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Abstract— A federated multi-agent system is a multi-agent
system wherein agents collaborate with a central server to
optimize system goals without sharing their private information.
We develop a communication-efficient solution to resource
allocation problems for a population of agents coupled through
multiple indivisible shared resources in a federated multi-
agent system. The agents demand resources in a probabilistic
way based on their local computation and preferences, and
the agents receive either one unit of a resource or do not
receive it. The agents are not required to share their cost
functions or derivatives of cost functions with other agents
or the central server. Optimal control of a population of
such agents, subject to capacity constraints, is widely found
in many application domains, such as smart energy systems,
intelligent transportation systems, and edge computing, to name
a few. We present convergence results using multi-time scale
stochastic approximation techniques and an example of electric
vehicle charging point allocation illustrating the efficacy of the
developed solution.

Keywords: Distributed optimization, optimal control,
multi-resource allocation, indivisible resources, smart city,
electric vehicle charging.

I. INTRODUCTION

We define a federated multi-agent system as a multi-agent
system wherein agents collaborate with a central server to
optimize system goals without sharing their private informa-
tion [1]. This paper considers a federated multi-agent system
consisting of several agents and a central server. The agents
collaborate with the central server to solve a multi-resource
allocation problem and aim to achieve social welfare for
the system. In several applications in smart energy systems,
intelligent transportation systems, edge computing, etcetera,
a population of agents such as distributed energy resources
(DERs), electric vehicles (EVs), virtual machines (VMs), or
IoT devices should be controlled to access limited shared
resources. These agents are not required to share private
information with other agents in the system. It is challenging
to solve such allocation problems that minimize the cost
to the system, satisfy constraints, and provide a quality
of service guarantee to each agent in the federated multi-
agent system. For example, managing the distributed energy
resources and loads on smart grids to achieve social optimum
cost [2], or controlling the electric vehicle charging [3], [4],
in these examples, resource utilization should be maximized,
and also a certain quality of service should be guaranteed to
each agent. These problems are formulated as optimal control
problems to control the agents’ population in the system [5]–
[7].

This paper considers the problem of controlling a popu-
lation of agents coupled through multiple indivisible shared
resources in a federated multi-agent system; each agent de-
mands the indivisible resources in a stochastic way based on
their local computation, and the agents do not share their cost
function or derivative of the cost function with other agents
or the central server in the system. This work is a novel
extension of [8] in which the optimal control of a population
of agents is considered for a single indivisible resource.
Controlling a population of agents, which demand resources
in a stochastic way, is widely found in many application
areas, as stated above. In these applications, the probabilistic
intent of agents can be modeled to optimize system-level
goals. For example, when a population of electric vehicles
demands different types of charging points, such as level 1
(slow charger) or level 2 (faster charger) charging points,
to minimize voltage fluctuation or minimize the cost to the
network, their objective functions depend on the consump-
tion of both types of charging points. Generally speaking, in
these scenarios, agents are coupled through the allocation of
multiple indivisible resources. Note that indivisible resources
are either allocated one unit or not allocated. The developed
solution is also suitable for client selection in federated
learning, wherein clients collaborate with a server to train
a global model without sharing their on-device data [9],
[10]. The server selects a subset of clients and sends them a
global model; the clients train the model on their device data
and send the learned parameters to the server. The server
then aggregates the parameters and adjusts the weights to
update the global model. This process is repeated until the
training loss converges or time exceeds a set limit. The server
selects the subset of clients at a time step to participate in
the training process without considering clients’ preferences
[9]. Our solution can be used to incorporate the choices and
preferences of clients to participate in the training process,
and on average, the number of times clients participate
will reach optimal value. Interested readers may refer to
our recent work on differentially private client selection in
federated settings at [11].

