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Abstract— In this paper we formulate and solve a problem 

encountered in engineering practice when a discrete-time linear-

quadratic optimal feedback controller uses the state estimates 

obtained via a discrete-time reduced-order observer.  Due to the 

use of state estimates instead of the actual state variables, the 

optimal quadratic performance is degraded in a pretty complex 

manner.  In the paper, we derive the exact formula for the 

optimal performance degradation  for the finite time horizon 

optimization problem in terms of solution of a reduced-order 

difference Lyapunov equation. An aircraft example 

demonstrates that the optimal performance loss can be 

significant when a reduced-order observer is used. The optimal 

performance degradation can be considerably reduced by using 

the least square method to set-up the reduced-order observer 

initial condition. 

 
Index Terms— Reduced-order discrete-time observer, 

discrete-time finite horizon optimal observer-based controller, 

reduced-order observer initial condition 

I. I. INTRODUCTION 

HE full- and  reduced-order linear  observers were 

introduced in the work of Luenberger, [1]. The design 

of observers is very well documented in engineering. 

There are numerous applications of full- and reduced-order 

observers, especially to solve practical problems in industry. 

For example, paper [2] developed a discrete-time extended 

observer for an unmanned helicopter with the purpose of 

constructing a PID-like adaptive controller. Paper [3] applied 

a reduced-order observer for a vehicle active suspension 

system. The paper uses also the linear-quadratic (LQ) 

optimization for the controller design. The use of observers in 

Internet of Things was considered in [4], and an observer for 

distributed parameter systems in [5]. An overview on the use 

of observers for linear, nonlinear, and distributed parameter 

energy systems has been presented in [6]. Paper [7] presented 

a reduced-order observer for detection of false data injection 

attacks in cyber physical systems for smart power grids.  

    Consider discrete-time invariant linear system defined by 

       𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘),  𝑥(0) = 𝑥0         (1) 
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where ( ) nx k R  are the state-space variables and 

( ) mu k R  is the control input. Matrices
n nA R  and 

n mB R  are constant (time invariant system). When all 

state variables are available for feedback, a feedback control 

input is given by 

                           𝑢(𝑥(𝑘)) = −𝐹𝑥(𝑘)                                     (2) 

where  F  is a feedback gain matrix. The system (1) with 

perfect full-state feedback control (2) has the closed-loop 

eigenvalues  ( )BFA − .  The output signal ( ) ly k R   is 

defined by 

                                 𝑦(𝑘) = 𝐶𝑥(𝑘)                                      (3) 

In practice, ( )  ( ) dim dimy k l n x k=  = . In the case of 

non-redundant measurements, we have that  rankl c C= = . 

If the pair (𝐴, 𝐶) is observable [1] then an observer can be 

designed to estimate all state variables at all times and provide 

𝑥(𝑡) ≈ 𝑥̂(𝑡), where 𝑥̂(𝑡) is the signal produced by the 

observer. In such a case, the actual control signal applied to 

the system is 

    ˆ ˆ( ( )) ( ) ( ) ( )u x k Fx k Fx k Fe k= − = − +                     (4) 

     The full-order discrete-time observer has the form [8] 

            ( )ˆ ˆ( 1) ( ) ( ) ( )x k A KC x k Bu k Ky k+ = − + +            (5) 

The signal )(ke  is observation error defined by 

                               𝑒(𝑘) = 𝑥(𝑘) − 𝑥̂(𝑘)                         (6) 

      It is important to indicate that the system-observer 

configuration has the closed-loop eigenvalues separated into 

the system closed-loop eigenvalues under perfect full-state 

feedback defined by 𝜆(𝐴 − 𝐵𝐹), and the observer closed-

loop eigenvalues defined by 𝜆(𝐴 − 𝐾𝐶). This property is 

known as the separation principle.  

      From 𝑦(𝑘) = 𝐶𝑥(𝑘), there are 𝑐 equations for n  unknows 

of  𝑥(𝑘). An observer of order 𝑟 = 𝑛 − 𝑐 can be used to 

estimate the remaining  r  states. Our goal in this paper is to 

consider the impact of feedback control defined in (4) with 

the estimate 𝑥̂(𝑘) obtained from a reduced-order observer to 

be presented in the next section. The corresponding optimal 

control problem in the continuous-time domain using a 

reduced-order observer was considered in [9]-[10].  
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II. PRELIMINARY RESULTS 

In this section we first summarize the procedure for design of 

reduced-order observers, and then derive some preliminary 

results needed for the rest of the paper.  

