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Abstract— Recently, the event-triggered global robust practi-
cal output regulation problem of a class of nonlinear uncertain
systems has been solved with the exact output regulation
problem remaining open. In this paper, we investigate the exact
output regulation problem by dynamic event-triggered output
feedback control. To solve the problem, we first convert the
event-triggered global robust output regulation problem into
the event-triggered global robust stabilization problem of an
augmented system based on the internal model principle. Then,
we develop the dynamic event-triggered mechanism and the
dynamic output feedback control law. By Lyapunov analysis,
we show that the event-triggered global robust stabilization
problem can be solved, thus leading to the solution of the
event-triggered global robust output regulation problem, and
meanwhile, the Zeno behavior can be strictly excluded.

I. INTRODUCTION

In the past few decades, with its advantages in reducing
unnecessary communication costs and saving computation
resources, event-triggered control has attracted a lot of at-
tention, see [1]–[4] and references therein. The applications
of event-triggered control can be found in many practical
scenarios, see [5]–[8].

Recently, the robust output regulation problem by event-
triggered control has attracted many researchers’ attention,
see [9]–[20]. For the robust output regulation problem, both
the system uncertainty and the external disturbance are
considered. The problem is first studied for linear systems
in [9]–[15]. In particular, in [9], by proposing an event-
triggered output feedback control law and a static event-
triggered mechanism, practical output regulation for a class
of linear uncertain minimum-phase systems is achieved, that
is, for the system uncertainties in an arbitrarily large compact
set, the steady-state tracking error of the closed-loop system
can be made to a small neighborhood of the origin. Later,
the robust output regulation of nonlinear systems by event-
triggered control is studied in [17]–[20]. Particularly, the
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event-triggered global robust output regulation problem of
nonlinear systems in normal form with unity relative degree
is studied in [17]. Based on the internal model approach,
an output-based event-triggered control law together with a
static event-triggered mechanism is developed and practical
output regulation for nonlinear systems is achieved. Subse-
quently, the event-triggered global robust practical output
regulation problem of nonlinear systems in normal form
with any relative degree is addressed in [18]. Resorting to
the distributed internal model approach, the event-triggered
control methods are employed to solve the event-triggered
cooperative practical output regulation problem of multi-
agent nonlinear systems in [19]. Lately, based on the high
gain feedback control method, it is shown in [20] that the
same event-triggered cooperative practical output regulation
problem in [19] can be solved by a merely static distributed
feedback control law which does not need to involve the
internal model dynamics. It is worth mentioning that, in the
previous works, the robust output regulation problem or the
cooperative robust output regulation problem can only be
solved practically by event-triggered control.

In this paper, we further address the event-triggered global
robust output regulation problem of a class of nonlinear
uncertain systems. First, we introduce the internal model
to tackle system uncertainties and disturbances and convert
the event-triggered global output regulation problem into
an event-triggered global robust stabilization problem of
an augmented system consisting of the nonlinear uncertain
system and the internal model. Next, we delicately design
the dynamic variable in the event-triggered mechanism by
constraining its upper bound by a tracking-error-related func-
tion. Resorting to the changing supply function technique
and Lyapunov analysis approach, we construct the dynamic
event-triggered mechanism and the Lyapunov function for
the augmented closed-loop system. Then, by the contradic-
tion method, we provide a rigorous proof to show that exact
robust output regulation can be achieved while prohibiting
the Zeno behavior. Compared with the existing results on
event-triggered robust output regulation of nonlinear systems
in [17]–[20], we solve the event-triggered global robust
output regulation problem exactly, that is, the regulation error
tends to zero asymptotically and the Zeno behavior can be
explicitly excluded. Moreover, the newly developed dynamic
event-triggered mechanism approach has the potential to be
extended to event-triggered global robust output regulation
problems of more complex nonlinear uncertain systems. It is
interesting to extend the current work to some other nonlinear
control problems [21]–[24].
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Notation. R, N denote the sets of real numbers and natural
numbers, respectively. For any column vectors xi ∈ Rn,
i = 1, . . . ,m, col(x1, . . . , xm) = [xT

1 , . . . , x
T
m]T . ||x||

denotes the Euclidean norm of vector x and ||A|| denotes the
Euclidean norm of matrix A. In denotes the n-dimensional
identity matrix. The C1 function denotes the continuously
differentiable function.

