respectively.

B. The Nullspace Property

Given a matrix Θ ∈ Rn×m, where we assume that Θ
has linearly dependent columns (rankΘ < m), a central
problem of sparse recovery is to inquire, under which as-
sumptions on the support of x are there unique solutions
to y = Θx, and what are the algorithms with such unique
recovery guarantees? A standard approach is to begin with
the NP-hard optimization problem P0 that finds the sparsest
solution, and proceed to the convex relaxation P1, sometimes
called basis pursuit:

min
x

∥x∥0, such that y = Θx (P0)

min
x

∥x∥1, such that y = Θx (P1)

Denote ∆s(m) := {S ⊆ [[m]] : |S| ≤ s} to be the set
of s-sparse supports for vectors in Rm, or simply ∆s when

m is fixed. A classic result in sparse recovery is that any
s-sparse solution to P1 is the unique solution, if and only if
Θ satisfies the s-NUP:

Definition 1 (Nullspace Property (NUP)): The matrix
Θ ∈ Rn×m satisfies the nullspace property of order s
(s-NUP) if ∀h ∈ kerΘ \ {0}, ∀S ∈ ∆s, ∥hS∥1 < ∥hSc∥1.

C. The Generalized Nullspace Property

The motivating observation of [12] is that sparsity struc-
tures tend to satisfy the property that if S ⊆ [[m]] is an
admissible support, so too is any S′ ⊆ S. This relationship
describes an abstract simplicial complex:

Definition 2 (Abstract Simplicial Complex (ASC)): Let ∆
be a set of sets. ∆ is an abstract simplicial complex if ∀S ∈
∆, ∀S′ ⊆ S, S′ ∈ ∆. If for some m ∈ N, ∆ ⊆ {S : S ⊆
[[m]]}, we say that ∆ is an ASC over [[m]].

One can quickly check that ∆s(m) is an ASC over [[m]],
so ASCs comprise a strict generalization of regular sparsity.
We will thus refer to any vector x such that suppx ∈ ∆ as
∆-sparse. We additionally make the convenient definition:

S(∆) := {x ∈ Rm : suppx ∈ ∆} (2)

which may be geometrically interpreted as the union of
subspaces spanned by basis vectors {ek}k∈S , where S ∈ ∆.
The associated result of [12] is key:

Definition 3 (Generalized Nullspace Property (GNUP)):
Let Ψ ∈ Rn×m, and let ∆ be an ASC over [[m]]. We say
that Ψ satisfies the generalized nullspace property with
respect to ∆ (∆-NUP) if ∀h ∈ kerΨ \ {0}, ∀S ∈ ∆,
∥hS∥1 < ∥hSc∥1. Equivalently,

nsc(Ψ,∆) := max
S∈∆

max
h∈kerΨ\{0}

∥hS∥1
∥h∥1

<
1

2
(3)

where nsc(Ψ,∆) is called the nullspace constant.
Proposition 1: Let ∆ be a simplicial complex over [[m]].

Then any ∆-sparse solution to P1 is the unique solution, if
and only if Θ satisfies the ∆-NUP.

This result enables necessary and sufficient conditions
for much more general types of sparsity patterns than are
classically admissible for P1. As a simple example, one finds
that the ∆s-NUP is equivalent to the (classical) s-NUP. Since
the GNUP is essentially a statement about the kernel of a
particular matrix, it is natural to extend this characterization
to any subspace with respect to a basis: for a subspace
U ⊆ Rn define

nsc(U ,∆) := max
S∈∆

max
h∈U\{0}

∥hS∥1
∥h∥1

and say that U satisfies the ∆-NUP if nsc(U ,∆) < 1
2 .

D. Linear Dynamical Systems with Sparse Inputs

In this section, we will state the main problem of the paper.
For the system Σ = (A,Ψ,C) whose state-space equations
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are defined in (1), we define the associated block matrices:

ON =


C
CA

...
CAN

 , YN =


y0

y1

...
yN

 , UN =


u0

u1

...
uN−1

 ,

ΓN =


0 0 · · · 0

CΨ 0 · · · 0
CAΨ CΨ · · · 0

...
...

