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Abstract— It has been previously shown that a finite well-
mixed population of individuals imitating the highest earners
in a binary game can undergo perpetual fluctuations. However,
it remains unknown whether the fluctuations in the population
proportions of the two strategies persist as population size
grows. In this paper, we answer this question for an imitative
population with diagonal anticoordination matrices. We show
that the collection of Markov chains corresponding to the pop-
ulation dynamics is a family of generalized stochastic approx-
imation process for a good upper semicontinuous differential
inclusion. We additionally show that the differential inclusion
always converges to an equilibrium. This convergence, based
on the available results in the stochastic approximation theory,
implies that the lengths of the fluctuations in the population
proportions of the two strategies in a finite population of
imitators with diagonal anticoordination payoff matrices vanish
with probability one as population size grows. Furthermore,
taking the same steps for a population of imitators with
diagonal coordination payoff matrices results in a similar
conclusion, which is consistent with the previously reported
results for finite populations of imitators with coordination
payoff matrices.

I. INTRODUCTION

On a daily basis, individuals are involved in different
decision-making problems, such as whether to share news,
sign a petition, or buy a new product. In a variety of contexts,
it has been either assumed or reported that individuals are
mainly either best-responders or imitators [1]–[5]. Best-
responders go for a decision maximizing their instant benefit
while imitators follow the decision made by the highest earn-
ers. Whether individuals of either type reach a satisfactory
decision or undergo repetitive switching between available
options is important [6], [7].

As for finite populations of decision-makers, a finite
population of coordinators, those who benefit more from
coordinating with majority of others, reaches equilibrium
[8]. A finite population of anticoordinators, those who profit
by anticoordinating with majority of others will either equi-
libriate or fluctuate between to adjacent states [9], [10].
A heterogeneous population of coordinating and anticoor-
dinating, however, may equilibrate or undergo perpetual
fluctuations [11]. The long-term behaviour of a population
of individuals imitating the highest earners with arbitrary
payoff matrices was investigated in [12], [13]. It was shown
that the population may reach a satisfactory state, that is,
equilibrates, or may fluctuate.

Although studying the long-term behaviour of finite pop-
ulations of decision-makers gives detailed information on
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the population state, it has been found to be challenging.
Approximating the discrete population dynamics with their
associated mean dynamics is a way to simplify their analysis
[14]. The mean dynamics of the best-response update rule
are of differential inclusion form [15]–[19]. The associated
mean dynamics of the imitation update rules with continuous
switching probability are Lipschitz continuous and in some
cases reduce to replicator dynamics [14], [20]–[23].

How well does the analysis of the steady-state behaviour
of the mean dynamics reveal that of the discrete population
dynamics? In this regard, a large body of studies have been
dedicated to connecting the asymptotic behaviour of finite
populations with that of the associated mean dynamics when
the size of the population grows [24]–[28].

Recently we used these existing results to link the asymp-
totic behaviour of a finite heterogeneous population of
coordinators and anticoordinator with the associated mean
dynamics, a good upper semicontinuous (GUS) differential
inclusion [29]. Our analysis suggested that the reported
perpetual fluctuations in the population proportions of the
two strategies almost surely vanish with population size.
However, it remains an open problem whether the reported
fluctuations in a population of individuals imitating the
highest earners persist as population size grows. Particularly,
imitators may be more likely to fluctuate because it was
shown that populations of imitating individuals are less
likely to converge to an equilibrium [30].

To partly address this, we consider a finite well-mixed
population of individuals playing a repetitive binary game
asynchronously. All individuals have either diagonal coordi-
nation payoff matrices or anti-diagonal anticoordination pay-
off matrices, but not both within the same population. The
individuals imitate the highest earners in the population. First
we analyze an exclusive population of individuals with anti-
diagonal anticoordination matrices and show that the series
of the Markov chains corresponding to the discrete dynamics
are generalized stochastic approximation processes (GSAPs)
for a good upper semicontinuous differential inclusion. We
then obtain the Birkhoff center of the dynamical systems
induced by the differential inclusion which, based on the
work of Roth and Sandholm [28], contains the support
of the limit points of the invariant probability measures
of the GSAPs. Our analysis show that the lengths of the
reported fluctuations in the population proportions of the
two strategies [13] converges to zero with probability one.
We then analyze an exclusive population of individuals with
diagonal coordination matrices. Following similar steps, we
come to a similar conclusion, which is consistent with [13].

