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Abstract— Temporal logics (TLs) have been widely used to
formalize interpretable tasks for cyber-physical systems. Time
Window Temporal Logic (TWTL) has been recently proposed
as a specification language for dynamical systems. In particular,
it can easily express robotic tasks, and it allows for efficient,
automata-based verification and synthesis of control policies for
such systems. In this paper, we define two quantitative semantics
for this logic, and two corresponding monitoring algorithms,
which allow for real-time quantification of satisfaction of for-
mulas by trajectories of discrete-time systems. We demonstrate
the new semantics and their runtime monitors on numerical
examples.

I. INTRODUCTION

Temporal logics (TLs) [1] have been widely used to formu-
late high-level, expressive specifications for cyber-physical
systems. Formal verification and synthesis algorithms have
been employed to analyze and control such systems from TL
specifications. In particular, Linear Temporal Logic (LTL) [2]
has been employed to specify tasks for planning problems
[3], [4], [5], [6] and for formal synthesis problems for
discrete-time systems [7]. LTL formulas can be translated
to automata, which can encode the progress towards task
satisfaction. Automata-theoretic tools are typically used with
finite abstractions of the system to produce policies that
guarantee the satisfaction of tasks, or prove that they cannot
be satisfied [3], [7], [8], [9]. Other approaches overcome
some scalability issues by sampling-based planning algo-
rithms guided by the specifications automaton, see [5], [6]
where the authors use RRT∗ [10] as the planning algorithm,
and in [11], [12] the authors use RRG [10] as the planning
algorithm.

Signal Temporal Logic (STL) [13], Metric Temporal Logic
(MTL) [14], and Time Window Temporal logic (TWTL)
[15], unlike LTL, can express specifications with explicit,
concrete-time constraints, e.g., Perform task A between times
t1 and t2 ; right after that, spend t5 time units between times
t3 and t4 performing task B; and for all times do not perform
task C.

The semantics of both STL and MTL are defined over
real-time signals. They both have quantitative semantics,
or robustness, which quantifies the degree of satisfaction
of a formula by a signal [16], [17]. Most existing works
that use STL and MTL for specifications find controllers
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by maximizing robustness, yielding runs of the system that
robustly satisfy the specifications [18], [19], [17], [20], [21].
The work in [22] considers planning for syntactically co-
safe LTL using RRT∗, in addition to the task specifications,
other spatial requirements are expressed using fragment-
STL where its robustness is used as the optimality criterion
for RRT∗. In [23], the authors synthesize controllers for
time-critical systems for which they quantify a temporal
robustness measure that needs to be optimized. The tradi-
tional robustness metric is not differentiable and it is mostly
determined by one value of the signal, i.e., it “masks” most of
the signal. These issues are addressed by the authors of [24],
who introduced an arithmetic and geometric mean (AGM)
robustness measure for STL.

TWTL has several advantages over STL, MTL, and other
concrete-time TLs. First, its syntax and semantics can ex-
press serial tasks in an efficient and explicit way. This is
important in many applications, especially in robotics [15].
Second, TWTL formulae can be efficiently translated into
automata. The complexity of the translation algorithm is
independent of the formula time bounds [15]. This makes
this logic suitable for automata-based synthesis and planning
problems (see [25] for a planning application). TWTL, how-
ever, lacks quantitative semantics that measures the degree
of satisfaction or violation of a formula. In this work, we
modify the syntax of TWTL and allow it to be defined over
predicated regions of the system output space. We define
robustness measures to quantify the degree of satisfaction
of TWTL formulae, and inspired by [24], we extend the
robustness definition to one in which we utilize the notion
of AGM robustness. This enables planning and synthesis
problems, which we plan to address in future follow-up work.