II. PROBLEM FORMULATION

Consider a class of nonlinear uncertain systems in output
feedback form described by

ż(t) =f(z(t), y(t), v(t), w)

ẏ(t) =g(z(t), y(t), v(t), w) + b(w)u(t)

e(t) =y(t)− y0(t)

(1)

where z(t) ∈ Rn and y(t) ∈ R denote the state, e(t) ∈
R denotes the tracking error, u(t) ∈ R denotes the control
input, w ∈ Rnw denotes the uncertain constant parameter
vector and can take arbitrary values in any compact subset
W ⊂ Rnw , and v(t) denotes the exogenous signal and is
generated by a linear system as follows:

v̇(t) =Sv(t)

y0(t) =q(v(t), w)
(2)

where v(t) ∈ Rnv and y0(t) ∈ R. The system (2) is called
the exosystem and is used to formulate both reference input
signals and disturbance signals in system (1). The functions
f(·), g(·) and q(·) are assumed to be sufficiently smooth in
their arguments satisfying f(0, 0, 0, w) = 0, g(0, 0, 0, w) = 0
and q(0, w) = 0 for all w ∈ Rnw . The function b(w) is
assumed to be a continuous function and satisfies b(w) > 0
for all w ∈ Rnw . Then, for any compact subset Υ ⊂ Rnw ,
there exist some known positive numbers bm and bM such
that bm ≤ b(w) ≤ bM for all w ∈ Υ.

The general form of our output-based event-triggered
feedback control laws is given as follows:

u(t) =κ(e(tk), η(tk))

η̇(t) =ϖ(η(t), u(t)), t ∈ [tk, tk+1), k ∈ N
(3)

where κ(·) and ϖ(·) are some globally defined functions
to be specified later. The time instants tk denote triggering
time instants with t0 = 0 and k ∈ N, and are generated by
an event-triggered mechanism as follows:

tk+1 = inf{t > tk|h(ẽ(t), η̃(t), e(t)) ≥ γ(t)}
γ̇(t) =ρ(γ(t), ẽ(t), η̃(t), e(t))

(4)

where h(·) and ρ(·) are some functions to be designed, and

ẽ(t) =e(tk)− e(t)

η̃(t) =η(tk)− η(t)
(5)

for any t ∈ [tk, tk+1) with k ∈ N. Since the internal
variable γ(t) is generated by a dynamic system, (4) is called
a dynamic event-triggered mechanism.

Remark 2.1: Denote xc(t) as the solution of the closed-
loop system composed of (1) and (3) with the triggering
mechanism (4). Suppose that the solution xc(t) is right

maximally defined for all t ∈ [0, TM ) with 0 < TM ≤ ∞.
Let {tk}k∈S with S ⊂ N denote the time sequence generated
by the event-triggered mechanism (4). Then, as in [25], one
of the following three cases may occur:

1) S = N and limk→∞ tk < ∞.
2) S = N and limk→∞ tk = ∞.
3) S is a finite set and is denoted by S = {0, 1, · · · , k∗}

with k∗ ∈ N. In this case, tk∗ < TM .
In the three cases, the solution xc(t) is defined for all

t ∈
⋃

k∈S [tk, tk+1). Case 1) means that the Zeno behavior
occurs, which is undesirable in practical implementation. In
this paper, to make the system well behaved for all t ∈
[0,+∞), we wish to design the control law (3) and the event-
triggered mechanism (4) such that TM = +∞ and the Zeno
behavior is excluded.

Now, our problem is described as follows.
Problem 2.1: Given the plant (1), the exosystem (2), any

compact subsets V ⊂ Rnv and W ⊂ Rnw with 0 ∈ V
and 0 ∈ W, design an output-based event-triggered feedback
control law of the form (3) and a dynamic event-triggered
mechanism of the form (4) such that, for any initial states
z(0), y(0), and η(0), and for any v(t) ∈ V and w ∈ W, the
closed-loop system has the following two properties:

Property 1: the trajectory of the closed-loop system exists
and is bounded for all t ≥ 0;

Property 2: limt→∞ e(t) = 0.
Remark 2.2: Problem 2.1 is called the event-triggered

global robust output regulation problem. As mentioned in
[17], compared with the classical output regulation problem
in [26], a piecewise continuous control law instead of a
continuous control law has to be designed to guarantee the
two properties in Problem 2.1, which makes Problem 2.1
more challenging. In addition, as in [17], the control law (3)
can be directly implemented on the digital platform.

III. INTERNAL MODEL AND PROBLEM CONVERSION

In this section, we construct an internal model and show
that the event-triggered global robust output regulation prob-
lem can be converted into an event-triggered global stabi-
lization problem of an augmented system.

First, we need to introduce some standard assumptions.
Assumption 3.1: The exosystem (2) is neutrally stable,

i.e., all eigenvalues of S are semi-simple with zero real parts.
Assumption 3.2: There exists a globally defined smooth

function z : Rnv × Rnw to Rn with z(0, w) = 0 such that

∂z(v, w)

∂v
Sv = f(z(v, w), q(v, w), v, w) (6)

for all (v, w) ∈ Rnv × Rnw .
Assumption 3.3: The function u(v, w) is a polynomial

in v with coefficients depending on w.
Remark 3.1: Assumption 3.1 is used to guarantee the

boundedness of the signal v(t). Under Assumption 3.1, for
any v(0) ∈ V0 for a compact subset V0 ⊂ Rnv , there exists
a compact subset V ⊂ Rnv such that v(t) ∈ V for all time.

Remark 3.2: Assumption 3.2 is a necessary condition for
the solvability of the output regulation problem [27], [28].
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Under Assumption 3.2, let

y(v, w) =q(v, w)

u(v, w) =b−1(w)
(∂q(v, w)

∂v
Sv − g(z(v, w), q(v, w), v, w)

)
.

Then, functions z(v, w),y(v, w) and u(v, w) characterize
the steady-state states and the steady-state input for the states
z, y and the control input u, respectively, which are also the
invariant manifolds for the system (1) [29].

Remark 3.3: Assumption 3.3 is made for facilitation of
the internal model design and is used in relevant results, see
[17], [26]. It can also be relaxed by the result in [30].

Under Assumptions 3.1-3.3, define the following system

∂ϑ(v, w)

∂v
Sv = Φϑ(v, w)

u(v, w) = Γϑ(v, w)
(7)

where ϑ(v, w) = col(u(v, w), u̇(v, w), . . . ,u(s−1)(v, w)),

Φ =

[
0(s−1)×1

a1

Is−1

a2 · · · as

]
and Γ =

[
1 0 · · · 0

]
for some constants a1, a2, . . . , as guaranteeing that the poly-
nomial P (λ) = λs−a1−a2λ−· · ·−asλ

s−1 has distinct roots
with zero real parts. By Definition 6.2 and Proposition 6.12
of [29], system (7) is called the steady-state generator for
system (1) with output u and can reproduce the steady-state
input u(v, w) [29].

Then, we can construct the internal model. Note that the
matrix pair (Φ,Γ) is observable. Then, for any controllable
matrix pair (M,N) with M ∈ Rs×s being Hurwitz and N ∈
Rs×1, the Sylvester equation TΦ−MT = NΓ has a unique
nonsingular solution T [31]. Thus, by Proposition 6.21 of
[29], we can define the following system:

η̇ =Mη +Nu (8)

which is an internal model of the system (1).
Next, we show that the event-triggered global robust

output regulation problem can be converted into an event-
triggered global robust stabilization problem of the aug-
mented system consisting of (1) and (8). To do this, we
perform the following coordinate and input transformation
on the augmented system:

z̄ = z − z(v, w), η̄ = η − Tϑ(v, w)−Nb−1e

e = y − q(v, w), ū = u− ΓT−1η(tk)
(9)

where t ∈ [tk, tk+1), k ∈ N. Then,

˙̄z =f̄(z̄, e, µ)

˙̄η =Mη̄ +MNb−1e−Nb−1ḡ(z̄, e, µ)

ė =ḡ(z̄, e, µ) + bΓT−1η̄ + ΓT−1Ne+ bū+ bΓT−1η̃

(10)

where µ = col(v, w) and

f̄(z̄, e, µ) =f(z̄ + z, e+ q, v, w)− f(z, q, v, w)

ḡ(z̄, e, µ) =g(z̄ + z, e+ q, v, w)− g(z, q, v, w).
(11)

It can be verified that for all µ ∈ Rnv×nw , functions f̄(·)
and ḡ(·) vanish at their origin, respectively.