. . .
CAN−1Ψ CAN−2 · · · CΨ

 ,

(4)

where we refer to ON as the observability matrix of Σ and
to ΓN as the input-output matrix. The reader should note
the discrepancy in the number of entries of YN and UN ,
reflecting the lack of feedthrough term. It follows that

YN = ONx0 + ΓNUN . (5)

In this work, we study the case when ∀k, suppuk ∈ ∆,
where ∆ is a simplicial complex over [[m]]. In this case, we
say that the input u and respectively the block vector UN

is entrywise ∆-sparse; we may equivalently refer to UN as
∆N -sparse. We might then ask, under what conditions for
which optimization problems can we recover x0 and UN

from YN , given the assumption that UN is ∆N -sparse?
The optimization problem we focus on is the following,

introduced in [20]:

min
x̃0,ŨN

∥ŨN∥1 s.t. YN = ON x̃0 + ΓN ŨN . (D1)

This optimization problem may be thought of as an im-
plementation of basis pursuit (P1) for linear systems with
sparse inputs. Analogously, we would like to characterize
the conditions under which this problem is well posed–
i.e., no two entrywise ∆-sparse inputs and generic initial
conditions produce the same output–and when (D1) uniquely
recovers such ∆-sparse inputs and initial conditions jointly.
The former condition may be thought of as an injectivity
condition, in the sense that the output YN uniquely speci-
fies the initial condition and inputs up to ∆N -sparsity. Of
additional interest are the cases in which the system is not
sufficiently observable to uniquely determine x given YN ,
but we may still recover or uniquely characterize ∆N -sparse
UN . To these ends, we define the following:

Definition 4: Consider the LDS Σ as in (1).
(i) Σ is jointly ∆N -injective if for any U,U ′ ∈ S(∆N ),

ONx′
0+ΓNU ′

N = ONx0+ΓNUN implies UN = U ′
N

and x0 = x′
0.

(ii) Σ is input ∆N -injective if for any U,U ′ ∈ S(∆N ),
ONx′

0+ΓNU ′
N = ONx0+ΓNUN implies UN = U ′

N .
(iii) Σ is jointly ∆N -recoverable with (D1) if for every x0 ∈

Rn and UN ∈ S(∆N ), the solution (x∗
0, U

∗
N ) to (D1)

satisfies U∗
N = UN and x∗

0 = x0.
(iv) Σ is input ∆N -recoverable with (D1) if for every x0 ∈

Rn and UN ∈ S(∆N ), any solution (x∗
0, U

∗
N ) to (D1)

satisfies U∗
N = UN .

Using this language, the condition established in [20]
provides a sufficient condition for Σ to be jointly ∆N

s -
recoverable with (D1), and is based on the coherence µ :
Rn×m → [0, 1], defined as

µ(Θ) = max
i ̸=j

|⟨Θi,Θj⟩|
∥Θi∥2∥Θj∥2

(6)

Henceforth, we define P⊥
N := I −ONO+

N , the orthogonal
projection onto the orthogonal complement of the column
space of ON . The main result of [20], which may be read
as a sufficient condition for P⊥

NΓN to satisfy the Ns-NUP,
is as follows:

Proposition 2: If kerON = 0 and

µ(P⊥
NΓN ) <

1

2Ns− 1

then Σ is jointly ∆N
s -recoverable with (D1).

As is typical of coherence-based sparse recovery guaran-
tees, it was found that this bound was enormously conser-
vative for even modest N . But perhaps more suggestively,
this condition guarantees recovery for all inputs UN ∈
S (∆Ns), while in this setting we only need to guarantee
recovery of UN ∈ S

(
∆N

s

)
–which is a vanishingly small set

by comparison for moderate values of N . The conditions
we establish in the rest of this work are tailored to the
assumption of ∆N -sparsity, and do not necessarily imply
recovery of signals in S (∆Ns) \ S

(
∆N

s

)
.

III. NECESSARY AND SUFFICIENT CONDITIONS
FOR JOINT STATE AND SPARSE INPUT

RECOVERY
Let ∆ be an ASC over [[m]] and Σ a linear system as in

(1). Our first observation is that the difference between joint
and input-only recoverability/injectivity is just a matter of
observability:

Lemma 1: Σ is jointly ∆N -recoverable with (D1) (resp.
∆N -injective) iff kerON = 0 and Σ is input ∆N -
recoverable with (D1) (resp. ∆N -injective).