Our contributions are summarized as follows. First, we
adapt the “traditional” quantitative semantics of STL to de-
fine a notion of sound robustness metric (Sec. III-A). Second,
inspired by the AGM-STL robustness [24], we introduce an
AGM robustness measure for TWTL, which is amenable for
a wide spectrum of applications (Sec. III-B). Third, given
partial runs of the system, i.e. runs with lengths less than
the time horizon of a TWTL formula (see Definition 2.1), we
tailor the STL robustness interval semantics [26] to monitor
the TWTL robustness (Sec. IV). Fourth, we introduce a
similar interval sematics to monitor the AGM robustness
at runtime. Finally, we validate the proposed robustness
measures and their monitors in numerical examples (Sec.
V).
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II. PRELIMINARIES

A. Dynamical System

Consider a discrete-time nonlinear system in the form

xt+∆t = f(xt), t = t0, t0 +∆t, t0 + 2∆t . . .

ot = l(xt),
(1)

where x ∈ X ⊂ Rd is the state taking values in a set X ,
Rd is the d-dimensional Euclidean space, ∆t ∈ R>0, and
f : Rd → Rd. ot is an observable output of the system at
time t, and l(.) : X → 2Π is a labeling function where Π is
a set of atomic propositions (tasks) and 2Π is its power set.

A state trajectory of system (1) is a sequence of states
x := xt0xt0+∆txt0+2∆t . . . that satisfy its dynamics. In this
work, an atomic proposition πA ∈ Π takes the Boolean
value ⊤ at state x ∈ X if o := l(x) ∈ A where A :=
{o|h(o) > σ}, h : 2Π → Rd, σ ∈ Rd, and ⊥ otherwise.
x generates a word, o = ot0ot0+∆tot0+2∆t . . . . . . . For
t1, t2 ∈ R≥0; t2 := t1+nt∆t; where nt ∈ N≥0, we denote
the corresponding system trajectory and the generated word,
respectively, as the following, xt1,t2 := xt1xt1+∆t . . . xt2

and ot1,t2 := ot1ot1+∆t . . . ot2 . For t ∈ [t1, t2], xt1,t2(t) =
xt and ot1,t2(t) := ot.

B. Time Window Temporal Logic

We modify the TWTL syntax in [15] such that the atomic
propositions are defined over predicated regions. The TWTL
syntax is defined inductively as follows:

ϕ ::= HdπA|Hd¬πA|ϕ1∧ϕ2|ϕ1∨ϕ2|¬ϕ|ϕ1·ϕ2|[ϕ][a,b] (2)

where πA ∈ Π is an atomic proposition defined over
the predicated region A; ¬, ∧, and ∨ are the negation,
conjunction, and disjunction Boolean operators, respectively;
Hd is the hold operator; · is the concatenation operator; and
[][a,b] is the within operator, where d, a, b ∈ Z≥0 and a ≥ b.

The Boolean semantics over a word ot1,t2 is defined
recursively as follows:

ot1,t2 |= HdπA ⇔ ot ∈ A, ∀t ∈ [t1, t2] ∧ (t2 − t1 ≥ d∆t)

ot1,t2 |= Hd¬πA ⇔ ot /∈ A, ∀t ∈ [t1, t2] ∧ (t2 − t1 ≥ d∆t)

ot1,t2 |= ϕ1 ∧ ϕ2 ⇔ (ot1,t2 |= ϕ1) ∧ (ot1,t2 |= ϕ2)

ot1,t2 |= ϕ1 ∨ ϕ2 ⇔ (ot1,t2 |= ϕ1) ∨ (ot1,t2 |= ϕ2)

ot1,t2 |= ¬ϕ ⇔ ot1,t2 ̸|= ϕ

ot1,t2 |= ϕ1 · ϕ2 ⇔ ∃t = argmin
t∈[t1,t2]

{ot1,t |= ϕ1}

∧ (ot+∆t,t2 |= ϕ2)

ot1,t2 |= [ϕ][a,b] ⇔ ∃t ≥ t1 + a s.t. ot,t1+b |= ϕ

∧ (t2 − t1 ≥ b)
(3)

Definition 2.1 (TWTL Time Horizon [15]): Given ϕ, the
time horizon is defined recursively as follows.

||ϕ|| :=



max(||ϕ1||, ||ϕ2||); if ϕ ∈ {ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2}
||ϕ1||; if ϕ = ¬ϕ1

||ϕ1||+ ||ϕ2||+∆t; if ϕ = ϕ1 · ϕ2

d∆t; if ϕ = HdπA

b; if ϕ = [ϕ1]
[a,b]

(4)

III. TWTL QUANTITATIVE SEMANTICS

Inspired by STL robustness [16] and its AGM version [24],
we tailor robustness measures for TWTL formulae to reason
about the degree of satisfaction of TWTL tasks.

A. TWTL Robustness

Definition 3.1: (TWTL Robustness) Given a TWTL for-
mula ϕ and an output word ot1,t2 of system (1), we define
the robustness degree ρ(ot1,t2 , ϕ) at time 0, recursively, as
follows:

ρ(ot1,t2 , H
dπA) :=

 min
t∈[t1,d+t1]

h(ot) ; (t2 − t1 ≥ d∆t)

ρ⊥ ; otherwise

ρ(ot1,t2 , ϕ1 ∧ ϕ2) := min{ρ(ot1,t2 , ϕ1), ρ(ot1,t2 , ϕ2)}
ρ(ot1,t2 , ϕ1 ∨ ϕ2) := max{ρ(ot1,t2 , ϕ1), ρ(ot1,t2 , ϕ2)}
ρ(ot1,t2 ,¬ϕ) = −ρ(ot1,t2 , ϕ)

ρ(ot1,t2 , ϕ1 · ϕ2) :=

max
t∈[t1,t2)

{min{ρ(ot1,t, ϕ1), ρ(ot+1,t2 , ϕ2)}}

ρ(ot1,t2 , [ϕ]
[a,b]) :=

{
max

t≥t1+a
{ρ(ot,t1+b, ϕ)}; (t2 − t1 ≥ b)

ρ⊥; otherwise
(5)

where ρ⊥ denotes a large negative value that indicates the
robustness of Boolean ⊥.
For ot1,t2 and ϕ, the robustness value ρ(ot+1,t2 , ϕ) indicates
how far is ot1,t2 from the decision boundary of the predicated
region of the task. A positive ρ(ot+1,t2 , ϕ) implies the
Boolean satisfaction of the task, where the greater the value
the more robustly ρ(ot+1,t2 , ϕ) satisfies the task. A similar
argument can be made for negative robustness for violation
of a task.

Lemma 3.1: TWTL robustness (5) is sound, i.e., the
Boolean satisfaction (violation) is implied by a positive
(negative) robustness value.

Proof: See the extended version [27].

Example 3.1: Consider a TWTL formula ϕ =
[H6πA]

[0,10], where A = {o | o ≥ 4}, which reads
as: “Within time 0 and time 10, hold in πA for 6 time
steps”; and three output words o1, o2 and o3, which are
depicted as blue, green, and red traces in the top-left figure
of Fig. 1, respectively. One can see that o1 and o2 satisfy
the task specification where ρ(o1, ϕ) = ρ(o2, ϕ) = 0.099,
whereas o2 violates the task, where ρ(o2, ϕ) = −2.
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B. TWTL Arithmetic and Geometric Mean Robustness
TWTL robustness (Definition 3.1) accounts for the most

critical points of the system output word, which is necessary
for the soundness of the robustness (see Lemma 3.1). How-
ever, it may be very pessimistic robustness measure as high-
lighted in Example 3.2. for instance, the computation of the
robustness ρ(ot1,t2 , H

dπA) is dominated by the minimum
valuation of the predicate function h(·) over the system word
o. Moreover, since its computation involves min and max,
it leads to a non-smooth measure which is computationally
challenging for heuristic- and gradient-based approaches to
maximizes the robustness of the overall task.

To this end, we tailor the notion of AGM robustness [24]
to define the AGM robustness measure for TWTL η. As
we show in the following, η helps mitigate some of the
shortcomings of TWTL robustness ρ and provides a more
optimistic, smooth and sound robustness measure for TWTL.

Consider the function F : R → R, and let [F ]+ :={
F ; F > 0

0; otherwise
and [F ] = −[−F ]+, where F = [F ]+ +

[F ] . We define AGM functions of disjunction and conjunc-
tion of ri ∈ R, i = 1, . . . , N , respectively, as follows.

AGM∨(r1, . . . , rN ) :=


− N

√
N∏
i=1

(1− ri) + 1;

if ∀i ∈ {1, . . . , N}, ri < 0

1
N

N∑
i=1

[ri]+; otherwise

(6)

AGM∧(r1, . . . , rN ) :=


N

√
N∏
i=1

(1 + ri)− 1;

if ∀i ∈ {1, . . . , N}, ri > 0

1
N

N∑
i=1

[ri] ; otherwise

(7)

Definition 3.2 (Normalized TWTL formulae): Given syn-
tax (2), a normalized TWTL formula ϕ is presented as
the formulae defined over normalized atomic propositions
πAnorm

, where Anorm := {o | hnorm(o) > σn}, hnorm :
2Π → [−1, 1]d, and σnorm ∈ [−1, 1].

Throughout the rest of the paper, we assume that all TWTL
formulae are normalized unless explicitly stated otherwise.

Definition 3.3: (TWTL Arithmetic-Geometric Mean Ro-
bustness) Given a normalized TWTL formula ϕ, we define
the AGM robustness of the output word ot1,t2 with respect
to ϕ, recursively, using (6) and (7).

η(ot1,t2 ,⊤) := +1

η(ot1,t2 ,⊥) := −1

η(ot, πA) :=
1

2
(h(ot)− σn)

η(ot1,t2 , ϕ1 ∧ ϕ2) := AGM∧(η(ot1,t2 , ϕ1), η(ot1,t2 , ϕ2))

η(ot1,t2 , ϕ1 ∨ ϕ1) := AGM∨(η(ot1,t2 , ϕ1), η(ot1,t2 , ϕ2))

η(ot1,t2 ,¬ϕ) := −η(ot1,t2 , ϕ)
(8)

η(ot1,t2 , H
dπA) :=

{
AGM∧(η(ot, πA)|t ∈ [t1, t1 + d∆t]); if (t2 − t1) ≥ d

−1; otherwise

η(ot1,t2 , [ϕ]
[a,b]]) :=

{
AGM∨(η(ot,t1+b, ϕ)|t ∈ [t1 + a, t1 + b]); if (t2 − t1) ≥ b

−1; otherwise

η(ot1,t2 , ϕ1.ϕ2) := AGM∨(AGM∧(η(ot1,t, ϕ1), η(ot+∆t,t2 , ϕ2))|t ∈ [t1, t2))

(9)

Theorem 3.1: TWTL AGM robustness, Definition 3.3, is
sound. Formally, we have

η(ot1,t2 , ϕ) > 0 ⇔ ρ(ot1,t2 , ϕ) > 0 =⇒ ot1,t2 |= ϕ

η(ot1,t2 , ϕ) < 0 ⇔ ρ(ot1,t2 , ϕ) < 0 =⇒ ot1,t2 ̸|= ϕ
Proof: See the extended version [27].

Example 3.2: (Continued) Consider the same formula and
words of Example 3.1. η(o1, ϕ) = 0.061, η(o2, ϕ) = 0.010,
where, unlike their ρ value, the AGM robustness measure
η rewards words with more satisfying valuations instead of
being dominated by the most critical valuations while also
preserving the soundness property. The word o1 (the blue
trace in top-left figure of Fig. 1) has more valuations that
robustly contribute to satisfying the formula. In ρ(o1, ϕ), the
4th point of the trace, which is close to lead to violating

the task, dominates the robustness computation. Even if we
assume that the 4th is 2 (which would lead to violating the
task), its η value would be −0.35 that is higher than its
corresponding ρ value, −2. The computation of η considers
the fact that the trace has promising valuations which con-
tribute to satisfying the task. For o3 (the red trace in the same
figure), on the other hand, η(o3, ϕ) = −0.61 which is higher
than ρ(o3, ϕ) = −2, is more realistic violation measure
given that some valuations of o3 are close to contributing
in satisfying the task.

IV. RUNTIME ROBUSTNESS MONITORING

Considering runs of the system with time horizon less
than TL specifications time horizon, runtime verification
techniques are introduced as light weight algorithms to
monitor the satisfaction given such partial runs, see [28] for
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review on monitoring different TLs. Different techniques are
usually utilized for the monitoring task, the work in [29] uses
a rewriting technique to monitor the Boolean satisfaction of
TWTL. In [26], the authors introduced interval semantics to
monitor the robustness degree of STL specifications. The
technique considers partial runs, and with the set of all
possible completions of the run, it computes the best and
worst possible robustness.

In this work, we tailor the STL robustness monitor from
[26] to encode a robustness interval [ρ] to monitor TWTL
robustness. Similarly, we introduce an AGM robustness
interval [η] to monitor the AGM robustness. Our monitors are
sound, which means the correct (AGM) robustness belongs
to the produced interval of the runtime monitor at any time
step.

Let us consider some preliminary definitions that we use
in our TWTL interval semantics.

Definition 4.1 (Prefix, Completions): Consider the time
horizon ||ϕ|| and output words ot1,t′ and ot1,t2 , where
t′ < ||ϕ|| and t2 ≥ ||ϕ||. We denote ot1,t′ as a prefix
of ot1,t2 if ∀t ∈ [t1, t

′],ot1,t2(t) = ot1,t′(t); consequently
we define a set of all possible completions of a prefix as
C := {ot1,t2 | ot1,t′ is a prefix of ot1,t2}

Definition 4.2 (Arithmetics on interval semantics):
Consider the following set of intervals I := {Ii}Ni=1, where
Ii := [Ii, Īi] and Ii ≤ Īi. We define following arithmetics
over I

max(I) := [max(I1, . . . , IN ),max(Ī1, . . . , ĪN )],

min(I) := [min(I1, . . . , IN ),min(Ī1, . . . , ĪN )].
(10)

AGM∨(I) := [AGM∨(I1, . . . , IN ),AGM∨(Ī1, . . . , ĪN )],

AGM∧(I) := [AGM∧(I1, . . . , IN ),AGM∧(Ī1, . . . , ĪN )].
(11)

The singleton interval [I, I] is denoted by {I}.
Before introducing the recursive definition of [ρ] and [η]

we introduce the following definition.

Definition 4.3: (Compact Representation of Set of Inter-
vals) Given words ot1,t′ , ot,t′ , t ∈ [ta, tb], and formulae ϕ
and ϕi, i = 1, . . . , N , for [ρ] and [η] we denote the following
set representation:

[.]i=1,...,N (ot1,t′ , ϕi) = {[.](ot1,t′ , ϕ1), . . . , [.](ot1,t′ , ϕN )},
[.]ta:tb(ot,t′ , ϕ) = {[.](ota,t′ , ϕ1), . . . , [.](otb,t′ , ϕ)},

(12)
where [.](ot1,t2 , ϕ) is the interval semantics defined next.

Consider a TWTL formula ϕ with time horizon ||ϕ||.
Given a partial word ot1,t′ , where t′ ≤ ||ϕ||, for monitoring
the robustness ρ at time t′, we define the robustness interval
[ρ] recursively as follows.

[ρ](ot1,t2 , H
dπA) :=

{ρ(ot1,t2 , H
dπA)}; (t2 − t1 ≥ d)

[ρ⊥, min
t∈[t1,d+t1]

h(ot)]; otherwise

[ρ](ot1,t2 , ϕ1 ∧ ϕ2) := min([ρ](ot1,t2 , ϕ1), [ρ](ot1,t2 , ϕ2))

[ρ](ot1,t2 , ϕ1 ∨ ϕ2) := max([ρ](ot1,t2 , ