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Abstract— This paper proposes a new approach to online
state and parameter estimation for affine nonlinear systems.
Unlike conventional methods limited to specific classes of non-
linear systems and reliant on stringent excitation conditions, the
proposed approach uses multiplier matrices and a data-driven
concurrent learning method to develop an adaptive observer
for affine nonlinear systems. Through rigorous Lyapunov-based
analysis, the technique is proven to guarantee locally uniformly
ultimately bounded state estimates and ultimately bounded
parameter estimation errors. Additionally, under certain exci-
tation conditions, the parameter estimation error is guaranteed
to converge to a given neighborhood of the origin.

I. INTRODUCTION

In many real-world control systems, the limited availability
of sensor information and unknown model parameters make
effective control of the system difficult, if not impossible.
While adaptive control methods typically rely on full state
measurement to generate parameter estimates, techniques
that simultaneously estimate the system states and parameters
are also available for nonlinear systems, albeit for specific
classes of nonlinear systems [1]–[3]. This motivates the
need for nonlinear observer techniques for simultaneous state
and parameter estimation for a broader class of nonlinear
systems.

In nonlinear state observers like the extended Luenberger
nonlinear observers in [4]–[8], restricted to a specific class
of nonlinear systems, incremental multiplier matrices are
employed to characterize the nonlinearities in the system
dynamics, and observer gain matrices are then obtained by
solving linear matrix inequalities [7]–[9] using semi-definite
programming. The drawback of extended Luenberger nonlin-
ear observers is the need to compute bounds on the Jacobian
matrices of unknown vector fields that model the system.
Methods such as [10] and [11] offer solutions to challenges
in calculating such Jacobian bounds and suitable multiplier
matrices. However, due to their separation of measurable and
unmeasurable signals and reliance on convex optimization
techniques to formulate an explicit matrix polynomial form
of the gradient, methods such as [10] and [11] are difficult
to apply for simultaneous state and parameter estimation in
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nonlinear systems. Notwithstanding, the convergence proper-
ties of extended Luenberger state observers can be leveraged
to generate precise state estimates for parameter estimation,
even when only partial state measurements are available from
the output [9].

Parameter estimation methods that rely on persistent exci-
tation (PE) [12]–[14] and finite excitation [15]–[18] have also
been studied extensively in the literature for systems where
all state variables can be measured. Recent research efforts
have focused on developing adaptive observers that can
simultaneously estimate the state and parameters of nonlinear
systems [1]–[3], [19]–[23]. However, most of these methods
are also restricted to a specific class of nonlinear systems
and rely on assumptions that may be difficult to satisfy
in practice, such as stringent PE conditions [1]–[3], [22],
[23]. Methods such as those developed in [1] and [3], while
effective, are restricted to dynamical systems that are of the
Brunovsky canonical form. Similarly, adaptive observers that
use dynamic regressor extension and mixing (DREM) rely on
the existence of a cascade form via a coordinate change for
which a linear regression relation exists between the system
states and unknown parameters [22].

Unlike the existing simultaneous state and parameter es-
timation methods described above, limited to narrow class
systems, such as systems in Brunovsky form or cascade
form, this paper presents a novel method that achieves
simultaneous state and parameter estimation for a broader
class of nonlinear systems. The key idea is to leverage the
advantages of the multiplier matrix approach for Luenberger
observer design, which has been proven to yield asymptotic
convergence of state estimation errors [7], [9], and build
upon concurrent learning (CL) frameworks [1], [3], which
utilizes recorded data (stored in what is commonly called a
history stack) to estimate parameters with high accuracy. In
contrast with methods proposed in results such as [24]–[26],
the developed method does not require any restrictions on
the form and rank of the C measurement matrix or impose
observability conditions.