Our contribution is twofold: First, we obtain the associ-
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ated mean dynamics of discrete population dynamics where
individuals imitate the highest-earners and have either anti-
diagonal anticoordination or diagonal coordination payoff
matrices, but not both in the same population. The mean
dynamics are in the form of differential inclusions, unlike
many imitation games where the associated mean dynamics
are described by differential equations. Second, we show
that the reported perpetual fluctuations in the population
proportions of the two strategies in an exclusive population
with anti-diagonal anticoordination payoff matrices converge
to zero with probability one–Theorem 1 and Corollary 1.
We obtain a similar result for an exclusive population with
diagonal coordination payoff matrices–Theorem 2.

The main focus of the paper is on a population with anti-
diagonal anticoordination payoff matrices. In Section VI, we,
in brief, take the similar steps for a population with diagonal
coordination payoff matrices.

Notations

In this paper, we use the following notations. Scalars are
denoted by non-boldface letters. The calligraphic font X
is used to denote a set. By the notation ⟨xk⟩, we mean a
sequence of variables x0, x1, x2, . . .. The floor function is
denoted by ⌊x⌋. The notation |x| refers to the norm-1 if x
is a vector and refers to the set cardinality if x is a set.
The notation [a, b] − c implies [a − c, b − c]. We use the
notation 2X to denote the set of all subsets of the set X .
The notation [k] for a positive integer k means {1, 2, . . . , k}.
The support of a random variable X is denoted by RX . The
function 1(·) equals one for a positive argument and zero
otherwise. A vector with all elements equal to 1 (resp. 0)
with an appropriate dimension is denoted by 1 (resp. 0).
The notation 1

nZ
m denotes the set of m-dimensional vectors

whose components, when multiplied by n, are integers.

II. PROBLEM FORMULATION

We consider a population of N agents, labeled by
1, 2, . . . ,N. The agents repeatedly play a two-strategy game
and earn an accumulated payoff. A 2 × 2 payoff matrix
summarizes the four possible payoff gains of agent i against
another agent:

πi =

A B( )
A wi qi
B yi zi

, (1)

where wi, qi, yi, and zi correspond to strategy
pair A−against−A, A−against−B, B−against−A, and
B−against−B, respectively, where for example A−against−B
means player i plays strategy A and her opponent plays
strategy B. Over a discrete time sequence t ∈ 1

NZ≥0, which
is indexed by k where k = Nt, agents become activate
randomly and choose either strategy A or B and accordingly
receive an accumulated payoff. We assume a well-mixed
population where each agent plays against all other agents
including herself. At time index k when the population
proportion of strategy-A players equals xN, the accumulated

payoff or utility of agent i playing strategy si(k) ∈ {A, B}
is

Πi(k, x
N) =

{
(wi − qi)Nx

N + qiN if si(k) = A,

(yi − zi)Nx
N + ziN if si(k) = B.

(2)

At each time index k only one agent becomes active and gets
to revise her strategy according to imitation update rule, that
is, she switches to the strategy which is played by the highest
earners. More specifically, at time index k + 1, the strategy
of agent i active at time index k will be

si(k + 1) =

{
si(k) if si(k) ∈ M(k),

¬si(k) otherwise
(3)

where ¬A (resp. ¬B) is B (resp. A) and

M(k) = {sj(k)|j ∈ arg max
i∈{1,2,...,N}

Πi(k, x
N)} (4)

is the set of strategies which are played by the highest
earners at time index k. The set of strategies of the highest
earners M(k) equals {A} (resp. {B}) if the maximum
utility of A-players at time index k (resp. B-players) in the
population exceeds that of B-players (A-players). If both
strategies A and B are played by the highest earners at time
index k, then M(k) equals {A, B}. The imitation update rule
(3) dictates the same preferred strategies for all agents.