Proof: Suppose Σ is jointly ∆N -recoverable (resp.
injective), it follows that it is also input ∆N -recoverable
(resp. injective). Suppose kerON ̸= 0, then x0 cannot be
uniquely determined by a constraint on ONx0, a contradic-
tion. Hence kerON = 0. Conversely, suppose Σ is input
∆N -recoverable with (D1) and that kerON = 0. Then for
any YN = ONx0 + ΓNUN where UN ∈ S(∆N ), any solu-
tion (x′

0, U
′
N ) to (D1) (resp. (x′

0, U
′
N ) with U ′

N ∈ S(∆N )
s.t. YN = ONx′

0 + ΓNU ′
N ) must satisfy U ′

N = UN , and
therefore ONx0 = ONx′

0. Since kerON = 0, x0 = x′
0.

In [20], implicit in the use of coherence for the main result
was that when kerON = 0, P⊥

NΓN satisfying the Ns-NUP
is sufficient Σ to be jointly ∆N -recoverable with (D1). Per
lemma 1, we may suspect that if we relax the condition of
observability, we may still determine a condition on when
(D1) recovers the input, through conditions on P⊥

NΓN . This
is reflected in the fact that the following are equivalent:

∃x0,x
′
0,ONx0 + ΓNUN = ONx′

0 + ΓNU ′
N (7)

P⊥
NΓNUN = P⊥

NΓNU ′
N (8)
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For determining sparse input recoverability and injectivity
then, we will see it is only necessary to consider properties
of kerP⊥

NΓN .
In the case of regular sparsity, there are several equivalent

ways to establish uniqueness of sparse solutions. The typical
way is a rank condition on all collections of 2s columns of
a matrix. Here we generalize this slightly, to ∆-sparsity:

Lemma 2: Let ∆ be an ASC over [[m]]. ∀x,x′ ∈
S(∆),Θx = Θx′ =⇒ x = x′ if and only if ∀S, S′ ∈ ∆,
kerΘS∪S′ = 0. When either condition is satisfied, we say
Θ is ∆-injective.

Proof: Suppose ∃S, S′ ∈ ∆, kerΘS∪S′ ̸= 0, then let
x,x′ ∈ Rm distinct such that suppx = S and suppx′ = S′,
and Θ(x − x′) = 0. Then Θx = Θx′ but x ̸= x′, a
contradiction. Conversely, suppose x,x′ ∈ S(∆) such that
Θx = Θx′ but x ̸= x′, where S = suppx and S′ =
suppx′. Then ΘS∪S′(x− x′)S∪S′ = 0, so kerΘS∪S′ ̸= 0.

This notion enables concise necessary and sufficient charac-
terizations of when ∆-sparse solutions are unique, and we
will put it to good use in Theorem 1.

Shortly after the publication of [20], Kafashan et al.
produced sufficient conditions for both joint ∆N

s -recovery
with (D1) and a related optimization problem incorporating
the assumption of noise [21]. Lemma 1 of [21] poses a
necessary condition for when ∆ = ∆s, but it makes use of
the restricted isometry constant rather than purely rank-type
constraints, and is not stated as necessary and sufficient. We
provide a version of the necessary and sufficient condition in
the style of [21] to reflect this contribution, making only the
change of the restricted isometry condition to ∆-injectivity:

Theorem 1 (∆N -Injectivity of Σ): Let ∆ be an ASC over
[[m]] and Σ = (A,Ψ,C) a linear system with state space of
dimension n. The following are equivalent:

(i) Σ is jointly ∆N -injective
(ii) ∀S, S′ ∈ ∆N , rank [ON (ΓN )S∪S′ ] = n +

rank((ΓN )S∪S′) and CΨ is ∆-injective
(iii) kerON = 0 and P⊥

NΓN is ∆N -injective.
Proof: ((i)⇒(ii)) Suppose Σ is jointly ∆N -injective,

then if UN , U ′
N ∈ S(∆), ONx0 + ΓNUN = ONx′

0 +
ΓNU ′

N =⇒ x′
0 = x0 and UN = U ′

N . It follows that
for every S, S′ ∈ ∆N , [ON (ΓN )S∪S′ ] is full column
rank, so rank [ON (ΓN )S∪S′ ] = n+ rank((ΓN )S∪S′), and
ker(ΓN )S∪S′ = 0. It follows that every ((ΓN )k)Sk∪S′

k
is

full rank, so (ON−kΨ)Sk∪S′
k

is full rank ∀k ∈ [[N ]]. In
particular we may take k = 0, so ∀S, S′ ∈ ∆, (O0Ψ)S∪S′ =
(CΨ)S∪S′ is full rank, and therefore CΨ is ∆-injective.
((ii) ⇒ (i)) Likewise, if (CΨ)S∪S′ is full rank, since