Our main contribution to this paper is to develop a stochas-
tic solution for a federated multi-agent system in which
several agents are coupled with multiple indivisible shared
resources. Each agent demands the shared resources in a
probabilistic way based on its private cost function, derivative
of the cost function, etc. This approach is a novel extension
of the single indivisible resource allocation solution proposed
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in [8]. We show almost sure convergence of the average al-
locations based on the ideas from multi-time scale stochastic
approximation techniques [12]. To check the efficacy of our
algorithm, we present an application to control a population
of electric vehicles that share a limited number of level 1
and level 2 charging points. It illustrates that the agents
receive the optimal charging points in long-term averages
and maximize the social welfare of the system. The agents
do not need to communicate among themselves to achieve
social optimum cost; however, the central server keeps track
of the aggregate utilization of resources and broadcasts price
(feedback) signals at each time step. Using the value of
the price signal, agents calculate their probabilistic intent
to demand resources at the next time step. Assuming each
price signal is of µ bits floating point, then for a system
with m shared resources, the communication overhead will
be µm bits per time step. Furthermore, the upper bound on
the communication complexity is O(m)-bits per time step,
which is independent of the number of agents in the system.

II. PRELIMINARIES

Suppose there are n agents collaborating with a central
server in a federated multi-agent system; the agents are
coupled through m indivisible shared resources. Each agent
has a cost function that depends on the allocation of these
shared indivisible resources. Let the capacity of resources be
C1, C2, . . . , Cm, respectively.

Let Xji(k) ∈ {0, 1} denote an independent Bernoulli
random variable representing the instantaneous allocation
of resource j of agent i at time step k. Furthermore, let
yji(k) ∈ [0, 1] denote the average allocation of resource j of
agent i at time step k. We define yji(k) as follows,

yji(k) ≜
1

k + 1

k∑
ℓ=0

Xji(ℓ), (1)

for i = 1, 2, . . . , n, and j = 1, 2, . . . ,m. Let [y]i ∈
[0, 1]m denote (y1i, y2i, . . . , ymi) and yj ∈ [0, 1]n denote
(yj1, yj2, . . . , yjn). Additionally, let y ∈ ([0, 1]n)m denote
(y1,y2, . . . ,ym). Note that we use bold letters to denote
vectors. Moreover, agent i has a cost function fi that
associates a cost to the amount of allocated shared resources
to that agent. We make the following assumption for the cost
function.

Assumption 2.1: The cost function fi : [0, 1]m → R+

is twice continuously differentiable, strictly convex, and
increasing in all variables, for i = 1, 2, . . . , n.
As we work with the average allocation of indivisible re-
sources, we formulate the multi-resource allocation problem
as the following optimization problem:

min
y11,...,ymn

n∑
i=1

fi(y1i, . . . , ymi),

subject to
n∑

i=1

y1i = C1; . . . ;
n∑

i=1

ymi = Cm,

y1i ∈ [0, 1]; . . . ; ymi ∈ [0, 1], i = 1, 2, . . . , n.
(2)

Let y∗ = (y∗11, . . . , y
∗
mn) ∈ ((0, 1]n)m denote the solution

to (2). Let N denote the set of natural numbers, and let k ∈ N
denote the time steps. Our objective is to develop an iterative
stochastic algorithm wherein agents share their states with
a central server; however, they keep their cost function or
partial derivatives of the cost function private. The algorithm
determines the instantaneous allocations Xji(k) and ensures
that the long-term average allocations, as defined in (1)
converge to optimal allocations, that is,

lim
k→∞

y11(k) = y∗11; . . . ; lim
k→∞

ymn(k) = y∗mn.