It is assumed that the payoff matrices of the population
are of anti-diagonal anticoordination type [13], i.e., for all
i ∈ [N]

wi < qi and zi < yi with wi = zi = 0. (5)

Agents who have the same payoff matrix build up a subpopu-
lation, and there are altogether p non-empty subpopulations.
The distribution of the population proportions over the total p
subpopulations is shown by ρ = (ρ1, . . . , ρp) where ρp ≥ 1

N
equals the population proportion of type p, i.e., the number
of agents in subpopulation p divided by the population size
N. At each index k, the population state, xN(k), is defined
as the distribution of the A-players over the p subpopulations,
i.e., xN = (xN

1 , . . . , x
N
p ), where xN

p represents the proportion
of A-players in subpopulation p, i.e., the number of A-players
divided by the total population size N. The state space then
equals X ss ∩ 1

NZ
p where X ss =

∏p
j=1[0, ρj ].

In view of (4), when no agents in subpopulation p play
strategy A (resp. B), i.e., xN

p = 0 (resp. xN
p = ρp), the

utility of subpopulation p for playing strategy A (resp.
B), −qpNx

N + qpN (resp. ypNx
N), is not accounted in

determining the highest earner. Thus, the set of strategies
of the highest earners given the population state xN equals
{A} if

max
p

(−qpNx
N+qpN)1(x

N
p ) > max

p
ypNx

N1(ρp − xN
p ), (6)

equals {B} if

max
p

(−qpNx
N+qpN)1(x

N
p ) < max

p
ypNx

N1(ρp − xN
p ), (7)

and equals {A, B} otherwise. Rearranging (6) (resp. (7))
yields an equivalent condition for A (resp. B) to be the
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preferred strategy of the population at the state xN, that is,
xN < α(xN) (resp. xN > α(xN)) where

α(xN) =
maxp qp1(x

N
p )

maxp qp1(xN
p ) + maxp yp1(ρp − xN

p )
. (8)

The population dynamics are defined by the evolution of the
population state xN over time governed by update rule (3)
and the activation sequence of the agents. The activation
sequence is assumed to be generated by a sequence of
random variables ⟨Ak⟩ where Ak is the active agent at
time index k with support RAk

= [N] and the distribution
P[Ak = i] = 1

N . The discrete imitation anticoordination
population dynamics are then defined as follows:

Definition 1: The following discrete time stochastic equa-
tion

xN(k + 1) = xN(k) +
1

N

(
Sk − u(xN)

)
1
(
u(xN)

)
ePk

(9)

defines the discrete anticoordination imitation population
dynamics where Pk and Sk are random variables with
supports RPk

= [p] and RSk
= {1, 2}, and distributions

P[Pk = p] = ρp and P[Sk = 1|Pk = p] = xN/ρp,
respectively, and the function u(xN) returns 1 (resp. 2) if
A (resp. B) is the only preferred strategy of the population
at state xN and 0 otherwise:

u(xN) =


1 if xN < α(xN),

0 if xN = α(xN),

2 if xN > α(xN),

(10)

and the vector ePk
is the Pkth column of the identity matrix

of size p.
In Definition 1, the random variable Pk is the label of the
active agent’s subpopulation at time index k, and the random
variable Sk equals 1 (resp. 2) if the strategy of the active
agent at time index k equals A (resp. B).

It has been shown that a finite population of imitators
with anti-diagonal anticoordination payoff matrices may
undergo perpetual fluctuations [12], i.e., ∃YN ⊆ X ss ∩
1
NZ

p s.t. ∀yN ∈ YN,∀k > 0∃T ≥ k s.t. xN(k + T ) =
yN. But whether these perpetual fluctuations persist as the
population size approaches infinity?

III. LINK TO THE SEMICONTINUOUS DYNAMICS

We are interested in the asymptotic behaviour of the
discrete imitation population dynamics as the population
size N approaches infinity. If we show that the dynamics
define a Markov chain, and the collection of these Markov
chains indexed by the population size is a GSAP for a GUS
differential inclusion, then, in view of [28, Theorem 3.5 and
Corollary 3.9], repeated as Theorem A 1, the Birkhoff center
associated with the semicontinuous differential inclusion
contains the support of the limit of the invariant probability
measures of the GSAPs. Hence, the perpetual fluctuations
in the population proportion of A-players vanish with prob-
ability one if the Birkhoff center consists of isolated points.

In view of the discrete imitation population dynamics (9),
the population state at index k+1 is completely determined

by the population state and the active agent at time index k.
The sequence ⟨xN(k)⟩k hence defines a Markov chain.

Definition 2: The anticoordination imitation population
dynamics Markov chain is defined as the Markov chain
⟨X

1
N

k ⟩k with transition probabilities

PrxN,yN = (11)

(ρp − xN
p )(2− u(xN))1

(
u(xN)

)
if yN = 1

N
ep + xN,

xN
p (u(x

N)− 1)1
(
u(xN)

)
if yN = − 1

N
ep + xN,

1−
(∑p

p=1(ρp − xN
p )(2− u(xN)) if yN = xN,

+xN
p (u(x

N)− 1)1
)
1
(
u(xN)

)
0 otherwise,

the state space X ss∩ 1
NZ

p, and the initial state X
1
N
0 = xN(0),

where and the vector ep is the pth column of the identity
matrix of size p.

Proposition 1: The sequence ⟨xN(k)⟩k is a realization of
the Markov chain ⟨X

1
N

k ⟩k.
We skip the proof of some results due to space limitation.
The next step is to show that the collection of ⟨⟨X

1
N

k ⟩k⟩N∈N
is a GSAP for a GUS differential inclusion where N is the
set of valid population size N such that the distribution of
the population proportions ρ remains unchanged. We claim
that ⟨⟨X

1
N

k ⟩k⟩N∈N is a GSAP for the following differential
inclusion:

Definition 3: The semicontinuous anticoordination imi-
tation population dynamics is defined by ẋ ∈ V(x), where
V : X ss → 2X ss and for all p ∈ [p]

Vp(x) =


{ρp − xp} if x < α(x),

[0, ρp]− xp x = α(x),

{−xp} otherwise,
(12)

where x = x⊤1.
When x belongs to the interior of X ss, where in every
subpopulation both A-players and B-players exist, i.e., x ∈∏p

j=1(0, ρj), we have 1(ρp − xN
p ) = 1(xN

p ) = 1, for all
p ∈ [p], and, in turn, α(x) equals to

α =
maxp qp

maxp qp +maxp yp
. (13)

It can be shown that the semicontinuous population dynam-
ics (12) is GUS under the following assumption.

Assumption 1: The subpopulation with the largest value
of qp also has the largest value of yp and its population
proportion, denoted by ρp, satisfies the following inequality

ρp > max{ maxi qi
maxi qi +mini yi

,
maxi yi

mini qi +maxi yi
}. (14)

Lemma 1: Under Assumption 1, the collection of
⟨⟨X

1
N

k ⟩k⟩N∈N is a GSAP for (12).
Now, the next step is to analyze the semicontinuous

population dynamics and obtain the Birkhoff center.
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IV. THE ANALYSIS OF THE SEMICONTINUOUS DYNAMICS

The next lemma reveals the steady state behaviour of the
semicontinuous population dynamics if the initial condition
x0 is not at the extreme point, i.e., x0 /∈ {0,ρ}.

Lemma 2: The semicontinuous anticoordination imitation
population dynamics (12) converge to αρ provided that the
initial condition x0 is not at the extreme points, i.e., x0 /∈
{0,ρ}. Otherwise, the population dynamics will converge
to either ρ, 0, or αρ.

Proof: Due to the space limitation, we just prove
the first part, i.e., x0 /∈ {0,ρ}. Depending on the initial
condition x0, two cases might happen: Case 1, where x0 ∈∏p

j=1(0, ρj), and Case 2, where x0 /∈
∏p

j=1(0, ρj). We split
the proof for Case 1 into two parts. Case 1 Part A. As long
as x(t) ∈

∏p
j=1(0, ρj), α(x(t)) equals α defined in (13).

Accordingly, the population dynamics read as ẋp = ρp−xp

if x < α, ẋp = −xp if x > α, and ẋp ∈ [0, ρp] − xp

otherwise, for p ∈ [p]. Assume that x0 = x⊤
0 1 < α

(resp. x0 = x⊤
0 1 > α). Then we have ẋp = ρp − xp

(resp. ẋp = −xp), for p ∈ [p], and, in turn, ẋ = 1 − x
(resp. ẋ = −x). The evolution of x(t) will be equal to
x(t) = (x0 − 1) exp(−t) + 1 (resp. x(t) = x0 exp(−t)).
Consequently, the value of Σxp reaches α in finite time
t1 = ln((1 − α)/(1 − x0)) (resp. t1 = ln(x0/α)). It is
obvious that in the finite interval t ∈ [0, t1], the value of
xp(t) remains in the open interval (0, ρp), and we have
α(x(t)) = α. Therefore, in this case the semicontinuous
population dynamics are piece-wise continuous with the
boundary x = α.

Case 1. Part B. Define h(x) = x⊤1 − α and Σ = {x ∈
Rp|h(x) = 0}. Based on (12), the dynamics for h(x) < 0
(resp. h(x) > 0) is ẋ = ρ − x (resp. ẋ = −x). Denote
the normal vector of h(x) by nh, which is equal to 1. The
sign of n⊤

h (ρ − x) = 1 − α is positive, and the sign of
n⊤

h (−x) = −α is negative, implying that h(x) = 0 is an
attracting sliding surface for the population dynamics (12),
i.e., once the state reaches h(x), it cannot leave it [31]. Up to
now, it has been shown that provided x0 ∈

∏p
j=1(0, ρj), the

population dynamics (12) converge to h(x) = 0 and remain
there afterwards. For the trajectory to remain at h(x) = 0,
the value of n⊤

h ẋ(t) must be equal to zero. The population
dynamics at h(x) read as ẋ ∈ [1−c(x)]ρ−x where c(x) ∈
[0, 1] satisfies n⊤

h ẋ = 0. This yields c(x) =
n⊤

h (ρ−x)

n⊤
h (ρ)

.

Substituting n⊤
h with 1 results in c(x) = 1 − α, and, in

turn, ẋ = αρ−x. The evolution of the population dynamics
reads as xp(t) =

(
xp(t1)−αρp

)
exp

(
− (t− t′)

)
+αρp for

p ∈ [p], which implies that x(t) converges to αρ.
Case 2. Depending on the value of α(x0), several cases

might happen. Case 2.1. α(x0) = α. A similar reasoning
provided in Case 1 can be applied here. Case 2.2. α(x0) ̸=
α. If x < α(x0) (resp. x > α(x0)), the population dynamics
read as ẋp = ρp − xp (resp. ẋp = −xp), for p ∈ [p]. Hence,
for p in [p] where xp(0) = 0 (resp. xp(0) = ρp), the value of
xp(t) will be greater than 0 (resp. lower than ρp) for t > ϵ,
where ϵ is an arbitrarily small positive value. But for the
remaining p in [p] where xp(0) = ρp (resp. xp(0) = 0), we

have xp(ϵ) = 0 (resp. xp(ϵ) = ρp). Therefore, depending
on the value of x0, we either have α(x(ϵ)) = α or not.
If α(x(ϵ)) = α, then the reasoning provided in Case 1 can
also be applied here. Otherwise, similar to the steps taken in
Case 1 Part A, it can be shown that the population dynamics
converge to h′(x) = x−α(x0) = 0 in some finite time, say
t′1. At time t′1, the sign of n⊤

h′(ρ − x) = 1 − α(x0) is
positive, and the sign of n⊤

h′(−x) = −α(x0) is negative.
This implies that the hyperplane h′(x) = 0 is an attracting
sliding surface, and once the state reaches h′(x), it cannot
leave it. Therefore, similar to Case 1 Part B, the population
dynamics at h′(x) = 0 read as ẋ = α(x0)ρ−x. This implies
that xp(t) = (xp(t

′
1)−α(x0)ρp) exp(−(t− t′1)) +α(x0)ρp

and consequently xp(t
′
1 + ε) will belong to (0, ρp) for all

p ∈ [p]. As a result, α(x(t′1 + ε)) will be equal to α, and,
in turn, the dynamics read as ẋ = ρ − x if α(x0) < α
or ẋ = −x if α(x0) > α. In either case, the states will
move from the hyperplane h′(x) = 0 toward the hyperplane
x⊤1− α. The rest of the proof will be similar to the steps
taken in Case 1. This completes the proof.

Proposition 2: The Birkhoff center of the semicontinuous
population dynamics equals Q = {0,ρ, αρ}.

V. THE ASYMPTOTIC BEHAVIOUR OF THE DISCRETE
POPULATION DYNAMICS

The main result of this paper is summarized in the
following theorem.

Theorem 1: Consider the discrete anticoordination imita-
tion population dynamics (9) for a population of size N.
Let µ

1
N be an invariant probability measure of the associ-

ated anticoordination imitation population dynamics Markov
chain (11). If Assumption 1 holds, then for every sequence
⟨ 1
N ⟩N∈N approaching zero, and for any open set containing

Q we have lim 1
N→0 µ

1
N (O) = 1.

Corollary 1: Under the conditions of Theorem 1 and
starting from a specific initial condition, with probability one
the length of the fluctuations in the population proportion of
strategy A players converges to zero, when the size of the
population approaches infinity.

VI. ANALYSIS OF A POPULATION WITH COORDINATION
PAYOFF MATRICES

In the preceding sections we analyzed the asymptotic
behaviour of a population of imitators with anti-diagonal
anticoordination payoff matrices. In this section, we would
like to investigate that of a population of imitators with
diagonal coordination payoff matrices, i.e.,

wi > qi and zi > yi with qi = yi = 0. (15)

In [13, Theorem 6], it has been proved that every discrete
imitation population dynamics with coordination payoff ma-
trices will equilibrate. Hence, we expect that Theorem A 1
will lead us to the same conclusion when the population size
approaches infinity.

For a population with diagonal coordination payoff ma-
trices, Equations (6) and (7) respectively change to the
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following:

max
p

wpNx
N1(xN

p ) > max
p

(−zpNx
N + Nzp)1(ρp − xN

p ),

(16)
max

p
wpNx

N1(xN
p ) < max

p
(−zpNx

N + Nzp)1(ρp − xN
p ).

(17)
In view of (16) and (17), the preferred strategy in a pop-
ulation with coordination payoff matrices is A (resp. B)
whenever the population proportion of strategy-A players
exceeds (resp. falls short of) α′(xN) where

α′(xN) =
maxp zp1(ρp − xN

p )

maxp zp1(ρp − xN
p ) + maxp wp1(xN

p )
. (18)

Definition 4: The following discrete time stochastic equa-
tion

xN(k + 1) = xN(k) +
1

N

(
Sk − u′(xN)

)
1
(
u′(xN)

)
ePk

(19)

defines the discrete coordination imitation population dy-
namics where Pk and Sk are defined in Definition 1, and
the function u′(xN) returns 1 (resp. 2) if A (resp. B) is the
only preferred strategy of the population at state xN and 0
otherwise:

u′(xN) =


2 if xN < α′(xN),

0 if xN = α′(xN),

1 if xN > α′(xN).

(20)

The population dynamics Markov chain (11) remains un-
changed, except that u(xN) is replaced by u′(xN).

Definition 5: The coordination imitation population dy-
namics Markov chain is defined as the Markov chain ⟨X

1
N

k ⟩k
with transition probabilities

Pr′xN,yN = (21)

(ρp − xN
p )(2− u′(xN))1

(
u′(xN)

)
if yN = 1

N
ep + xN,

xN
p (u

′(xN)− 1)1
(
u′(xN)

)
if yN = − 1

N
ep + xN,

1−
(∑p

p=1(ρp − xN
p )(2− u′(xN)) if yN = xN,

+xN
p (u

′(xN)− 1)1
)
1
(
u′(xN)

)
0 otherwise,

the state space X ss∩ 1
NZ

p, and the initial state X
1
N
0 = xN(0).

As for semicontinuous population dynamics, we have the
following definition

Definition 6: The semicontinuous coordination imita-
tion population dynamics is defined by ẋ ∈ V ′(x), where
V ′ : X ss → 2X ss and for all p ∈ [p]

V ′
p(x) =


{−xp} if x < α′(x),

[0, ρp]− xp if x = α′(x)

{ρp − xp} otherwise,
(22)

where x = x⊤1.
It can be shown that the semicontinuous population dynam-
ics (12) is GUS under the following assumption.

Assumption 2: The subpopulation with the largest value
of wp also has the largest value of zp and its population
proportion, denoted by ρp, satisfies the following inequality

ρp > max{ maxi zi
maxi zi +mini wi

,
maxi wi

mini zi +maxi wi
}. (23)

Similar to Lemma 1, we have the following result.
Lemma 3: Under Assumption 2, the collection of

⟨⟨X
1
N

k ⟩k⟩N∈N with transition probabilities (21) is a GSAP
for (22).
We now move on to determine the steady-state behavior of
the population dynamics (22).

Lemma 4: Consider the semicontinuous coordination im-
itation population dynamics (22). The population dynamics
converge to either 0 or ρ, provided that the initial condition
x0 satisfies x⊤

0 1 ̸= α′ where

α′ =
maxp zp

maxp zp +maxp wp
. (24)

Otherwise, the population dynamics will converge to either
ρ, 0, or α′ρ.

We accordingly have the following proposition.
Proposition 3: The Birkhoff center of the semicontinuous

coordination imitation population dynamics equals Q′ =
{0,ρα′,ρ}.
The following theorem summarizes the results.

Theorem 2: Consider the discrete coordination imitation
population dynamics (19) for a population of size N. Let µ

1
N

be an invariant probability measure of the associated coor-
dination imitation population dynamics Markov chain (21).
If Assumption 2 holds, then for every sequence ⟨ 1

N ⟩N∈N
approaching zero, and for any open set containing Q′ we
have lim 1

N→0 µ
1
N (O) = 1.

Based on Theorem 2 and similar to anticoordination case,
the length of the fluctuations in the population proportion
of strategy-A player will be expected to vanish as the
size of a population of agents with diagonal coordination
payoff matrices approaches infinity, which is in line with
the existing result on the steady-state behaviour of finite
populations with coordination payoff matrices [13].

VII. CONCLUDING REMARKS

It has been previously shown that a finite population of
imitators involving in an asynchronous matrix-game may
equilibrate or undergo perpetual fluctuations. Here, we uti-
lized the available results in the stochastic approximation
theory and then showed that the lengths of the reported
fluctuations in the population proportion of strategy-A play-
ers will converge to zero with probability one. We also
proved that no fluctuations will be expected as the size of a
population of imitators with diagonal coordination payoff
matrices approaches infinity–consistent with the existing
result on the steady-state behaviour of finite populations with
coordination payoff matrices. Whether the same conclusion
can be made for a heterogeneous population of imitators with
coordination and anticoordination payoff matrices remains a
topic for future research.
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APPENDIX

Definition 7 ( [28]): Let Φ be the set of all so-
lutions of the differential inclusion ẋ ∈ V(x).
The recurrent points of Φ are defined as CΦ ={
x0

∣∣∣x0 ∈
⋃

y∈Sx0

⋂
t≥0 cl(y[t,∞])

}
, where Sx0

is the set
of solutions of the differential inclusion with the initial
condition x0. The Birkhoff center of Φ is defined as the
closure of CΦ.

Definition 8 ( [28]): Let ẋ ∈ V(x) be a GUS differential
inclusion over the state space X 0 which is convex and
compact. Consider a sequence of positive scalar values ⟨ϵk⟩
that converges to 0. Let Uϵ = ⟨Uϵ

k⟩k be a sequence of Rn-
valued random variables and ⟨Vϵ⟩ be a family of set-valued
maps on Rn. We say that ⟨⟨Xϵ

k⟩k⟩ϵ>0 is a GSAP for the
differential inclusion ẋ ∈ V(x) if the conditions listed below
are met:

1) Xϵ
k ∈ X 0 for all k ≥ 0,

2) Xϵ
k+1 −Xϵ

k − ϵUϵ
k+1 ∈ ϵVϵ(Xϵ

k),
3) ∀δ > 0∃ϵ0 > 0 such that for all ϵ ≤ ϵ0 and x ∈ X 0

Vϵ(x)⊂{z ∈ Rn |∃y : |x−y| < δ, inf
v∈V(y)

|z−v| < δ},

4) for all T > 0 and for all α > 0,

lim
ϵ→0

P

[
max
k≤T

ϵ

∣∣∣∣∣
k∑

i=1

ϵUϵ
i

∣∣∣∣∣ > α | Xϵ
0 = x

]
= 0

uniformly in x ∈ X 0.
Theorem A 1 (Theorem 3.5 and Corollary 3.9 [28]):

Consider a sequence of positive scalar values ⟨ϵk⟩ that
converges to 0. Let ⟨⟨Xϵ

k⟩k⟩ϵ>0 be GSAPs for a GUS
differential inclusion ẋ ∈ V(x). Assume that ⟨Xϵ

k⟩k is a
Markov chain for each ϵ. Let µϵ be an invariant probability
measure of ⟨Xϵ

k⟩k. Denote a limit point of ⟨µϵ⟩ϵ>0 in the
topology of weak convergence by µ. Then the support of µ
is contained in the Birkhoff center of the dynamical system
induced by ẋ ∈ V(x).
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