ΓN is block triangular with CΨ on the diagonal, we have
that (ΓN )S∪S′ is full rank for every S, S′ ∈ ∆N . It follows
that if rank [ON (ΓN )S∪S′ ] = n + rank((ΓN )S∪S′), then
[ON (ΓN )S∪S′ ] is full rank, so if UN is ∆N -sparse and x0

is generic such that YN = ONx0+ΓNUN , they are unique.
Therefore, Σ is jointly ∆N -injective.
((ii) ⇐⇒ (iii)) Note that from the above, we have

(ii) if and only if ∀S, S′ ∈ ∆N , ker [ON (ΓN )S∪S′ ] =
0, which is the case if and only if kerON = 0,

ker(ΓN )S∪S′ = 0, and imON ∩ im(ΓN )S∪S′ = 0. (iii)
holds iff rankP⊥

N (ΓN )S∪S′ = rank(ΓN )S∪S′ , so this is
again equivalent to kerON = 0 and kerP⊥

N (ΓN )S∪S′ =
ker(P⊥

NΓN )S∪S′ = 0, and hence P⊥
NΓN being ∆N -

injective.
Having shown the result for uniqueness of solutions/sparse

injectivity, we proceed to the problem of recoverability.
Recalling that we are only interested in ∆N -sparse solutions
UN , we could obtain a necessary and sufficient condition
from the GNUP if this support pattern is an ASC. Techni-
cally, as ∆N is a set of tuples of sets, it cannot be a simplicial
complex, but if one instead interprets these tuples as disjoint
unions, we uncover an ASC structure:

Lemma 3: ∆N is a simplicial complex up to bijection.
Proof: It is clear that every (Sk)k∈[[N ]] ∈ ∆N can be

identified with the set S̃ =
⋃

k∈[[N ]]{k} × Sk. Let S ∈ ∆N

and suppose S̃′ ⊆ S̃. Then for all k, {k} × S′
k ⊆ {k} ×

Sk =⇒ S′
k ⊆ Sk, so S′

k ∈ ∆. Therefore S′ ∈ ∆N .
It is then clear that we can apply the GNUP in this context, to
obtain necessary and sufficient conditions on ∆N -recovery.

Theorem 2 (∆N -Recoverability with (D1)): Let ∆ be an
ASC over [[m]] and Σ = (A,Ψ,C) a linear system. The
following are equivalent:

(i) Σ is jointly ∆N -recoverable with (D1).
(ii) kerON = 0 and P⊥

NΓN satisfies the ∆N -NUP.
Proof: Recall that Σ is jointly ∆N -recoverable if

and only if kerON = 0 and for any two solutions
(x0, UN ), (x0, U

′
N ) to (D1) such that UN , U ′

N ∈ S(∆N )
satisfy UN = U ′

N . This is equivalent to any ∆N -sparse
solution to the optimization problem minUN

∥UN∥1 s.t.
∃x0, YN = ONx0 + ΓNUN being the unique solution, and
we have that ∃x0, YN = ONx0 + ΓNUN if and only if
P⊥

N YN = P⊥
NΓNUN . Therefore, any ∆N -sparse solution to

minUN
∥UN∥1 s.t. ∃x0, YN = ONx0+ΓNUN is necessarily

unique if and only if P⊥
NΓN satisfies the ∆N -NUP, and we

may conclude.
As system-theoretic statements, these conditions establish

a deadbeat unknown-input state estimator and input recon-
structor for linear systems with sparse inputs, analogous to
the generic input version in [23]. From the point of view
of sparse recovery, these conditions mirror the role of the
spark and the standard nullspace property for P0, P1. Like
these conditions, they are clearly NP-hard to verify; however,
it is clear that in the case of regular sparsity, the number
of supports to check to verify the ∆N

s -NUP is far smaller
than for the Ns-NUP. We will see this idea reflected in the
next section: in many cases, it indeed suffices to check much
easier conditions.

IV. INTERPRETABLE CONDITIONS FOR
∆N -RECOVERABILITY WITH (D1)

In the last section, we saw that by casting Σ as a block
matrix-vector system, standard sparse recovery arguments
yield a spark-like condition for ∆N -injectivity, and subse-
quent application of the generalized nullspace property yields
an analogous condition for ∆N -recoverability. Once we have
kerON = 0, each of these conditions are entirely determined
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by attributes of kerP⊥
NΓN . This space is precisely the

subspace of inputs UN for which there exists an initial
condition x0, ΓNUN = ONx0. By constructing lower and
upper bounds on nsc(P⊥

NΓN ,∆N ) via nsc(CΨ,∆) and
nsc((CΨ)−1CA kerC,∆), we obtain conditions that are
respectively necessary and sufficient for Σ to be input ∆N -
recoverable.