The rest of the paper is organized as follows: Section II
contains the problem formulation, Section III presents the
state observer design, Section IV presents the parameter
estimator design, Section V contains stability analysis of
the developed method, and Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider a nonlinear dynamical system of the form

ẋ = Y (x)θ + g(x)u, y = Cx, (1)
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where x ∈ Rn and u ∈ Rm denotes the system state
and the control input respectively, θ ∈ Θ ⊂ Rp is a
vector of unknown parameters, C ∈ Rq×n is the output
matrix, and y ∈ Rq is the measured output. The functions
Y : Rn → Rn×p and g : Rn → Rn×m, denote the regressor
and the control effectiveness, respectively. Consistent with
the literature on state and parameter estimation, the control
signal u and the system state x are assumed to be bounded.

The objective is to develop a real-time state observer for
online state estimation of x using input u and output y along-
side a parameter estimation scheme, which uses memory
from recorded data to provide parameter estimates denoted
as θ̂. The following assumption is necessary to facilitate the
development and analysis of the method presented in this
paper.

Assumption 1: The functions Y and g are known, their
derivatives exist on the compact set C ⊂ Rn containing the
origin and satisfy the element-wise bounds

(Ky1
)j,k ≤

(
∂(Y (x))j,i
∂(x)k

)
θi ≤ (Ky2

)j,k, (2)

(Kg1)j,k ≤
(
∂(g(x))j,l
∂(x)k

)
ul ≤ (Kg2)j,k, (3)

for all x ∈ C, u ∈ U , θ ∈ Θ, i = 1, . . . , p, j, k = 1, . . . , n,
and l = 1, . . . ,m, where (·)i, (·)j , (·)i,k, and (·)j,k denote
the element of the array (·) at the index indicated by the
subscript.

Remark 1: The conditions stated in Assumption 1 are
commonly required in several observer design schemes (see,
e.g., [5], [7], [27], [28]).

Sufficient conditions involving multiplier matrices that
characterize the affine system will be presented in the fol-
lowing section, along with the design of the state observer.

III. STATE OBSERVER DESIGN

This section presents the development of a state observer
that generates estimates of x by employing an extended
Luenberger-like observer. To facilitate the observer design,
the nonlinear dynamics described in (1) is expressed as

ẋ = Ax+ Fθ(x, θ) +Gu(x, u), y = Cx, (4)

where A = (Ky1 +Kg1), Fθ(x, θ) = −Ky1x + Y (x)θ and
Gu(x, u) = −Kg1x+

∑N
i=1 gi(x)(u)i. Assumption 1 implies

that the derivatives of Fθ and Gu satisfy the element-wise
inequalities

0 ≤ ∂(Fθ(x))j
∂(x)k

≤ (Ky2
)j,k − (Ky1

)j,k, (5)

0 ≤ ∂(Gu(x, u))j
∂(x)k

≤ (Kg2)j,k − (Kg1)j,k, (6)

for all j, k = 1, . . . , n. Using the derivative bounds, a state
observer with three correction terms is designed as

˙̂x = Ax̂+Fθ[x̂+ l1(y−Cx̂), θ̂] +Gu[x̂+ l2(y−Cx̂), u]

+ L(y − Cx̂), (7)

where x̂ ∈ Rn is the estimate of x, l1 ∈ Rn×q , l2 ∈ Rn×q ,
and L ∈ Rn×q are observer gains, l1(y − Cx̂) and l2(y −
Cx̂) are nonlinear injection terms and L(y−Cx̂) is a linear
correction term. With the state estimation error defined as
x̃ := x− x̂, the estimation error dynamics is given by

˙̃x = (A−LC)x̃+Fθ(x, θ̂)+Gu(x, u)−Fθ[x̂+l1(y−Cx̂), θ̂]

−Gu[x̂+ l2 (y − Cx̂) , u] + Fθ(x, θ̃). (8)

where Fθ(x, θ̃) := Fθ(x, θ) − Fθ(x, θ̂). Let the parameter
estimation error be defined as θ̃ := θ − θ̂. To facilitate
the design of the state observer, the following assumption
is made about the set Θ, which contains θ.

Assumption 2: There exist a known constant θ ∈ R such
that ∥θ∥ ≤ θ.