Consider a control law of the following form:

ū(t) = ς(e(tk)), t ∈ [tk, tk+1), k ∈ S (12)

where ς(·) is a smooth function vanishing at the origin. Let
x̄c(t) = col(z̄(t), η̄(t), e(t), γ(t)) denote the solution of the
closed-loop system composed of (4), (10) and (12) and Ω =
V×W. Now, we are ready to show the problem conversion
by the following proposition.

Proposition 3.1: Under Assumptions 3.1-3.3, if for any
compact subset Ω, there exists a control law of the form
(12), such that for any initial condition x̄c(0) and for all
µ ∈ Ω, x̄c(t) exists and is bounded for all t ∈ [0,∞), and
limt→∞ x̄c(t) = 0 asymptotically, then Problem 2.1 can be
solved by the dynamic output feedback control law:

u(t) =ς(e(tk)) + ΓT−1η(tk)

η̇(t) =Mη(t) +Nu(t), t ∈ [tk, tk+1), k ∈ N
(13)

together with the dynamic event-triggered mechanism of the
form (4).
Proof: Since x̄c(t) = col(z̄(t), η̄(t), e(t), γ(t)), then,
limt→∞ x̄c(t) = 0 asymptotically implies limt→∞ e(t) = 0
asymptotically. That is, Property 2 in Problem 2.1 is satisfied.

Next, denote xc(t) = col(z(t), η(t), y(t), γ(t)). Un-
der Assumptions 3.1, since z(v, w), b(w), ϑ(v, w) and
q(v, w) are all smooth functions of their arguments,
z(v, w), b(w), ϑ(v, w) and q(v, w) are all bounded for any
compact set Ω and for all t ∈ [0,∞). By (9), xc(t) satisfies

xc(t) =x̄c(t) + col(z(v(t), w), Tϑ(v(t), w)

+Nb−1(w)e(t), q(v(t), w), 0).
(14)

Since limt→∞ x̄c(t) = 0, we have that xc(t) exists and
is bounded for all t ∈ [0,∞), which means Property 1 in
Problem 2.1 holds. The proof is thus completed. □

IV. MAIN RESULT

In this section, we solve the event-triggered global robust
stabilization problem of the augmented system (10).

First, design the following output feedback control law:

ū(t) = ζ(tk), t ∈ [tk, tk+1), k ∈ N (15)

where
ζ(t) = −ξ(e(t))e(t) (16)

and ξ(·) is a sufficiently smooth positive function to be
specified later. Define

ζ̃(t) = ζ(tk)− ζ(t). (17)

We develop the dynamic event-triggered mechanism as fol-
lows:

tk+1 = inf
{
t > tk

∣∣∣θ(ζ̃(t) + ΓT−1η̃(t)
)2

− θσ|e(t)ζ(t)| ≥ γ(t)
}

γ̇(t) =− βγ(t)− α
(
ζ̃(t) + ΓT−1η̃(t)

)2
+ ασ|e(t)ζ(t)|, γ(0) > 0

(18)
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where θ is any positive number, β, α and σ are some positive
constants to be specified later. Then, the closed-loop system
composed of (10), (15) and (18) can be written as:

˙̄z =f̄(z̄, e, µ)

˙̄η =Mη̄ +MNb−1e−Nb−1ḡ(z̄, e, µ)

ė =ḡ(z̄, e, µ) + bΓT−1η̄ + ΓT−1Ne+ bζ + bζ̃ + bΓT−1η̃

γ̇ =− βγ − α
(
ζ̃ + ΓT−1η̃

)2
+ ασ|eζ|, γ(0) > 0.

(19)

To solve the stabilization problem of system (10), we need
to introduce one more assumption.

Assumption 4.1: For any compact subset Ω ⊆ Rnv ×
Rnw , there exists a C1 function V1(z̄) such that, for any
µ ∈ Ω, any z̄ and any e

α1(||z̄||) ≤V1(z̄) ≤ α1(||z̄||)
∂V1(z̄)

∂z̄
f̄(z̄, e, µ) ≤− α1(∥z̄∥) +ϖ1(e)

(20)

where α1(·) and α1(·) are some class K∞ functions,
ϖ1(·) is a known smooth positive definite function,
and α1(·) is a known class K∞ function satisfying
lims→0+ sup

(
s2/α1(s)

)
< ∞.

Remark 4.1: Assumption 4.1 is a standard assumption
and is used in relevant results, see [17], [26], [27]. As-
sumption 4.1 implies that for any µ ∈ Ω, the subsystem
˙̄z = f̄(z̄, e, µ) is input-to-state stable (ISS) with respect to
state z̄ and continuous-time input e.

Lemma 4.1: Under Assumptions 3.1-3.3 and 4.1, let θ >

0, 0 < σ < bm
b2M

, 0 < α < b2M , and β ≥ b2M−α
θ + ι, where ι is

any positive real number. Then, there exists a smooth positive
function ξ(·), a C1 function U(z̄, η̄, e, γ) that satisfies

β(||(z̄, η̄, e, γ)||) ≤ U(z̄, η̄, e, γ) ≤ β(||(z̄, η̄, e, γ)||) (21)

for some class K∞ functions β(·) and β(·), such that, for all
µ ∈ Ω, along the trajectory of (19),

U̇(z̄, η̄, e, γ) ≤ −||z̄||2 − ||η̄||2 − e2 − ιγ. (22)
Proof: 1) Consider the z̄ subsystem in (19). Under Assump-
tion 4.1, by the changing supply function technique in [32],
given any smooth function ∆(z̄) > 0, there exists a C1

function V̄1(z̄) such that, for any z̄ ∈ Rn, e ∈ R and µ ∈ Ω,

ϱ
1
(||z̄||) ≤V̄1(z̄) ≤ ϱ1(||z̄||)

∂V̄1(z̄)

∂z̄
f̄(z̄, e, µ) ≤−∆(z̄)||z̄||2 + π(e)e2

(23)

where ϱ
1
(·) and ϱ1(·) are some class K∞ functions, and π(·)

is a known smooth positive function.
2) Consider the η̄ subsystem in (19). Since ḡ(z̄, e, µ) is a

smooth function and ḡ(0, 0, µ) = 0 for all µ ∈ Ω, by Lemma
7.8 in [29], there exist smooth positive functions φ(·) and
χ(·) such that for all z̄ ∈ Rn, e ∈ R and µ ∈ Ω,

|ḡ(z̄, e, µ)|2 ≤ φ(z̄)||z̄||2 + χ(e)e2. (24)

Let V̄2(η̄) = ℓη̄TP1η̄, where ℓ > 0 is a positive real number
to be defined and P1 is the positive definite solution to the

Lyapunov equation M⊤P1 + P1M = −I . Then, for all µ ∈
Ω, along the trajectory of the η̄ subsystem, as bm ≤ b(w) ≤
bM , it follows from (24) that

˙̄V2(η̄) = −ℓ||η̄||2 + 2ℓη̄TP1MNb−1e

− 2ℓη̄TP1Nb−1ḡ(z̄, e, µ)

≤ −(ℓ− 1

2
)||η̄||2 + 4ℓ2

bm
2 ||P1N ||2φ(z̄)||z̄||2

+
( 4ℓ2

bm
2 ||P1MN ||2 + 4ℓ2

bm
2 ||P1N ||2χ(e)

)
e2.

(25)

Let V2(z̄, η̄) = V̄1(z̄) + V̄2(η̄). Then, it follows from (23)
and (25) that

V̇2(z̄, η̄)

≤ −
(
∆(z̄)− 4ℓ2

bm
2 ||P1N ||2φ(z̄)

)
||z̄||2 − (ℓ− 1

2
)||η̄||2

+
(
π(e) +

4ℓ2

bm
2 ||P1MN ||2 + 4ℓ2

bm
2 ||P1N ||2χ(e)

)
e2.

(26)

3) Consider the (e, γ) subsystem in (19). Let
g̃(z̄, η̄, e, µ) = ḡ(z̄, e, µ) + bΓT−1η̄ + ΓT−1Ne. Then,
it follows from (24) that

eg̃(z̄, η̄, e, µ)

= e
(
ḡ(z̄, e, µ) + bΓT−1η̄ + ΓT−1Ne

)
≤ φ(z̄)||z̄||2 + 1

4
||η̄||2

+
(1
4
+ χ(e) + b2M ||ΓT−1||2 + ||ΓT−1N ||

)
e2.

(27)

Under the dynamic event-triggered mechanism (18), it fol-
lows that (

ζ̃ + ΓT−1η̃
)2 − σ|eζ| ≤ 1

θ
γ (28)

which implies

γ̇ ≥− (β +
α

θ
)γ. (29)

Thus, by Comparison Lemma in [33] and noting γ(0) > 0,
it is obtained that

γ(t) ≥ γ(0)e−(β+α
θ )t > 0, t ≥ 0. (30)

Let V3(e, γ) =
1
2e

2+γ. For all tk ≤ t < tk+1, k ∈ S, and for
all µ ∈ Ω, by (16), we obtain that the derivative of V3(e, γ)
along the trajectory of the (e, γ) subsystem satisfies

V̇3(e, γ)

= e
(
g̃(z̄, η̄, e, µ) + bζ + bζ̃ + bΓT−1η̃

)
+ γ̇

≤ eg̃(z̄, η̄, e, µ)− bmξ(e)e2 + bM |e||ζ̃ + ΓT−1η̃|

− βγ − α
(
ζ̃ + ΓT−1η̃

)2
+ ασ|eζ|

≤ eg̃(z̄, η̄, e, µ)−
(
(bm − b2Mσ)ξ(e)− 1

4

)
e2

− βγ + (b2M − α)
(
(ζ̃ + ΓT−1η̃)

2
− σ|eζ|

)
.

(31)
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By (27) and (28), it follows that

V̇3(e, γ)

≤ φ(z̄)||z̄||2 + 1

4
||η̄||2

−
(
(bm − b2Mσ)ξ(e)− 1

2
− χ(e)− b2M ||ΓT−1||2

− ||ΓT−1N ||
)
e2 −

(
β − b2M − α

θ

)
γ.

(32)

4) Consider the overall closed-loop system (19). Denote
U(z̄, η̄, e, γ) = V2(z̄, η̄) + V3(e, γ). Then, by (26) and (32),
for all µ ∈ Ω, along the trajectory of (19),

U̇(z̄, η̄, e, γ)

≤−
(
∆(z̄)− k1φ(z̄)

)
||z̄||2 − (ℓ− 3

4
)||η̄||2

−
(
(bm − b2Mσ)ξ(e)− π(e)− k1χ(e)− k2

)
e2

−
(
β − b2M − α

θ

)
γ

(33)

where k1 = 1 + 4ℓ2

bm2 ||P1N ||2, k2 = 1
2 + 4ℓ2

bm2 ||P1MN ||2 +
b2M ||ΓT−1||2+||ΓT−1N ||. Choose ℓ ≥ 7

4 , ∆(z̄) ≥ k1φ(z̄)+
1 and ξ(e) ≥ 1

bm−b2Mσ
(π(e) + k1χ(e) + k2 + 1). Then,

U̇(z̄, η̄, e, γ) ≤ −||z̄||2 − ||η̄||2 − e2 − ιγ. (34)

The proof is thus complete. □
Based on Proposition 3.1 and Lemma 4.1, we can obtain

the solution to the event-triggered global robust output reg-
ulation problem by the following theorem.

Theorem 4.1: Under Assumptions 3.1-3.3 and 4.1, the
event-triggered global robust output regulation problem for
the system consisting of (1) and (2) can be solved by the
following dynamic output feedback control law:

u(t) =− ξ(e(tk))e(tk) + ΓT−1η(tk)

η̇(t) =Mη(t) +Nu(t), t ∈ [tk, tk+1), k ∈ N
(35)

together with the dynamic event-triggered mechanism (18),
where ξ(·), θ, β, α and σ are defined in Lemma 4.1.
Moreover, the Zeno behavior can be strictly excluded.
Proof: Due to space limit, we give a sketch of the proof.