Hence, agents achieve the minimum overall cost over long-
term averages. By compactness of the constraint set, optimal
solutions exist. The assumption that the cost function fi
is strictly convex and increasing leads to a unique optimal
solution. After finding the Lagrangian of the optimization
problem (2) and following a similar analysis as [6], [13],
[14], we find that the partial derivatives of the cost functions
of all agents competing for a particular resource reach con-
sensus at the optimal point. That is, for i, u ∈ {1, 2, . . . , n}
and j = 1, 2, . . . ,m, the following holds:

∂

∂yji
fi(y1i, . . . , ymi)

∣∣∣
yji=y∗

ji

=
∂

∂yju
fu(y1u, . . . , ymu)

∣∣∣
yju=y∗

ju

. (3)

We use the consensus of derivatives to show that the pro-
posed algorithm reaches optimal values asymptotically. The
consensus of derivatives of cost functions is also used in [6],
[15], [16] to show the convergence of allocations to optimal
values.

III. ALLOCATING MULTIPLE INDIVISIBLE RESOURCES

This section presents multi-indivisible resource allocation
algorithm that generalizes the single indivisible resource
algorithm of [8]; however, we chose a different update rule
for the feedback (public) signal, and the agents are coupled
through multiple shared resources.

Each agent in the federated multi-agent system runs the
algorithm to demand resources. Let τj ∈ (0, 1) be the gain
parameter, and let Θj(k) denote a feedback signal updated
and broadcast by the central server; we also call it the
price or public signal. The central server updates Θj(k)
according to (5) at each time step k and broadcasts it to
all agents in the federated multi-agent system, for all j.
When an agent joins the system at time step k, it receives
the parameter Θj(k) for resource j, for all j. Each agent’s
algorithm updates its resource demand at a time step—either
by demanding one unit of the resource or not demanding
it. The price signal Θj(k) depends on its value at the
previous time step, τj , capacity constraint Cj , and the total
utilization of resource j at the previous time step, for all
j and k. After receiving this signal, agent i’s algorithm
responds in a probabilistic way. It calculates its probability
σji(Θj(k), [y]i(k)) using its average allocation [y]i(k) of
resource j and the derivative of its cost function, for all j
and k, as described in (6). Agent i finds out the outcome

5274



of Bernoulli trial for resource j at time step k, outcome 1
occurs with probability σji(Θj(k), [y]i(k)) and outcome 0
with probability 1− σji(Θj(k), [y]i(k)); based on the value
0 or 1, the algorithm decides whether to demand one unit of
the resource j or not. If the value is 1, then the algorithm
demands one unit of the resource; otherwise, it does not
demand the resource, as stated below.

Xji(k + 1) =

{
1 with probability σji(Θj(k), [y]i(k));

0 with probability 1− σji(Θj(k), [y]i(k)).

(4)

Analogously, it is done for all the resources in the federated
multi-agent system. This process repeats over time. Follow-
ing this, the average allocations converge to optimal allo-
cations. The proposed multi-indivisible resource allocation
algorithm for the central server is presented in Algorithm 1,
and the algorithm for each agent is presented in Algorithm
2.

Algorithm 1: Algorithm of the central server.

1 Input: C1, . . . , Cm, τ1, . . . , τm, X11(k), . . . , Xmn(k), for
k ∈ N and i ∈ {1, 2, . . . , n}.

2 Output: Θ1(k + 1),Θ2(k + 1), . . . ,Θm(k + 1), for
k ∈ N.

3 Initialization: Θ1(0), Θ2(0), . . . ,Θm(0) with real
values,

4 foreach k ∈ N do
5 foreach j ∈ {1, 2, . . . ,m} do
6 calculate Θj(k + 1) according to (5) and

broadcast it in the federated multi-agent
system;

7 end
8 end

We choose a gain parameter τj , a small positive real
number in (0, 1). The public signal Θj(k + 1) depends on
the utilization of resources at a time step; for resource j and
time step k, it is defined as follows:

Θj(k + 1) ≜ Θj(k)−
τj

(k + 1)
2
3

(
n∑

i=1

Xji(k + 1)− Cj

)
,

(5)

j = 1, 2, . . . ,m and k ∈ N. After receiving the price signal
Θj(k) from the central server at time step k, agent i responds
with probability σji(Θj(k), [y]i(k)) to demand resource j at
next time step, defined as:

σji(Θj(k), [y]i(k)) ≜ Θj(k)
yji(k)

∂
∂yji

fi([y]i(k))
∣∣∣
yji=yji(k)

.

(6)

Notice that Θj(k) is used to bound the probability
σji(Θj(k), [y]i(k)) ∈ (0, 1), for all i, j and k. Furthermore,
the agents update probabilities σji(Θj(k), [y]i(k)) at time
step k before demanding the resources at the next time step;

Algorithm 2: Multi resource allocation algorithm of
agent i.

1 Input: Θ1(k),Θ2(k), . . . ,Θm(k), for k ∈ N.
2 Output: X1i(k + 1), X2i(k + 1), . . . , Xmi(k + 1), for

k ∈ N.
3 Initialization: Xji(0)← 1 and yji(0)← Xji(0), for

j ∈ {1, 2, . . . ,m}.
4 foreach k ∈ N do
5 foreach j ∈ {1, 2, . . . ,m} do
6 σji(Θj(k), [y]i(k))←

Θj(k)
yji(k)

∂
∂yji

fi([y]i(k))

∣∣∣
yji=yji(k)

;

7 generate Bernoulli independent random variable
bji(k) with the parameter σji(Θj(k), [y]i(k));

8 if bji(k) = 1 then
9 Xji(k + 1)← 1;

10 else
11 Xji(k + 1)← 0;
12 end
13 end
14 end

the occurrence of an instantaneous allocation Xji(k + 1)
will be independent of the occurrence of the instantaneous
allocations Xνi(k + 1) of other resources in the federated
multi-agent system, for resources j, ν ∈ {1, 2, . . . ,m}, j ̸=
ν.

Following the algorithm, the long-term average allo-
cations converge to optimal allocations. Let Xj(k) =
(Xj1(k), . . . , Xjn(k)) ∈ {0, 1}n and yj(k) ∈ [0, 1]n

denote the vectors with entries Xji(k), yji(k), respec-
tively, and σj(Θj(k),y(k)) denotes the vector with entries
σji(Θj(k), [y]i(k)), for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and
k = 0, 1, 2, . . .

For j = 1, 2, . . . ,m, we reformulate the average allocation
yj(k) as:

yj(k + 1) =
k

k + 1
yj(k) +

1

k + 1
Xj(k + 1). (7)

Which may be reformulated as follows:

yj(k + 1)

= yj(k)+
1

k + 1
[(σj(Θj(k),y(k))− yj(k)) (8)

+ (Xj(k + 1)− σj(Θj(k),y(k)))] .

Let (Xj(k + 1)− σj(Θj(k),y(k))) be denoted by Mj(k+
1), and the step-size 1

k+1 be denoted by a(k), for k ∈
N. Also, let (σj(Θj(k),y(k))− yj(k)) be denoted by
ωj(yj(k)). After replacing these values in (8), we obtain

yj(k + 1) = yj(k) + a(k) [ωj(yj(k)) +Mj(k + 1)] . (9)

Here, for a fixed j, {Mj(k)} is a martingale difference
sequence with respect to the σ-algebra.
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A. Convergence of average allocations

In this subsection, we show the convergence of the price
signal and the average allocation using the stochastic ap-
proximation results for multiple timescales [12, Chapter 6]—
wherein two positive decreasing step sizes are considered;
one step size converges to 0 at a faster rate than the other step
size. Examples of such step sizes are, for k ∈ N, a(k) = 1

k
and b(k) = 1

k3/4 ; notice that a(k) → 0 at a faster rate than
b(k). We now state the following result on the convergence
for multi-time scales with decreasing step sizes from [12,
Chapter 6].

Assumption 3.1: Let x, z ∈ Rn
+, and let the maps ω :

Rn × Rn → Rn, and h : Rn × Rn → Rn. For a fixed
constant x(0) and z(0), let x(k) and z(k) be formulated as
follows

x(k + 1) = x(k) + a(k)
[
ω(x(k), z(k)) +M1(k + 1)

]
,

(10)

z(k + 1) = z(k) + b(k)
[
h(x(k), z(k)) +M2(k + 1)

]
.
(11)

We have the following assumptions.
(i) The maps ω and h are Lipschitz continuous.

(ii) Step sizes {a(k)}k∈N and {b(k)}k∈N are such that the
following are satisfied:

lim
k→∞

a(k) = 0, lim
k→∞

b(k) = 0,

∞∑
ℓ=0

a(ℓ) =∞,

∞∑
ℓ=0

b(ℓ) =∞,

∞∑
ℓ=0

a(ℓ)2 +

∞∑
ℓ=0

b(ℓ)2 <∞, and

lim
k→∞

a(k)

b(k)
= 0.

Thus, z(k) is a fast transient, and x(k) is a slow
component; x(k) is quasi-static and it is almost a
constant for a large k.

(iii) {M1(k)}k∈N and {M2(k)}k∈N are martingale differ-
ence sequences. Let Fk be a σ-algebra generated by
the events up to time step k, then we have

E (M1(k + 1) | Fk, for k ∈ N) = 0, and,
E (M2(k + 1) | Fk, for k ∈ N) = 0.

(iv) supk (∥x(k)∥1 + ∥z(k)∥1) <∞ almost surely.
Theorem 3.2 (Convergence with multi-time-scale step sizes):

[12, Chapter 6] Let x, z ∈ Rn
+, and let the maps

ω : Rn × Rn → Rn, and h : Rn × Rn → Rn. For a fixed
constant x(0) and z(0), let x(k) be formulated as in (10)
and z(k) be formulated as in (11), and Assumptions 3.1
(i) to (iv) are satisfied, then (x(k), z(k)) converges almost
surely.
We now proceed to prove the convergence results for the
multi-resource allocation case. The following Hoeffding’s
result will be useful to show the upper bound of Θj(k).

Theorem 3.3 (Hoeffding’s inequality [17]): Let Xi be the
independent Bernoulli random variables, and let E(Xi) be
their expectations, then for any ϵ > 0, we have

P

(∣∣∣ n∑
i=1

Xi − E(
n∑

i=1

Xi)
∣∣∣ ≥ ϵ

)
≤ 2 exp (−2ϵ2/n). (12)

We state the following upper bound result for the feedback
signal.

Lemma 3.4: For a fixed j, let Θj(0) = Θj0 > 0,
and let Θj(k) be as in (5) and τj > 0. For any ϵ >
0, we have P (|(Θj(k + 1)− E(Θj(k + 1)|Θj(k))| ≥ ϵ) ≤
2 exp

(
−2((k+1)2/3ϵ)2

τ2
j n

)
.

Proof: From (5), we have

Θj(k + 1) = Θj(k)−
τj

(k + 1)2/3

(
n∑

i=1

Xji(k + 1)− Cj

)
.

We obtain

E(Θj(k + 1)|Θj(k))

= Θj(k)−
τj

(k + 1)2/3
E

(
n∑

i=1

Xji(k + 1)

)
+

τj
(k + 1)2/3

Cj .

Thus,

Θj(k + 1)− E
(
Θj(k + 1)|Θj(k)

)
=

τj

(k + 1)
2
3

E
( n∑

i=1

Xji(k + 1)
)
− τj

(k + 1)
2
3

n∑
i=1

Xji(k + 1).