Remark 2: Assumption 2 is used to implement a parame-
ter projection algorithm that ensures θ̂ stays within a bounded
convex set Θ ⊂ Rp := {θ̂ | h(θ̂) ≤ 0},where h(θ̂) :=

θ̂Tθ̂ − θ
2

and ∇θ̂h(θ̂) := 2θ̂ (cf. [12, Example 4.4.2]).
Let D ⊂ {x̃ ∈ Rn : x, x̂ ∈ C}, the difference functions

between the uncertain system components and their estimates
can then be characterized using the difference functions
ϕy : R≥0 × D × Θ → Rn and ϕg : R≥0 × D → Rn,
defined as ϕy(t, x̃, θ̂) := Fθ(x, θ̂)−Fθ[x̂+l1(y−Cx̂), θ̂], and
ϕg(t, x̃) := Gu(x, u)−Gu[x̂+ l2(y − Cx̂), u], respectively.
The observer error dynamics in (8) can then be expressed as

˙̃x = (A− LC) x̃+ ϕy(t, x̃, θ̂) + ϕg(t, x̃) + Fθ(x, θ̃). (9)

According to the differential mean value theorem (DMVT)
[29, Theorem 2.1], provided Assumption 1 and Assumption 2
hold, the difference functions ϕy and ϕg are guaranteed to
be bounded as

Ky1
(In−l1C)x̃ ≤ ϕy(t, x̃, θ̂) ≤ Ky2

(In−l1C)x̃, and (10)

Kg1(In − l2C)x̃ ≤ ϕg(t, x̃) ≤ Kg2(In − l2C)x̃. (11)

where Ky1 = 0n×n, Ky2 = Ky2 − Ky1 , Kg1 = 0n×n,
Kg2 = Kg2 − Kg1 and the notation In represents an
n by n identity matrix. To establish the stability of the
state estimation error dynamics, it suffices to rely on the
sector information provided by the compact set C, which is
defined by the Jacobian bounds presented in (5), and (6) and
constraints ϕy , and ϕg . Specifically, the inequalities in (10)
and (11) can be used to obtain the following bounds

[ϕy(t,x̃,θ̂)]
T[ϕy(t,x̃,θ̂)−Ky2

(In−l1C)x̃] ≤ 0, and (12)

[ϕg(t, x̃)]
T[ϕg(t, x̃)−Kg2(In − l2C)x̃] ≤ 0, (13)

, which can be expressed in their quadratic forms as[
x̃
ϕy

]T[In−l1C 0
0 In

]T
My

[
In−l1C 0

0 In

][
x̃
ϕy

]
≤ 0, and

(14)[
x̃
ϕg

]T[In−l2C 0
0 In

]T
Mg

[
In−l2C 0

0 In

][
x̃
ϕg

]
≤ 0, (15)
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with their corresponding multiplier matrices designed as

My =

[
0 −KT

y2
−KT

y1

2

−Ky2
−Ky1

2 In

]
, and (16)

Mg =

[
0 −KT

g2
−KT

g1

2

−Kg2
−Kg1

2 In

]
. (17)

A Lyapunov-based analysis that uses the above inequalities
to establish boundedness of the state estimation error for all
t ∈ R≥0 is presented in Section V.

IV. PARAMETER ESTIMATOR DESIGN

The parameter estimator to be designed in this section
relies on the fact that the difference between the state
estimates at time t and time t − ς , where ς ∈ R+ denotes
the time delay, can be expressed as an affine function of the
parameters θ and a residual that reduces with reducing state
estimation errors as described in the following Lemma.

Lemma 1: If x, x̂ ∈ C and if Assumption 1 holds, for
all ς ≥ 0 and for all t ≥ ς , the state estimates satisfy
x̂(t) − x̂(t − ς) = Ŷ(t)θ + Ĝu(t) + E(t), where Ŷ(t) :=∫ t

t−ς
Y (x̂(τ))dτ , Ĝu(t) :=

∫ t

t−ς
g(x̂(τ))u(τ)dτ , and E(t) =

O
(
supσ∈[t−ς,t] ∥x̃(σ)∥

)
.

Proof: Integrating the dynamics in (1) yields

x(t)− x(t− ς) =

∫ t

t−ς

Y (x(τ))θ + g(x(τ))u(τ)dτ (18)

By adding and subtracting x(t) and x(t− ς), the difference
x̂(t)− x̂(t− ς) can be expressed as

x̂(t)− x̂(t− ς) = −x̃(t) + x̃(t− ς) + x(t)− x(t− ς). (19)

Substituting from (18), adding and subtracting the integral∫ t

t−ς
Y (x̂(τ))θ + g(x̂(τ))u(τ)dτ , and simplifying yields

x̂(t)− x̂(t− ς) =

∫ t

t−ς

Y (x̂(τ))θdτ+

∫ t

t−ς

g(x̂(τ))u(τ)dτ

− x̃(t) + x̃(t− ς) +

∫ t

t−ς

Ỹ (x(τ), x̂(τ))θdτ

+

∫ t

t−ς

g̃(x(τ), x̂(τ))u(τ)dτ (20)

where Ỹ (x(τ), x̂(τ)) := Y (x(τ)) − Y (x̂(τ)) and
g̃(x(τ), x̂(τ)) := g(x(τ))g(x̂(τ)). If x, x̂ ∈ C and Assump-
tion 1 holds, then the DMVT can be invoked to obtain
x̂(t) − x̂(t − ς) = Ŷ(t)θ + Ĝu(t) + E(t) where the residual
term satisfies E(t) = O

(
supσ∈[t−ς,t] ∥x̃(σ)∥

)
.

Lemma 1 implies that the parameter estimation error at any
time t can be expressed as Ŷ(t)θ̃(t) = x̂(t) − x̂(t − ς) −
Ĝu(t)− Ŷ(t)θ̂(t)− E(t), which motivates the update law

˙̂
θ=


kθΓϕ, if θ̂Tθ̂ < θ

2
or if

θ̂Tθ̂=θ
2
and (kθΓϕ)

Tθ̂≤0(
Ip−Γθ̂θ̂T

θ̂TΓθ̂

)
kθΓϕ, otherwise

(21)

where ϕ(t) :=
∑N

i=1

(
Ŷ(ti)

1+κ∥Ŷ(ti)∥2

)T (
x̂(ti) − x̂(ti − ς) −

Ĝu(ti) − Ŷ(ti)θ̂), κ ∈ R>0 is the normalization gain, and
kθ ∈ R>0 is the CL gain. The matrix Γ ∈ Rp×p is the
least-squares gain matrix updated as

Γ̇=


β1Γ−kθΓ Ŷ(ti)

TŶ(ti)

1+κ∥Ŷ(ti)∥2
Γ, if θ̂Tθ̂ < θ

2
or if

θ̂Tθ̂=θ
2
and (kθΓϕ)

Tθ̂≤0
0 otherwise

(22)
where β1 ∈ R>0 is a constant adaptation gain. The update

law relies on the time delay ς , and a history stack H. The
history stack represents a set of piecewise constant functions
that can be expressed as

X̂ :=

 x̂(t1)−x̂(t1−ς)
...

x̂(tN )−x̂(tN−ς)

,Ŷ :=

 Ŷ(t1)...
Ŷ(tN )

,Ĝu:=

 Ĝu(t1)...
Ĝu(tN )

 (23)

where X̂ ∈ RnN , Ŷ ∈ RnN×p and Ĝu ∈ RnN . The integral
terms in the adaptive update law can be calculated as Ŷ(t) =
ÎY (t)−ÎY (t − ς) and Gu(t) = Îgu(t) − Îgu(t − ς), where
ÎY (t) =

∫ t

0
Y (x̂(τ))dτ and Îgu(t) =

∫ t

0
g(x̂(τ))u(τ)dτ , are

computed by solving

˙̂
IY = Y (x̂) and ˙̂

Igu = g(x̂)u (24)

starting from the initial conditions IY,0 = 0n×p and Igu,0 =
0n×1. Using Lemma 1, the parameter estimation error dy-
namics can be expressed as

˙̃
θ=−kθΓ

N∑
i=1

Ŷ(ti)TŶ(ti)
1+κ∥Ŷ(ti)∥2

θ̃−kθΓ
N∑
i=1

Ŷ(ti)TE(ti)
1+κ∥Ŷ(ti)∥2

. (25)

It is clear from (25) that for the parameter estimation error
to be bounded, the matrix

∑N
i=1

Ŷ(ti)
TŶ(ti)

1+κ∥Ŷ(ti)∥2
needs to be

positive definite, which can be ensured if the trajectories
are sufficiently informative and the data (x̂(ti) − x̂(t −
ς), Ŷ(ti), Ĝui

)Ni=1 stored in the history stack H are recorded
carefully. The following assumption formalizes this require-
ment.

Assumption 3: For a given N ∈ N, there exist a set of time
instances {ti}Ni=1 such that λmin

(∑N
i=1

Ŷ(ti)
TŶ(ti)

1+κ∥Ŷ(ti)∥2

)
= c >

0.
In the following, a history stack that meets the eigenvalue

condition in Assumption 3 is called full rank.
Since the convergence rate of the parameter estimation

errors depends on the lower bound c on the minimum
eigenvalue, a minimum eigenvalue maximization algorithm
is utilized for the selection of the time instances {ti}Ni=1 (see,
for example, [3]). The algorithm presented in Algorithm 1
replaces an existing data point

(
x̂i − x̂i−ς , Ŷi, Ĝui

)
, with a

new data point
(
x̂∗ − x̂∗−, Ŷ∗, Ĝ∗u

)
, for some i ∈ 1, . . . , N ,

where x̂∗ − x̂∗− := x̂(t) − x̂(t − ς), Ŷ∗ := Ŷ(t) and
Ĝ∗u := Ĝu(t), only if the condition

λmin(
∑
i ̸=j

σiŶT
i Ŷi + σjŶT

j Ŷj)
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<
λmin

(∑
i ̸=j σiŶT

i Ŷi + σ∗ŶTŶ∗
)

(1 + δ)
(26)

holds. Here, λmin(·) denotes the minimum eigenvalue of a
matrix, δ is a constant that can be adjusted, σi :=

1
1+κ∥Ŷi∥2

,
σj := 1

1+κ∥Ŷj∥2
, and σ∗ := 1

1+κ∥Ŷ∗∥2
. The availability

of accurate state estimates is required for precise parame-
ter estimation. However, the initial history stack, recorded
during transients, may contain inaccurate data, requiring a
purge of the history stack once more accurate state estimates
become available. In such cases, newer state estimates are
preferred, subject to the conditions of Theorem 1. A greedy
purging algorithm based on dwell time is employed to ensure
estimator stability while utilizing newer data. This algorithm
uses two history stacks: a main stack denoted as H and a
transient stack labeled G. The transient stack is filled until a
sufficient dwell time T has elapsed. Then, the main stack is
purged, and the transient stack is copied into the main stack.
This approach enables the use of newer, more accurate data
while maintaining estimator stability.

V. STABILITY ANALYSIS

In this section, stability analysis of the joint state and
parameter estimation architecture will be carried out using
Lyapunov methods.

A. Analysis of state observer

The following Theorem establishes local uniform ultimate
boundedness of the state estimation errors.