A. A Necessary Condition

In [20], it was empirically observed that µ(CΨ) ≤
µ(ΓN ) ≤ µ(P⊥

NΓN ). The intuition one is tempted to derive
from this is that a more incoherent CΨ indicates a greater
chance of (D1) succeeding. To concretize this idea, one
need look no further than the question of recovering the
very last input to a system, left untouched by the system
dynamics. Specifically, it is useful to consider the one-to-
one correspondence between elements of kerCΨ and inputs
UN ∈ kerP⊥

NΓN with all zero entries except for the last:
Lemma 4: Suppose u is an input such that ∀k < N −

1,uk = 0 and uN−1 ∈ kerCΨ. Then UN ∈ kerP⊥
NΓN .

Proof: Suppose UN is as described, then with x0 = 0,
k < N =⇒ xk = 0 =⇒ yk = 0. We also have that
yN = CxN = CΨuN−1 = 0. Therefore, UN ∈ kerΓN ⊆
kerP⊥

NΓN .
This suggests the following natural necessary condition:

Proposition 3: Σ can only be input ∆N -recoverable with
(D1) (resp. injective) if CΨ satisfies the ∆-NUP (resp. is
∆-injective)

Proof: The case of injectivity is implied by character-
ization (ii) of Theorem 1. Suppose Σ is ∆N -recoverable.
Then by lemma 4, for any input u such that ∀k < N ,
uk = 0 and uN−1 ∈ kerCΨ, UN is the unique input
component of the solution to (D1) if UN is ∆N -sparse, so
minU ∥UN∥1 = minv ∥v∥1 s.t. CΨuN−1 = CΨv always
recovers ∆-sparse uN−1, hence CΨ satisfies the ∆-NUP.

Another way to put this is in terms of the nullspace constant:
Corollary 1: Σ can only be input ∆N -recoverable if

nsc(CΨ,∆) < 0.5.
It is clear that if CΨ does not satisfy ∆-NUP, there will
always exist entrywise ∆-sparse inputs which cannot be
recovered by the problem (D1). As this will be the case
for any N , this is in a sense the tightest necessary condition
for this class of problems. We conclude the section by noting
that proposition 3 also provides iff guarantees for the joint
problem, by a simple application of lemma 1.

Corollary 2: Σ can only be jointly ∆N -recoverable with
(D1) (resp. injective) if CΨ satisfies the ∆-NUP (resp. is
∆-injective) and kerON = 0.

B. A Sufficient Condition

We will now show that whenever the output of a system
is uniformly zero, at each time point k regardless of initial
condition, one must have uk ∈ (CΨ)−1CA kerC:

Lemma 5: Let u be an input such that UN ∈ kerP⊥
NΓN .

Then ∀k < N , uk ∈ (CΨ)−1CA kerC.

Proof: Let u be as above, and let x0 be such that
ONx0 + ΓNUN = YN = 0. Suppose the claim is false.
Then ∃k ≤ N − 2, CΨuk /∈ CA kerC, so if xk ∈ kerC,
C(Axk + Ψuk) = yk+1 ̸= 0. Since we assumed YN =
0 =⇒ yk+1 = 0, this cannot be, so xk /∈ kerC, which
gives our contradiction as yk = Cxk ̸= 0.

A fact not immediately visible is that this subspace arises
as the kernel of P⊥

1 Γ1:
Lemma 6:

kerP⊥
1 Γ1 = (CΨ)−1CA kerC

Proof:

kerP⊥
1 Γ1 =

{
u :

[
0

CΨ

]
u ∈ im

[
C
CA

]}
= {u : ∃x0,Cx0 = 0 and CΨu = CAx0}
= {u : CΨu ∈ CA kerC}
= (CΨ)−1CA kerC

This leads us to the following:
Proposition 4: Σ is input ∆N -recoverable for every N if

and only if P⊥
1 Γ1 satisfies the ∆-NUP.