From Hoeffding’s inequality (see Theorem 3.3), we obtain

P (|Θj(k + 1)− E(Θj(k + 1)|Θj(k))| ≥ ϵ)

= P

(∣∣∣∣∣− τj

(k + 1)
2
3

n∑
i=1

Xji(k + 1)

+
τj

(k + 1)
2
3

E

(
n∑

i=1

Xji(k + 1)

)∣∣∣∣∣ ≥ ϵ

)

= P

(∣∣∣∣∣−
n∑

i=1

Xji(k + 1)

+ E

(
n∑

i=1

Xji(k + 1)

)∣∣∣∣∣ ≥ (k + 1)
2
3

τj
ϵ

)

≤ 2 exp

(
−2((k + 1)

2
3 ϵ)2

τ2j n

)
.

We state the following result on bounds.
Lemma 3.5: For a fixed j, let Θj(0) = Θj0 > 0, and let

Θj(k) be as in (5), we have supk
(
∥yj(k)∥1 + ∥Θj(k)∥1

)
<

∞ almost surely.
Proof: As yj(k) ∈ [0, 1]n, and from Lemma 3.4, we

obtain the result.
We now show that, for j = 1, 2, . . . ,m, the sequence

{(yj(k),Θj(k))}k∈N converges almost surely.
Theorem 3.6: For any j, and fixed constants yj(0) and

Θj(0), the sequence {(yj(k),Θj(k))}k∈N converges, almost
surely.
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Proof:
Recall that the instantaneous allocation Xji(k + 1) is

updated as in (4) and the probability σji(Θj(k), [y]i(k))
is calculated as in (6), for all i, j, and k. Moreover, the
average allocation yj(k + 1) is formulated as in (7). Let
us define the map ωj : R × (Rn)m → Rn, and let(
σj(Θj(k),y(k))−yj(k)

)
be denoted by ωj(Θj(k),y(k)).

Also, let
(
Xj(k + 1) − σj(Θj(k),y(k))

)
be denoted by

Mj,1(k + 1). Analogous to (9), we obtain:

yj(k + 1) = yj(k) + a(k) [ωj(Θj(k),y(k)) +Mj,1(k + 1)] ,
(13)

where a(k) = 1
k+1 . Recall the definition of Θj(k) presented

in (5), we choose a small constant τj ∈ (0, 1). We reformu-
late (5) as

Θj(k + 1)

= Θj(k) +
τj

(k + 1)2/3

((
Cj −

n∑
i=1

σji(Θj(k), [y]i(k))

)

+

(
n∑

i=1

σji(Θj(k), [y]i(k))−
n∑

i=1

Xji(k + 1)

))
. (14)

For j = 1, 2, . . . ,m, let the map hj : R × (Rn)m →
R, and let (Cj −

∑n
i=1 σji(Θj(k), [y]i(k))) be denoted by

hj(Θj(k),y(k)).
Let (

∑n
i=1 σji(Θj(k), [y]i(k))−

∑n
i=1 Xji(k + 1)) be

denoted by Mj,2(k+1). Let the step-size τj
(k+1)2/3

be denoted
by bj(k). Then from (14), we obtain:

Θj(k + 1)

= Θj(k) + bj(k)
(
hj(Θj(k),y(k)) +Mj,2(k + 1)

)
. (15)

Assumption 3.1 (i) is satisfied, as the maps ωj and hj are
Lipschitz continuous, for j = 1, 2, . . . ,m. We have step-
size a(k) = 1

k+1 , and for τj ∈ (0, 1), we have the step-size
bj(k) =

τj
(k+1)2/3

; thus, we obtain:

lim
k→∞

a(k) = 0, lim
k→∞

bj(k) = 0,

∞∑
ℓ=0

a(ℓ) =∞,

∞∑
ℓ=0

bj(ℓ) =∞,

∞∑
ℓ=0

a(ℓ)2 +

∞∑
ℓ=0

bj(ℓ)
2 <∞, and

a(k)

bj(k)
→ 0, when k →∞.

These satisfy Assumption 3.1 (ii).
Recall that Fk denotes a σ-algebra generated by the events

up to time step k, then we obtain the following expectation:

E (Mj,1(k + 1) | Fk, for k ∈ N) = 0,

and

E (Mj,2(k + 1) | Fk, for k ∈ N) = 0.