Theorem 1: Provided Assumption 1 and 2 hold, there
exists a constant symmetric positive definite matrix, P , and
three observer gains, l1, l2 and L, that satisfy the matrix
inequality,
(
(A−LC)

T
P

+P (A−LC)

)
+2αP P−(I−l1C)

T
(My)22 P−(I−l2C)

T
(Mg)22

P−(My)21(I−l1C) −(My)22 0
P−(Mg)21(I−l2C) 0 −(Mg)22

< 0,

(27)
then observer error in (8) is locally uniformly ultimately

bounded.
Proof: Consider the continuously differentiable candi-

date Lyapunov function, W : D → R defined as

W (x̃) := x̃TPx̃, (28)

which satisfies λmin(P )∥x̃∥2 ≤ W (x̃) ≤ λmax(P )∥x̃∥2.
Since P is a constant symmetric positive definite matrix, both
eigenvalues are positive. On the set, D, the orbital derivative
of the Lyapunov function along the trajectories of (8) can be
expressed as

Ẇ (x̃,t):=

 x̃
ϕf

ϕg

T(A−LC)
T
P+P (A−LC) P P
P 0 0
P 0 0

 x̃
ϕf

ϕg


+x̃TPFθ(x,θ̃)+Fθ(x,θ̃)Px̃. (29)

Provided the matrix inequalities in (27) is satisfied for
some constant α ∈ R+, the multiplier matrices and sector

Algorithm 1 Algorithm for Adaptive History Stack Observer. At
each time instance t, τ1 stores the last time an event occurred, τ2
stores the last time instance H was purged, λ stores the highest
minimum eigenvalue encountered so far, T denotes the dwell time,
λ∗ denotes some user selected eigenvalue threshold, t∗ denotes
some user selected sampling rate and ξ ∈ (0, 1] is a threshold
for purging.

Require: tf ∈ R≥t0 , t∗ ∈ R+, T ∈ R≥0, λ∗ ≥ 0
1: X̂ ← 0, Ŷ ← 0, Ĝu ← 0, τ1 ← 0, τ2 ← 0 ▷ Global

variables
2: λ← min(eig(Ŷ TŶ )), t0 ← 0, x̂0 ← x̂(t0), θ̂0 = θ̂(t0)
3: while t0 < tf do
4: integrate DDEs in (21), (22) and (24) over [t0, tf ]
5: if (t− τ1) ≥ t∗ then
6: if t ≥ ς then
7: stop integration, an event has occurred
8: j←argmaxi=1:N

{
min

{
eig

(
Ŷ TŶ −ŶT

i Ŷi+ŶTŶ
)}}

9: if max
i=1:N

{
min

{
eig

(
Ŷ TŶ −ŶT

i Ŷi+ŶTŶ
)}}
−λ≥λ∗

then
10: λ←max

i=1:N

{
min

{
eig

(
Ŷ TŶ −ŶT

i Ŷi+ŶTŶ
)}}

11: {Ŷi}nj
i=(j−1) ← Ŷ(t)

12: {Ĝui}
nj
i=(j−1) ← Ĝu(t)

13: {X̂i}nj
i=(j−1) ← x̂(t)− x̂(t− ς)

14: if G is not full then
15: add the data points to G
16: else
17: add the data points to G if (26) holds
18: end if
19: if min(eig(Ŷ TŶ )) ≥ ξλ then
20: if (t− τ2) ≥ T (t) then
21: H ← G, G ← 0, and τ2 ← t
22: if λ < min(eig(Ŷ TŶ )) then
23: λ← min(eig(Ŷ TŶ ))
24: end if
25: end if
26: t0 ← t, x0 ← x(t), θ̂0 ← θ̂(t)
27: IY,0 ← ÎY (t), Îgu,0 ← Îgu(t)
28: end if
29: end if
30: else
31: no event, keep on integrating the DDEs
32: end if
33: τ1 ← t ▷ Set this even if a new event is not detected
34: end if
35: no event, keep on integrating the DDEs
36: end while

conditions formulated in (14) and (15), the S-Procedure
Lemma [30], Assumption 1, and Assumption 2 can be used
to guarantee that the orbital derivative of W is bounded as
(cf. [9], [31])

Ẇ (x̃, t) ≤ −2αW (x̃) + 2λmax(P )F θ̃∥x̃∥, (30)

for all x̃ ∈ D, where max
x∈C
∥Fθ(x, θ̃)∥ ≤ F θ̃ for some

F θ̃ ∈ R+. Hence, the orbital derivative is bounded along
the trajectories of (9) as

Ẇ (x̃, t) ≤ −αW (x̃) ,∀x̃ ∈ D, ∥x̃∥ ≥ ξ > 0. (31)

where ξ =
2λmax(P )F θ̃

αλmin(P ) . Invoking [32, Thereom 4.18],
the state estimation error is locally uniformly ultimately
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bounded. And the ultimate bound on x̃ can be estimated
as lim supt→∞ ∥x̃∥ :=

√
λmax(P )
λmin(P ) ξ.

Remark 3: The observer design is only valid if the control
input remains bounded and the system trajectories remain
within the compact set C where the bounds on the Jacobians
in (5), and (6), respectively, are valid.

Remark 4: The matrix inequality in (27) can be reformu-
lated as a linear matrix inequality (LMI) using the typical
variable substitution method. Indeed, substituting L = P−1R
in (27), the matrix P and the observer gains L, l1 and l2 can
be obtained by solving the LMI
(

ATP+PA

−CTRT−RC

)
+2αP P−(I−l1C)

T
(My)22 P−(I−l2C)

T
(Mg)22

P−(My)21(I−l1C) −(My)22 0
P−(Mg)21(I−l2C) 0 −(Mg)22

< 0,

(32)
for P , R, l1and l2.

B. Analysis of Parameter Estimator

In order to rigorously analyze the convergence properties
of the parameter estimation error, a precise definition of
“finitely informative” and “persistently informative” data in
the history stack is presented below.

Definition 1: [33] The signal (x̂, u) is called finitely
informative (FI) if there exist time instances 0 ≤ t1 <
t2 < . . . < tN , for some finite positive integer N , such
that the resulting history stack is full rank and persistently
informative (PI) if, for any T ≥ 0, there exist time instances
T ≤ t1 < t2 < . . . < tN such that the resulting history stack
is full rank.
The subsequent theorem establishes that the parameter esti-
mation error θ̃ converges to a neighborhood of the origin if
Assumption 3 holds and the data are sufficiently informative,
as per Definition 1. To facilitate the analysis, given s in N,
let Hs denote the history stack that is active during the
time interval Is := {t | ρ(t) = s} containing the data{
(X̂si, Ŷsi, Ĝfusi

)
}
i=1,...,N

, where ρ : R≥0 → N denotes a

switching signal that satisfies initial condition ρ(0) = 1 and
for any time t in the domain of the signal, ρ(t) = j+1, where
j denotes the number of times the update H ← G has been
carried out over the time interval 0 to t. To also facilitate the
analysis and simplify notation, let Ψs : R≥0 → Rp×p and
Qs : R≥0 → Rn×p be defined as Ψs :=

∑N
i=1

ŶT
siŶsi

1+κ∥Ŷsi∥2
and

Qs :=
∑N

i=1
ŶT

siEsi

1+κ∥Ŷsi∥2
. Using this notation, the dynamics

of the parameter estimation error in (25) and (22) can be
expressed as

˙̃
θ = −kθΓΨsθ̃ − kθΓQs and Γ̇ = β1Γ− kθΓΨsΓ (33)

respectively. It is important to note that the functions Ψs

and Qs are piece-wise continuous. Thus, the trajectories of
(33) are defined in the sense of Carathéodory [3], [34]. Using
arguments similar to [1, Theorem 1], provided the conditions
of Theorem 1 are satisfied, and the states and state estimation
errors remain within the compact sets C and D, respectively,
over the time interval Is−1 in which the history stack was

recorded, then using the error bound developed in Lemma 1
the error terms can be bounded as

∥Esi∥ ≤ Lees,∀i ∈ {1, . . . , N},∀x̃ ∈ D, (34)

where es := supt∈Is−1
∥x̃(t)∥ and Le ∈ R+ is a constant.

Theorem 2: If the state and parameters of the system in
(1) are estimated using state and parameter estimators that
satisfy the conditions of Theorem 1 and Assumption 3, the
signal (x̂, u) is FI, H is populated using Algorithm 1, and
if the excitation lasts long enough for two purging events
(i.e. H3 is full rank), then the trajectories of the parameter
estimation error are ultimately bounded.

Proof: Consider the candidate Lyapunov function V :
Θ× R≥0 → R defined as,

V (θ̃, t) :=
1

2
θ̃TΓ−1(t)θ̃. (35)

Using arguments similar to those presented in [12, Sec-
tion 4.4.2], provided (3) holds and λmin{Γ(0)−1} > 0, the
update law in (22) ensures that the least squares update law
satisfies

ΓIp ≤ Γ (t) ≤ ΓIp,∀t ∈ R≥0 (36)

for some Γ,Γ ∈ R+, where Ip denotes a p × p identity
matrix. Applying the bound in (36), the candidate Lyapunov
function satisfies the following inequality

1

2Γ
∥θ̃∥2 ≤ V (θ̃, t) ≤ 1

2Γ
∥θ̃∥2,∀t ∈ R≥0. (37)

Using arguments similar to those presented in [12, Theo-
rem 4.4.1], the orbital derivative of V can be bounded as,
V̇s(θ̃, t) ≤ − 1

2a∥θ̃∥
2 + kθQs∥θ̃∥, where a := kθc +

β1

Γ
, c

is defined in Assumption 3 and Qs is a positive constant
such that Qs ≥ ∥Qs∥. Using the completion of squares, the
orbital derivative is then bounded for all t ∈ R≥0 as

V̇s(θ̃, t) ≤ −
1

4
a∥θ̃∥2,∀∥θ̃∥ ≥ ϱ(∥µ∥) (38)

where ϱ(∥µ∥) :=
√

Γ
Γ

(
4kθ

a

)
∥µ∥2 and µ :=

√
Qs. Hence,

the conditions of [32, Theorem 4.19] are satisfied, and it can
be concluded that (33) is input-to-state stable with state θ̃
and input µ. If Algorithm 1 is implemented and if the signal
(x̂, u) is FI, then there exists a time instance Ts, such that
for all t ≥ Ts, the history stack remains unchanged. And as
a result, using [32, Exercise 4.58], an ultimate bound on θ̃
can be estimated as

lim sup
t→∞

∥θ̃(t)∥ ≤ θ(Ts) :=

√
Γ

Γ

(
4kθQ(Ts)

a

)
. (39)

where Q(Ts) denotes a bound on residual error term Qs,
in the history stack H for all t ≥ Ts. The parameter
estimation error can be reduced by reducing the estimation
errors corresponding to the state estimates stored in the
history stack, which reduces Qs. The projection algorithm
and Theorem 1 imply the boundedness of all signals in the
closed loop for all t. Furthermore, Theorem 1 implies that
given any ε ∈ R+, the gain α can be selected large enough to
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ensure that x̃ has reached the ultimate bound before t = T1

and that the ultimate bound is smaller than ε so that e2 ≤ ε.
Since the history stack H3, which is active over the interval
I3, is recorded during the interval I2, the bounds in (34)
can be used to show Q3 = NLee2

2
√
κ
≤ NLeε

2
√
κ

. As such, if
(x̂, u) is FI with the excitation lasting long enough so that
H3 is full rank, then (39) implies that lim supt→∞ ∥θ̃(t)∥ ≤√

Γ
κΓ

(
2kθNLe

a

)
ε.

VI. CONCLUSION

An online joint state and parameter estimation scheme for
nonlinear systems using a multiplier matrix observer design
and an event-based implementation of concurrent learning
adaptive update laws is developed. Convergence properties of
the developed method are analyzed using Lyapunov methods
and validated through simulation, demonstrating local uni-
formly ultimately boundedness of the state estimation errors
and input-to-state stability of parameter estimation errors
under a finite informativity condition.

To avoid the need to compute exact Jacobian bounds
and allow for relaxed LMI conditions, future work will
involve developing a methodology for simultaneous state
and parameter estimation via exact Takagi-Sugeno tensor-
product models or polynomial rewriting of the error system,
as formulated in [10], [11].
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