     In the first step design, a constant matrix 1
r nC R ,  

whose rank is equal to r n l= − ,  is selected such that  

                                  
1

rank
C

n
C

 
= 

 
                                   (7) 

Let ( ) rp k R  be defined by 

                                   )()( 1 kxCkp =                                   (8) 

From (3) and (8), it follows 

                         )(
)(

)(

1

kx
C

C

kp

ky








=








                             (9)                                           

 
1

1 1

1

( ) ( )
( ) ( ) ( )

( ) ( )

C y k y k
x k L L Ly k L p k

C p k p k

−
     

= = = +     
    

(10) 

with  
n lL R , 1

n rL R . From (10), an estimate for  ( )x k  

is  

                             )(ˆ)()(ˆ
1 kpLkLykx +=                        (11) 

where the unknown vector ˆ ( ) rp k R  has to be estimated. 

The useful relations can be derived from formulas in (10)  

 
1

1

1

1 1 1 1 1 1

1 1 1 1

0

0

, , 0, 0

c

n

r

c r

C C C CL CL I
I L L

C C C C L C L I

CL I C L I CL C L

−
         

= = = =         
         

 = = = =

                                       

(12) 

Using (3), (10), and (12), it follows that the signal 

)(0)()()()()( 1 kpkykpCLkCLykCxky +=+==  does 

not contain information about )(kp . It can be shown that the 

forwarded value of the output signal )1( +ky  contains 

information about )(kp . With the change of variables as 

                              𝑞̂(𝑘) = 𝑝̂(𝑘) − 𝐾1𝑦(𝑘)                         (13) 

the future value )1( +ky  of the system measurements will 

not be needed. The gain  1K  will be determined to make 

reduced-order discrete-time observer asymptotically stable. It 

can be shown, after some algebra, that the reduced-order 

discrete-time observer for )(ˆ kq is given by 

               )()()(ˆ)1(ˆ kyKkuBkqAkq qqq ++=+          (14)                                              

          
( ) ( )

( )

1 1 1 1 1 1 1

1 1 1 1 1 1

( )

( ) , ( )

q

q q

A C K C AL C AL K CAL

B C K C B K C K C A L L K

= − = −

= − = − +
 (15)      

Having generated the values for  𝑞̂(𝑘) from (14)-(15) for all 

discrete-time instants, the required discrete-time estimate  for 

( )p k  is obtained from (13) as 𝑝̂(𝑘) = 𝑞̂(𝑘) + 𝐾1𝑦(𝑘), and 

then from (11), the estimate for ( )x k  follows as 

        
( )

1 1 1

1 1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ) ( ))

ˆ( ) ( )

x k Ly k L p k Ly k L q k K y k

L L K y k L q k

= + = + +

= + +
  (16)     

     The selected reduced-order observer gain 1K  must be 

stabilizing and set the closed-loop eigenvalues in the desired 

locations such that the reduced-order observer is considerably 

faster than the system. This can be achieved using the 

eigenvalue assignment technique [10]. To achieve this goal 

the pair ( )111 ,CALALC  in matrix qA  in formula (15) must be 

observable. This result was shown in [9]-[10]. 

       To simplify the derivations and provide a better 

understanding of what follows, the problem under is mapped 

into new coordinates via the following change of variables as 

 1 1
1

2 1

( )
( ) ( ) , ,

( )

z k C
Mx k z k M M L L

z k C

−   
= = = =   

   
 (17) 

Using the results from (12), it follows 

    𝑦(𝑘) = 𝐶𝑥(𝑘) = 𝐶𝑀−1𝑀𝑥(𝑘) = 𝐶𝑀−1𝑧(𝑘) 

= [𝐶𝐿 𝐶𝐿1]𝑧(𝑘) = [𝐼𝑐 0] [
𝑧1(𝑘)
𝑧2(𝑘)

] = 𝐶̄𝑧(𝑘) = 𝑧1(𝑘) (18)         

Since in the new coordinates the vector 1( ) cz k R  is directly 

measured, its observer is simply 𝑧̂1(𝑘) = 𝑦(𝑘). An observer 

is now needed only for the vector 2 ( ) rz k R . Note that 𝑐 +

𝑟 = 𝑛.  The difference equation for the vector 𝑧(𝑘) is  

( )

( )

1 11

2 2

1 1

1 1 1 2 1

1 11 12 1 1

2 21 22 2 2

0

( ) ( )
( 1) ( ) ( )

( ) ( )

( )
( )

( )

( 1) ( )

( 1) ( )

(0) (0)

z k z k
z k A Bu k MAM MBu k

z k z k

CAL CAL z k CB
u k

C AL C AL z k C B

z k A A z k B
u k

z k A A z k B

z Mx z

y k z

−   
+ = + = +   

   

     
= +     

     

+       
= = +       

+       

= =

= ( )  1 , 0k C I=

  

(19) 

It can be seen from (19) that ( )y k  carries no information 

about 2 ( )z k . An observer for the vector 2 ( )z k  can be 

designed as  

( )2 21 22 2 2 1

1 12 2 11 1

ˆˆ ˆ( 1) ( ) ( ) ( ) ( 1) ( 1)

ˆ ˆ( 1) ( 1) ( ) ( ) ( )

z k A y k A z k B u k K y k y k

y k z k A z k A y k B u k

+ = + + + + − +

+ = + = + +
                                                                           

(20) 

The need to ( 1)y k +  in (20) can be eliminated by 

introducing a change of variables similar to in (13), that is 

2 2 1
ˆˆ ( ) ( ) ( )z k q k K y k= −                      (21)                                                           

which leads to the reduced-order observer               

               2 2
ˆ ˆ( 1) ( ) ( ) ( )z z zq k A q k B u k K y k+ = + +           (22) 

             

1 1 1 1 22 1 12

1 1 2 1 1

1 1 1 1 1 1 1 1

21 22 1 1 11 1 12 1

z

z

z

A C AL K CAL A K A

B C B K CB B K B

K C AL C AL K K CAL K CAL K

A A K K A K A K

= − = −

= − = −

= + − −

= + − −

 (23) 

Having obtained 𝑞̂2(𝑘), the estimate for 𝑧(𝑘) is 
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2 2 1

1

2 2 1

ˆˆ ( ) ( ) ( )

ˆ ( ) ( )
ˆ( )

ˆˆ ( ) ( ) ( )

z k q k K y k

z k y k
z k

z k q k K y k

= + 

   
= =   

+   

             (24)                     

Let us define the observation errors by 

     2 2 2

2

0
ˆ ˆ( ) ( ) ( ), ( ) ( ) ( )

( )
e k z k z k e k z k z k

e k

 
= − = − =  

 
   (25)                   

The reduced-order observer estimation error can be obtained 

from 𝑒2(𝑘 + 1) = 𝑥2(𝑘 + 1) − 𝑥̂2(𝑘 + 1). Using (19)-(22)  

               ( ) )()1( 2121222 keAKAke −=+               (26) 

Difference equation (26) indicates that 2 ( )e k  goes to zero if 

𝐴22 − 𝐾1𝐴12 is asymptotically stable. This can be achieved if  

eigenvalues of 𝐴22 − 𝐾1𝐴12 are placed in the desired 

locations inside of  the unit circle (asymptotic stability region) 

using the eigenvalue assignment technique [11], which 

requires that the pair (𝐴22
𝑇 , 𝐴12

𝑇 ) is controllable. Since the state 

transformation (17) preserves system observability, [11], that 

is,  observability of (𝐴, 𝐶) is equivalent to observability of 

(𝐴̄, 𝐶̄). It was shown that observability of (𝐴, 𝐶) implies 

observability of (𝐴22, 𝐴12), and controllability of the pair 

(𝐴22
𝑇 , 𝐴12

𝑇 ) . 

III. REDUCED-ORDER OBSERVER DRIVEN FINITE-

TIME LQ OPTIMAL CONTROLLER PERFORMANCE 

    In this section, we use a discrete-time reduced-order 

observer based optimal controller to minimize a quadratic 

performance criterion over a finite time horizon, and study its 

performance. The quadratic performance criterion is defined 

by     

     

( ) ( ) ( ) ( )
1

0

1
min

2

1
( ) ( )

2

0, 0, 0

k f
T T

u
k k

T
f k ff

T T
k f

J x k Qx k u k Ru k

x k P x k

Q Q P R R

−

=

  
 = +  

  

+

=   = 



  (27)                        

0k  and fk represent initial and final discrete-time instants, 

and  𝑄, 𝑃𝑘𝑓 , and R  are weighted matrices. When no observer 

is used, that is, 𝑢(𝑥(𝑘)) = −𝐹𝑥(𝑘), the optimal controller 

formulas  are well-known and given by  [8] 

( )

( )

( )

1

1

0 0 0

0 0 0

( ( )) ( 1) ( 1) ( )

( 1) ( )

( ) ( 1)

( 1) ( 1) ( 1) , ( )

( 1) ( 1) ( ), ( ) ( )

1
( ) ( ) ( )

2

opt T T opt

opt opt

T

T T T
f k f

opt opt opt opt

opt T

u x k R B P k B B P k Ax k

F k x k

P k A P k A Q

A P k B R B P k B B P k A P k P

x k A BF k x k x k x k x

J x k P k x k

−

−

= − + + +

= − +

= + +

− + + + + =

+ = − + = =

=

(28) 

where the difference equation for )(kP  is the Riccati 

difference equation [8]. Since the separation principle holds 

for the system-observer configuration, formula (28) for the 

optimal feedback gain holds in the case when an observer-

based feedback controller is used. Mapping (28) into the new 

coordinates does not change the value for the optimal 

performance criterion (28). The transformation (17), that is,  

𝐴̄ = 𝑀𝐴𝑀 − 1⬚,  𝐵̄ = 𝑀𝐵, changes the differential Riccati 

equation (28) into 

( )

1

1
1 1

1

( ) ( 1)

( 1) ( 1)

( 1) , ( )

T T T

T T T T T

T T
f k f
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− −

−
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− −

= + +

− + + +

 + =

                                                                                             

(29) 

Multiplying the last equation from the left by TM −  and 

from the right by 1−M  produces  

       ( )

1 1 1

1
1 1

1

( ) ( 1)

( 1) ( 1)
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T T T T
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or 

( )
1

1

1

( ) ( 1) ( 1) ( 1)

( 1) , ( )
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f k f
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= + + − + + +

 + =

=

                 

(30) 

with     

      MkPMkPMkPMkP TT )()()()( 1 == −−     (31) 

The discrete-time optimal control in the new coordinates 

under the full-state feedback is given by 

( )

( )

1

0 0 0 0

( ( )) ( 1) ( 1) ( )

( 1) ( )

( 1) ( 1) ( )

( ) ( )
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+ = − +

= = =

  (32)                  

The optimal performance criterion in the new coordinates is 

( )( ) ( )
1

0

1

1
0 0 0 0 0 0

0 0 0

1
( 1) ( 1)

2

1
( ) ( )

2

1 1
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1
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2

k f
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(33) 

       The observer driven controller formula (4), using the 

reduced-order observer is modified into 
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(34) 

When an observer driven controller is used, the performance 

is 

( ) ( ) ( ) ( )

( ) ( )

1
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k f
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(35) 

Using (34) in (35), the performance criterion becomes   
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 (36)                                                                                                                                                              

Using notation 
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  (37)                   

𝛷(𝑘, 𝑘0) is the transition matrix of the augmented discrete-

time system. The solution for the augmented vector [
𝑧(𝑘)
𝑒2(𝑘)

] 

is  

     ( )
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  (38)                                    

After some algebra, it can be shown that the infinite sum (38) 

can be evaluated along trajectories of the augmented discrete-

time linear system (34) via the solution of the following 

difference Lyapunov equation [10] 

       

( ) ( ) ( ) ( ) ( )

( )
1

1 1 1 1

0

0 0

T

T
k f

f

k k k k k

M P M
k

− −

= + + + + +

 
=  

  

P A P A R

P
  (39)                                  

The solution matrix  ( )kP  is appropriately partitioned   

                        
11 12

12 22

( ) ( )
( )

( ) ( )T

P k P k
k

P k P k

 
=  

 
P                            (40) 

Performing the corresponding block matrix multiplications in 

(39), using the expressions for ( )kA  and ( )kP , a system of 

three algebraic equations is obtained 

   

11 11

11

1
11

( ) ( ( 1)) ( 1)( ( 1))

( 1) ( 1)

( )

T

T

T
f k f

P k A BF k P k A BF k

P Q F k RF k

P k M P M− −

= − + + − +

− + + + +

=

      (41)                 

12

11 2 12 22 1 12

2 12

( ) ( ( 1))

( 1) ( 1) ( 1)( )

( 1) ( 1), ( ) 0

T

T
f

P k A BF k

P k BF k P k A K A

F k RF k P k

= − +

  + + + + − 

− + + =

  (42)   

22 22 1 12 22 22 1 12

2 11 2 2 2

22 1 12 12 2

2 12 22 1 12 22

( ) ( ) ( 1)( )

( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( 1) ( 1)

( 1) ( 1)( ), ( ) 0

T

T T T

T T

T T
f

P k A K A P k A K A

F k B P k BF k F k RF k

A K A P k BF k

F k B P k A K A P k

= − + −

+ + + + + + +

+ − + +

+ + + − =

  (43) 

Equation (41) is the difference Riccati equation equal to the 

original difference Riccati equation (28), which can be 

established when the optimal feedback gain given by 𝐹̄(𝑘 +
1) = (𝑅 + 𝐵̄𝑇𝑃11(𝑘 + 1)𝐵̄)

−1𝐵̄𝑇𝑃11(𝑘 + 1)𝐴̄ is plugged 

into  (41) producing 

   ( )
11 11

1

11 11 11

1
11

( ) ( 1)

( 1) ( 1) ( 1)

( )

T

T T T

T
f k f

P k A P k A Q

A P k B R B P k B B P k A

P k M P M

−

− −

= + +

− + + + +

=

   (44) 

With the optimal gain equation (42) becomes 

12 12 22 1 12 12( ) ( ( 1)) ( 1)( ), ( ) 0opt T
fP k A BF k P k A K A P k= − + + − =      

(45) 

Note that the remaining terms in (42) cancel out. Since 

matrices 𝐴22 − 𝐾1𝐴12 and  𝐴̄ − 𝐵̄𝐹̄𝑜𝑝𝑡(𝑘 + 1)  are 

asymptotically stable feedback matrices, the homogeneous 

difference equation (45), with the terminal condition 

𝑃12(𝑘𝑓) = 0 , has the unique solution 𝑃12(𝑘) = 0 for all k. 

Using 𝑃12(𝑘) = 0 in equation (43) produces the difference 

Lyapunov equation 

        
( )

22 22 1 12 22 22 1 12

2 11 2 22

( ) ( ) ( 1)( )

( ) ( 1) ( ), ( ) 0

T

T T
f

P k A K A P k A K A

F k R B P k B F k P k

= − + −

+ + + =
(46) 
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With the knowledge of 𝑃11(𝑘) and 𝑃22(𝑘)  obtained from (41) 

and (46),  the expression for the performance criterion under 

the discrete-time reduced-order observer-driven optimal 

controller is obtained as follows 

0 0

0

2 0 2 0

0 11 0 0

2 0 22 0 2 0

0 11 0 0 2 0 22 0 2 0

0 0 0 2 0 22 0 2 0

( ) ( )1ˆ
( )

( ) ( )2

( ) ( ) 0 ( )1

( ) 0 ( ) ( )2

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

1

2

T

opt

T

T T

T T T

z k z k
J k

e k e k

z k P k z k

e k P k e k

z k P k z k e k P k e k

x k M P k Mx k e k P k e k

   
=    

   

     
=      

     

= +

= +

=

P

0 0 0 2 0 22 0 2 0

2 0 22 0 2 0

1
( ) ( ) ( ) ( ) ( ) ( )

2

1 ˆ
( ) ( ) ( )

2

T T

opt T opt loss
red

x k P k x k e k P k e k

J e k P k e k J J

+

= + = +

(47)                                                                                                                                         

From (47), the optimal performance degradation when the 

reduced-order observer is used (compared to the case when a 

full-state optimal feedback controller is implemented) is 

given by  

                  )()()(
2

1~̂
0202202 kekPkeJ Tloss

red =                   (48) 

with )( 022 kP  obtained iteratively from (46).   

     The performance degradation can be expressed in the 

original coordinates using formulas (19)-(23), which leads to 

( )

( )

1 0

0 0 0

2 0 1

0

2 0 1 0

1 0

2 0 2 0 2 0 2 0 2 0 1 0

1 1 0 2 0

( )
( ) ( ) ( )

( )

( )
( ) ( )

( )

ˆˆ( ) ( ) ( ) ( ) ( ) ( ))

ˆ( ) ( )

z k C
z k Mx k x k

z k C

Cx k
z k C x k

C x k

e k z k z k z k q k K y k

C K C x k q k

   
= = =   

  

 
=  = 

 

= − = − +

= − −

(49) 

and   

𝐽𝑟𝑒𝑑
𝑙𝑜𝑠𝑠 =

1

2
((𝐶1 − 𝐾1𝐶)𝑥(𝑘0) − 𝑞̂2(𝑘0))

𝑇
𝑃22(𝑘0) 

   × ((𝐶1 − 𝐾1𝐶)𝑥(𝑘0) − 𝑞̂2(𝑘0))      (50) 

      The system initial condition (0)x  and the reduced-order 

observer initial condition 𝑞̂2(0)  determine the reduced-order 

observer error at the initial time, that is,   𝑒2(0) =
(𝐶1 − 𝐾1𝐶)𝑥(0) − 𝑞̂2(0), where 𝑥(0) is in general unknown, 

and 𝑞̂2(0) is chosen by the control designer. 

       When the state initial condition )0(x is exactly known, 

the reduced-order observer initial condition, should be 

selected using formula (49) as  

( )2 1 1 2 2
ˆ (0) (0) (0) 0, ( ) 0, 0q C K C x e e k k= −  = =        

                    (51) 

This selection makes the performance loss identical to zero, 

so that 𝐽𝑛𝑒𝑤
𝑜𝑝𝑡

= 𝐽𝑜𝑝𝑡.  The system initial condition 𝑥(0) is in 

general unknown or even not measurable at all, and only the 

output signal at the initial time is available. Hence, the 

following relationship exists 𝑦(0) = 𝐶𝑥(0). This equality 

gives 𝑐 < 𝑛 equations for 𝑛 unknowns of the vector 𝑥(0), so 

that the  least-square method [12] can be used  to determine a 

rational choice for the reduced-order observer initial 

condition, as suggested in [13], see also [14]. The least square 

method starts with 

  𝐶𝑥(𝑘) = 𝑦(𝑘)  ⇒  𝑥(𝑡) = (𝐶𝑇𝐶)#𝐶𝑇𝑦(𝑘)  
       ⇒  𝑥(0) = (𝐶𝑇𝐶)#𝐶𝑇𝑦(0)              (52) 

where #  stands for the generalized inverse [12]. Equation 

(52) produces the following expression for the initial 

condition of the discrete-time reduced-order observer 

 

                 𝑞̂2𝐿𝑆(0) = (𝐶1 − 𝐾1𝐶)(𝐶
𝑇𝐶)#𝐶𝑇𝑦(0)       (53) 

 

      In Section IV, we will show via simulation that formula 

(53) produces much more superior results for the real physical 

system, an aircraft.   

IV. AN AIRCRAFT OPTIMAL LQ CONTROLLER 

DRIVEN BY A REDUCED-ORDER OBSERVER 

A state space model of the linearized lateral dynamics of a F-

16 aircraft pitch rate control system can be found in [15]. The 

model is discretized using MATLAB and its zero-order hold 

with the sampling period equal to 05.0=sT .   The weighted 

matrices  are selected as 

𝑄 = 𝐼5  𝑅 = 1,   𝑃𝑘𝑓 = [
0 0
0 0

] 

Matrix 𝐶1 is chosen as 

𝐶1 = [
1 0 0 0 0
0 0 1 0 0

] 

such as the augmented matrix   








1C

C
   is nonsingular.   The 

system initial condition is set to 𝑥(0) =
[1 0 −1 1 −1].  The reduced-order observer 

eigenvalues were set at 𝜆𝑜𝑏𝑠
𝑟𝑒𝑑 = [−0.1 0.1].  We have 

experimented with several choices of the reduced-order 

observer initial conditions since they can be chosen arbitrary 

by the control engineer. Using a simple choice  Tq 11)0(ˆ
2 =

, we have obtained large optimal performance losses, see 

Table I. The steady state value was at 𝑘𝑓 = 154 is 𝐽𝑜𝑝𝑡 =
1

2
𝑥𝑇(154)𝑃(154)𝑥(154) = 270.6073. The initial condition 

for 𝑞̂2(0) obtained using the least square formula (53) is 

𝑞̂2(0) = [−2.7432 −5.0025]𝑇. This initial condition 

resulted in much better values for the optimal performance 

loss, see Table II. 

It can be seen from Tables I and II that the use of the least 

square formula (53) for the reduced-order observer initial 

conditions considerably reduces the optimal performance 

degradation. 
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  TABLE I 
THE OPTIMAL PERFORMANCE AND ITS LOSS WHEN ALL INITIAL CONDITION 

ARE 𝑞̂2(0) = [1 1]𝑇. THE SECOND COLUMN IS  𝐽𝑜𝑝𝑡 =
1

2
𝑥𝑇(𝑘𝑓)𝑃(𝑘𝑓)𝑥(𝑘𝑓), THE THIRD COLUMN REPRESENTS THE VALUES OF  

𝐽𝑟𝑒𝑑
𝑙𝑜𝑠𝑠 =

1

2
𝑒2
𝑇(𝑘𝑓)𝑃22(𝑘𝑓)𝑒2(𝑘𝑓), AND THE FOURTH COLUMN IS  𝐽𝑙𝑜𝑠

𝑙𝑜𝑠𝑠/𝐽𝑜𝑝𝑡[%]. 

Discrete 

time 

        2 3         4 

5=fk  13.0236 0.4036 3.1 

10=fk  51.9208 5.9967 11.6 

12=fk  79.2234 19.4848 24.6 

14=fk  109.7235 40.7463 37.1 

17=fk  153.2849 76.9315 50.2 

20=fk  187.9256 105.1011 55.9 

30=fk  245.0481 128.8692 52.6 

50=fk  267.6078 119.6078 44.7 

100=fk  270.5915 119.0581 44.0 

150=fk  270.6072 119.0560 44.0 

 

TABLE II 
THE OPTIMAL PERFORMANCE AND ITS LOSS WHEN  2

ˆ (0)q IS OBTAINED 

FROM THE LEAST SQUARE FORMULA (57). THE SECOND COLUMN IS   𝐽𝑜𝑝𝑡 =
1

2
𝑥𝑇(𝑘𝑓)𝑃(𝑘𝑓)𝑥(𝑘𝑓), THE THIRD COLUMN REPRESENTS THE VALUES OF  

𝐽𝑟𝑒𝑑
𝑙𝑜𝑠𝑠 =

1

2
𝑒2
𝑇(𝑘𝑓)𝑃22(𝑘𝑓)𝑒2(𝑘𝑓), AND THE FORTH COLUMN IS  𝐽𝑙𝑜𝑠

𝑙𝑜𝑠𝑠/𝐽𝑜𝑝𝑡[%] 

Discrete 

time 

            2            3       4 

5=fk  13.0236 0.1209 0.9 

10=fk  51.9208 2.6277 5.1 

12=fk  79.2234 5.8355 7.4 

14=fk  109.7235 10.2306 9.3 

17=fk  153.2849 17.0681 11.1 

20=fk  187.9256 22.0802 11.7 

30=fk  245.0481 26.1124 10.7 

50=fk  267.6078 24.6883 9.2 

100=fk  270.5915 24.5398 9.1 

150=fk  270.6072 24.5395 9.1 

 

V. CONCLUSIONS 

      The performance loss formula was derived for the case 

when the discrete-time finite-horizon linear-quadratic optimal 

controller uses a discrete-time reduced-order observer.    

Different choices of the reduced-order observer initial 

conditions were considered.  The presented least square 

formula for the choice of the observer initial conditions 

produced the best results by providing the smallest optimal 

performance loss. A challenging future research problem will 

be to design reduced-order observers and corresponding LQ 

optimal controllers using the two-stage design technique 

developed in [16]-[19] that can lead to simplification of the 

presented methodology and a better understanding of the 

results obtained. 
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