Thus, {Mj,1(k)}k∈N and {Mj,2(k)}k∈N are martingale dif-
ference sequences that satisfy Assumption 3.1 (iii).

From Lemma 3.5, for a fixed j, we have
supk

(
∥yj(k)∥1 + ∥Θj(k)∥1

)
< ∞ almost surely that

satisfies Assumption 3.1 (iv). Thus for all j, from Theorem
3.2, we conclude that (Θj(k),yj(k)) converges, almost
surely.
Note that the proof of convergence in [18] is based on a con-
stant price signal Θj ; however, the current paper shows the
convergence with a varying price signal Θj(k). Furthermore,
price signal Θj(k) has a decreasing step size for all j. We
now make the following remark about the communication
complexity of the model.

Remark 3.7: Although the agents do not need to commu-
nicate with other agents in the federated multi-agent system,
the central server broadcasts the price signals Θj(k) at each
time step; because of the broadcast, the federated multi-agent
system incurs very little communication overhead. Suppose
that Θj(k) takes µ bits floating-point values. If the system
has m indivisible resources, the communication overhead
will be µm bits per time step. The upper bound on the
communication complexity will be O(m)-bits per time unit,
which is independent of the number of agents in the system.

IV. APPLICATION TO ELECTRIC VEHICLE CHARGING

This section presents a hypothetical scenario to regulate
the number of electric vehicles (EVs) that share a limited
number of level 1 and level 2 charging points. We illustrate
through numerical results that EVs receive the optimal charg-
ing points in long-term average allocations. To compare the
results, we solved the optimization problem (2) by the CVX
solver.

Let us assume that the government sets several public
Electric Vehicle (EV) charging stations near workplaces
in Fredericton City to promote daytime charging. Daytime
charging changes the power demand peaks better than home
charging; furthermore, reducing the load on fossil fuel gen-
erators, as the solar panels could produce power during the
daytime [19], [20]. Let us consider that electric vehicle
supply equipments (EVSEs) are installed that support a
combination of slow (level 1) and fast (level 2) chargers to
further load balancing on the power grid or to reduce the
cost to the system.

Consider that n = 250 electric vehicles in the city are
cooperating to access level 1 and level 2 charging points. At
the start of the day, each EV owner calculates its probabilistic
intent to demand the charging points for the day, and it
notifies the managing agency about their outcome. Moreover,
each EV has a private cost function, which associates a cost
that depends on the average allocations of level 1 and level 2
chargers, i’th EV has cost function fi, for i = 1, 2, . . . , n. We
assume that a central server owned by the government agency
keeps track of the aggregate utilization of chargers in a day,
and it broadcasts the price signals Θ1(k) and Θ2(k) in the
network for days k ∈ N. The cost functions may be classified
into different classes based on several factors: the type of
vehicle, its battery capacity, onboard charger capacity, and a
few others. We consider that a vehicle belongs to one of the
classes. Let ai, bi, ci, and di be uniformly distributed random
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Fig. 1: (a) The evolution of average allocations of randomly selected charging points, the dotted lines denote the optimal
values obtained by the CVX solver, (b) the evolution of the derivatives of cost functions fi of all the EVs in the network
with respect to level 1 and level 2 chargers, and (c) the evolution of the ratio of total costs by our solution and the total
optimal cost by the CVX solver.
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Fig. 2: (a) The evolution of the sum of average allocations of charging points, capacities of level 1 and level 2 chargers are
C1 = 100 and C2 = 120, respectively, (b) the evolution of price signals Θ1(k) and Θ2(k).

variables, where ai ∈ (1, 1.5), bi ∈ (1, 2), ci ∈ (3, 4.5), and
di ∈ (8.5, 17), for i ∈ {1, 2, . . . , n}. The cost functions are
listed as follows:

fi(xi, yi) =

 (i)aixi + biyi + ci(xi)
2 + di(yi)

2,
(ii)aixi + biyi +

2
3ci(xi)

2 + 1
4ci(xi)

4

+di(yi)
4.

(16)
We categorize EVs into groups: EVs 1 to 125 belong

to class 1, and EVs 126 to 250 belong to class 2. The
cost functions of class 1 are listed in (16)(i), and the cost
functions of class 2 are listed in (16)(ii). We consider that
there are 100 level 1 chargers, C1 = 100, and there are
120 level 2 chargers, C2 = 120. The initial values assigned
to a few parameters are: Θ1(0) = 0.328, Θ2(0) = 0.35,
τ1 = 0.05, and τ2 = 0.06. We use the proposed Algorithm
1 and Algorithm 2 to allocate charging points to the electric
vehicles in the network. Recall that an EV owner requests
the charging point from the city agency in a probabilistic
way (say, using a web application) based on its private cost
function fi and its previous average allocation of level 1
and level 2 charging points. The EV users do not share
their cost functions or the partial derivatives of the cost
functions with other EV users or with the government

agency. Note a limitation of this application: following the
proposed algorithm, in some cases, an EV user can receive
access to both level 1 and level 2 charging points for a single
EV, which may not be desired in real-world applications.
Through experimental results, we observe that the EVs
asymptotically receive close to optimal allocations of level
1 and level 2 charging points as shown in Figure 1(a), and
they minimize the overall cost to the network. The average
allocations are close to the dotted lines; the dotted lines
are plotted with the optimal values obtained by the CVX
solver. For further verification, the partial derivatives of the
cost functions with respect to a charger type for all EVs
are plotted in Figure 1(b); it illustrates that they make a
consensus, satisfying the KKT conditions for optimality, as
described in (3). Figure 1(c) illustrates the evolution of the
ratio of total costs by our solution and the optimal total cost
obtained by the CVX solver. We observe that the ratio of
total costs

∑n
i=1 fi(xi(k),yi(k))∑n

i=1 fi(x∗
i ,y

∗
i )

converge close to 1.
Figure 2(a) illustrates the sum of the average allocations of

charging points
∑n

i=1 xi(k) and
∑n

i=1 yi(k) over time. We
observe that the sum of the average allocations converges to
the respective capacity, satisfying the capacity constraints.
Finally, Figure 2(b) illustrates the convergence of price
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signals Θ1(k) and Θ2(k), defined in (5).

V. RELATED WORK

In this section, we briefly present the related literature.
Norkin and co-authors in [21] proposed an optimal allocation
approach for indivisible resources based on branch and
bound technique. The authors in [22] developed a mechanism
to compute allocations of indivisible resources. A game
theoretic mechanism for optimal allocation of indivisible
resources is developed in [23]; they consider the agents
having private valuations for resources.

In other directions, fair allocation of mixed resources,
divisible and indivisible, is studied in [24]. Moreover, group
fairness for indivisible resources is studied in [25]. A
federated multi-agent system for actor-critic reinforcement
learning is proposed in [26]. For details on the fair allocation
of indivisible resources, interested readers can refer to the
recent survey at [27], readers can also refer to [13, Chapter
1.4] and more recent work on distributed optimization and
federated optimization.

VI. CONCLUSION

We proposed a new distributed stochastic algorithm to
solve multi-indivisible resource allocation problems in a
federated multi-agent system. The solution does not require
communication between agents. However, a little commu-
nication is required with a central server that keeps track
of the utilization of resources and broadcasts price signals
in the network. We presented the theoretical results on the
convergence of average allocations of resources. The ideas
from multi-time scale stochastic approximation techniques
inspire our solution approach. We present an application to
control a population of electric vehicles for a limited set of
level 1 and level 2 charging points. Experiments show that
the long-term average allocations converge close to optimal
values.
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