Proof: Σ is input ∆N -recoverable for every N only
if Σ is input ∆-recoverable; by Theorem 2, we have the
forward implication. Since lemma 5 ensures that every
entry uk of an input UN ∈ kerP⊥

NΓN satisfies uk ∈
(CΨ)−1CA kerC

lemma 6
= kerP⊥

1 Γ1, for any S ∈ ∆N ,

∥(UN )S∥1 =
∑

k∈[[N ]]

∥(uk)Sk
∥1

<
∑

k∈[[N ]]

nsc(P⊥
1 Γ1,∆)∥uk∥1

= nsc(P⊥
1 Γ1,∆)∥UN∥1

=⇒ ∥(UN )S∥1
∥UN∥1

< nsc(P⊥
1 Γ1,∆) <

1

2

=⇒ nsc(P⊥
NΓN ,∆N ) <

1

2

therefore P⊥
NΓN satisfies the ∆N -NUP, and we conclude by

Theorem 2.

This may be also be phrased as a sufficient condition for any
N , in terms of the nullspace constant:

Corollary 3: Σ is input ∆N recoverable if
nsc(P⊥

1 Γ1,∆) < 0.5.
Since this condition is clearly also necessary for N = 1, we
might expect this to be closer to necessity for smaller values
of N . We conclude with a version of proposition 4 for the
joint case, following from lemma 1:

Corollary 4: Denote µ = min{N : kerON = 0}. If
P⊥

1 Γ1 satisfies the ∆-NUP, then for every N ≥ µ, Σ is
jointly ∆N -recoverable.

Proof: Let N ≥ µ, then kerON ⊆ kerOµ = 0. By
proposition 4, P⊥

1 Γ1 satisfying the ∆-NUP indicates that Σ
is input ∆N -recoverable, and we conclude by lemma 1.
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TABLE I: Number of systems with at least one imperfect
joint recovery across 30 trials out of total occurrences of
systems, with given ranges of σCΨ := nsc(CΨ,∆s) and
σP⊥

1 Γ1
:= nsc(P⊥

1 Γ1,∆s). n ∈ {12, 16, 20}, 1 ≤ p ≤ 20,
1 ≤ s ≤ 5 and m = 20. σ ∼ 0.5 if |σ − 0.5| ≤ 0.05
(experimental tolerance).

σCΨ < 0.5 σCΨ ∼ 0.5 σCΨ > 0.5
σP⊥

1 Γ1
> 0.5 153/800 34/289 9068/9866

σP⊥
1 Γ1

∼ 0.5 0/116 60/336 2/10

σP⊥
1 Γ1

< 0.5 0/2100 0/0 0/0

V. NUMERICAL VALIDATION

To validate and provide intuition for our results, we
perform two types of numerical experiments on ensembles
of random LDSs with s-sparse inputs, i.e., ∆-sparse with
∆ ∈ {∆s : s ∈ N}:

1) We evaluate the ability of (D1) to jointly recover
the initial state and sparse inputs for different system
parameters and sparsity levels.

2) We explore the relationship between nsc(CΨ,∆s) and
nsc(P⊥

1 Γ1,∆s) as a function of system parameters and
sparsity levels.

Throughout, we employ the 1-step TSA branch-and-bound
algorithm of [24] to compute nullspace constants to a toler-
ance of ±0.05. This level of precision was chosen to permit
the estimation of nullspace constants for much larger sparsity
levels with a statistically significant amount of systems than
would be permitted if we were to compute them exactly.

A. System Generation and Computing Information

For a given n,m, p, systems Σ = (A,Ψ,C) were gener-
ated randomly, mirroring the strategy of [20]:

• A is i.i.d. Gaussian in each entry with variance 1/n,
s.t. each eigenvalue λ of A satisfies |λ| < 0.9.

• Ψ is i.i.d Gaussian in each entry with variance 1/n.
• C is i.i.d. Gaussian with unit variance.

For all systems considered, we choose m = 20, to ensure
tractability of ∆s-nullspace constant estimates. We also
restrict our attention to n ≤ m and p ≤ m, focusing on the
usual assumption of “overcompleteness” of Ψ. We analyze
a total of 25173 systems across all parameter ranges. We
conducted all experiments and analysis in Python, using
CVXPY with the GUROBI solver for implementation of
linear programming.

B. Success of recovery

The first analysis we present provides numerical support
for the claims of necessity and sufficiency of the conditions
established in corollaries 1 and 3, that nsc(CΨ,∆s) < 0.5
is necessary and nsc(P⊥

1 Γ1,∆s) < 0.5 is sufficient for Σ
to be input ∆N

s -recoverable.
For each system, we choose a random s ≤ 10, and

simulate 30 random combinations of initial conditions and
entrywise s-sparse inputs of length N = n. As in [20],
we sample each entry of the initial conditions uniformly

Fig. 1: Empirical probability of imperfect joint recovery of
entrywise ∆s-sparse signals and generic initial conditions as
a function of s and p with m = 20, n ∈ {12, 16, 20},
and N = n; white indicates all signals perfectly recovered.
Within the red outlines are (s, p) such that all simulated
systems satisfied nsc(CΨ,∆s) > 0.5. Within the blue
outline are (s, p) such that all simulated systems satisfied
nsc(P⊥

1 Γ1,∆s) < 0.5.

from [−5, 5], choose every support Sk ⊆ [[m]] uniformly
without replacement s.t. |Sk| = s, and sample each nonzero
input entry uniformly on [−5, 5]. In Table I, we provide the
fraction of systems for which there was at least one imperfect
joint recovery of the 30 trials conducted as a function of
the nullspace constants nsc(CΨ,∆s) and nsc(P⊥

1 Γ1,∆s),
which were determined up to being less than 0.5, greater than
0.5, or in [0.45, 0.55]. From the table, we see our conditions
behave as expected: all systems with nsc(P⊥

1 Γ1,∆s) <
0.5 exhibit perfect recovery; a majority of systems with
nsc(P⊥

1 Γ1,∆s) > 0.5 exhibit imperfect recovery; and
nsc(P⊥

1 Γ1,∆s) ≥ nsc(CΨ,∆s) for all systems. In par-
ticular, there were many systems such that, for the sparsity
level considered, nsc(CΨ,∆s) < 0.5 was not sufficient for
perfect input recovery, as nsc(P⊥

1 Γ1,∆s) > 0.5.
Figure 1 visualizes this data in a different way, presenting

a joint recovery phase transition plot over p and s for
n ∈ {12, 16, 20}. We set N = n to guarantee equivalence
of input and joint recoverability. The intensity of each
pixel indicates the empirical probability of a system with
dimensions p, n,m and sparsity level s exhibiting imper-
fect joint recovery. The colormap normalization is in log-
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scale to better illustrate the case of perfect recovery for all
trials, which we plot as white. The red and blue outlined
regions indicate (p, n,m, s) such that every system simulated
satisfied nsc(CΨ,∆s) > 0.5 (red, failure of necessary
condition) or nsc(P⊥

1 Γ1,∆s) < 0.5 (blue, satisfaction of
sufficient condition). We observe that there are no white
pixels contained in the red outlined regions, supporting the
claim of nsc(CΨ,∆s) > 0.5 being necessary for joint ∆n

s -
recoverability. The red outlined region also becomes strictly
smaller as n increases, as expected as this indicates CΨ
with generically higher rank. Likewise, we observe that there
are no colored pixels contained in the blue outlined regions,
supporting the claim that nsc(P⊥

1 Γ1,∆s) < 0.5 is sufficient
for joint ∆n

s -recoverability. The blue regions appear to shrink
to the right as n increases, widening the gap in s between the
red and blue outlined regions for smaller p. This reflects the
fact that increased n will generically result in an increase
in the dimension of kerC, and thus an increase in the
dimension of kerP⊥

1 Γ1.

C. Analysis of NSC Relationship

We conclude our analysis by taking a closer look at the
relationship between the two main quantities motivated in
this work, nsc(CΨ,∆s) and nsc(P⊥

1 Γ1,∆s). Here we do
not terminate once determining whether the constant is above
or below 0.5, as was done for the previous section, opting
instead to compute bounds on these constants for each system
up to a tolerance of ±0.05. In figure 2, for various n,m, p, s
we plot nsc(CΨ,∆s) against nsc(P⊥

1 Γ1,∆s) . Each plotted
point represents the midpoint of the computed bounds on
these constants for a given Σ and sparsity level s. We see
that for every set of parameters considered, the nullspace
constants tend to increase with the sparsity level, and that
nsc(CΨ,∆s) ≤ nsc(P⊥

1 Γ1,∆s) as expected from the fact
that kerCΨ ⊆ (CΨ)−1CA kerC = kerP⊥

1 Γ1.
In figure 2b we fix n = 19 and m = 20, and illustrate the

trend of nsc(CΨ,∆s) and nsc(P⊥
1 Γ1,∆s) as p increases.

For p = 11, nsc(P⊥
1 Γ1,∆s) is quite pessimistic, echoing

the wide gap between the red and blue regions of figure 1
for n = 20 for moderate p. As p increases, points approach
the diagonal and tend to decrease in magnitude, reflecting
the intuitively more favorable recovery properties of a larger
number of measurements. When p = n, we see that the
two constants become equal; this reflects the fact that C ∈
Rp×n will be generically full rank and thus kerP⊥

1 Γ1 =
(CΨ)−1CA kerC = kerCΨ.

In figure 2c we fix p = 11 and m = 20, and illustrate the
trend of nsc(CΨ,∆s) and nsc(P⊥

1 Γ1,∆s) as n increases.
Up to our tolerance, we see again that for n = 11, n = p
and so the constants are equal. With the increase in n,
we observe that nsc(CΨ,∆s) stays roughly fixed, while
nsc(P⊥

1 Γ1,∆s) increases. This is qualitatively similar to the
effect of decreasing p, but in that case, both constants were
affected. This comes as no surprise, as for p ≤ n ≤ m we
expect the distribution of CΨ to be relatively unaffected,
but dimkerC to increase, and thus for dimkerP⊥

1 Γ1 to
increase. Another, more intuitive interpretation is that by

increasing n with p fixed, there is an increased amount of
interference from the initial condition mixed in with the
sparse inputs, and so guarantees on the recovery of even
the sparse inputs alone will naturally worsen for recovery
with a given number of time steps N .

Overall, these plots support the point that propositions 3
and 4 can actually be fairly tight, provided that p is not
much less than n. Larger p is in general seen to be better
across the board, while increasing n relative to p results in
less favorable sufficient guarantees. Importantly, they also
reinforce the fact that in most, but not all, cases, both
nsc(CΨ,∆s) and nsc(P⊥

1 Γ1,∆s) will be either less than or
greater than 0.5. The cases for which they disagree are few,
indicating potential practical utility for these quantities for
determining joint ∆N -recovery with (D1) in applications.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the first necessary and sufficient con-
ditions under which the joint recovery of generic initial
conditions and sparse inputs for a linear dynamical system
is well-posed and may be carried out via ℓ1-minimization.
Leveraging this characterization, we further provide two
simple necessary, and sufficient conditions for joint ∆N -
recoverability. In contrast to previous work, these conditions
have intuitive justifications and can be computationally veri-
fied for many systems of interest. Through ℓ1-recovery exper-
iments on random systems, we showed that these conditions
are useful indicators of recovery performance.

Of significant practical interest for follow-up work is the
characterization of stability and robustness properties of a
denoising version of (D1). We believe that generalizations of
strengthened nullspace properties such as the strong/robust
NSP are possible, and will provide avenues to address the
case where inputs are compressible and the system involves
measurement and process noise. Such properties should also
be verifiable using other ideas from the literature, such
as restricted isometry properties, which are known to be
satisfied with high probability for random matrices.

Aside from addressing the noisy case, we have identified
several avenues for future research building on the necessary
and sufficient conditions introduced here. One direction is
to extend these results to general systems with feedthrough
terms (nonzero D matrix) and broaden the scope of recovery
results to incorporate recovery with delay. More generally,
we aim to explore notions of strong observability for linear
systems with sparse inputs. Indeed, there are many significant
results in linear systems theory that we believe admit direct
extensions to the case of sparse inputs, and for which
necessary and sufficient conditions using ℓ1-minimization
and related characterizations may be achieved by building on
the generalized nullspace property, as was illustrated here.
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(a) Example: n = 19,m = 20, p = 17

(b) Trend as p increases (n = 19,m = 20)

(c) Trend as n increases (p = 11, m = 20)

Fig. 2: Distribution of ∆s-nullspace constants for random systems up to a tolerance of 0.05 (11656 total systems). (2a) shows
in detail the case of n = 19,m = 20, p = 17. The red region is where |nsc(CΨ,∆s) − 0.5| < 0.05, and the blue region
indicates nsc(P⊥

1 Γ1,∆s)−0.5| < 0.05. White regions indicate that nsc(CΨ,∆s),nsc(P
⊥
1 Γ1,∆s) are each greater/less than

0.5 with certainty. The shaded region under the diagonal corresponds to the impossible case nsc(CΨ,∆s) > nsc(P⊥
1 Γ1,∆s).

(2b) illustrates that as p increases, both nsc(CΨ,∆s),nsc(P
⊥
1 Γ1,∆s) tend to decrease, with nsc(P⊥

1 Γ1,∆s) converging
to nsc(CΨ,∆s). (2c) illustrates that as n increases, nsc(P⊥

1 Γ1,∆s) increases while nsc(CΨ,∆s) is relatively unaffected.
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