1) By Lemma 4.1, we have that z̄(t), η̄(t), e(t) and γ(t)
are all bounded over [0, TM ).

2) Show that there is no Zeno behavior by contradiction.
Suppose that there exists Zeno behavior, i.e., limk→∞ tk =
T0, k ∈ S, for some positive constant T0. Then, by the
definition of limits of sequences, for some positive constant
ϵ0, there exists an integer k̄(ϵ0) such that, for all k > k̄(ϵ0),

T0 − ϵ0 < tk ≤ T0. (36)

Let k̂ ≥ k̄(ϵ0) and k̂ ∈ S. We can show that tk̂+1 −
tk̂ ≥ ϵ0 which contradicts (36). Therefore, Zeno behavior
is excluded. Consider Case 3) in Remark 2.1. In this case,
the closed-loop system reduces to a continuous-time system
for t > tk∗ . Then, by Lemma 4.1, for any initial states x̄c(0),
and any µ ∈ Ω, the solution x̄c(t) exists for all t ∈ [0,∞).

3) By Lemma 4.1, we have that limt→∞ x̄c(t) = 0. The
proof is thus complete by invoking Proposition 3.1. □

V. EXAMPLE

Consider a class of uncertain Lorenz systems with the
following dynamics [17], [26]:

ż1 =(−4 + w1)z1 − (−4 + w1)y

ż1 =(−5 + w2)z2 + z1y

ẏ =(2 + w3)z1 − y − z1z2 + (3 + w4)u

e =y − v1

(37)

where w = [w1, w2, w3, w4]
⊤ represents the uncertainty of

the system. It is assumed that w ∈ W = {w|w ∈ R4, |wi| ≤
1, i = 1, 2, 3, 4}. The exosystem takes the following form:

v̇ =

[
0 1
−1 0

]
v (38)

and v ∈ V = {v|v ∈ R2, |vi| ≤ 1, i = 1, 2}. Then,
Assumption 3.1 is satisfied.

Like in [26], we can verify that Assumptions 3.2 and
3.3 are satisfied. We can further verify that d4u(v,w)

dt4 +

10d2u(v,w)
dt2 + 9u(v, w) = 0. By Remark 3.3, we have

that Φ =

[
03×1

−9
I3

0 −10 0

]
, Γ =

[
1 0 0 0

]⊤
. The

controllable pair (M,N) is chosen as follows: M =[
03×1

−6
I3

−17 −17 −7

]
, N =

[
1 0 0 0

]⊤
. Then, by

solving the Sylvester equation TΦ − MT = NΓ, we have
that ΓT−1 = [−3, 17, 7, 7]. According to [26], it can be
verified that Assumption 4.1 is also satisfied. Therefore, by
Theorem 4.1, choosing ι = 0.2, we can design the dynamic
output feedback control law of the form (35) with ξ(e(tk)) =
6(e6(tk) + 1), and the dynamic event-triggered mechanism
of the form (18) with θ = 600, σ = 1 × 10−4, α = 6
and β = 0.5. The simulation is performed with w =
[0.5,−0.6, 0.7, −0.3]⊤, z1(0) = −1.61, z2(0) = 0.45,
y(0) = −1.68, v(0) = v(0) = [−0.94, 0.10]⊤, η(0) =
[0.49,−0.31, 0.13, 0.20]⊤ and γ(0) = 50.

The simulation results are shown in Figs. 1-3. The event-
triggered condition and the inter-event time under the dy-
namic event-triggered mechanism (18) are depicted in Fig.
1 and Fig. 2, respectively. It can be observed from Fig. 3
that the tracking error approaches zero asymptotically, which
means that the global robust output regulation problem is
solved exactly.
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Fig. 1. Event-triggered condition.
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VI. CONCLUSION

In this paper, the event-triggered global robust output
regulation problem of a class of nonlinear uncertain systems
has been addressed. Based on the internal model principle, a
dynamic output-based event-triggered feedback control law
together with a dynamic event-triggered mechanism has been
developed. It has been shown that the global robust output
regulation problem can be solved exactly, and the Zeno
behavior can be explicitly excluded.
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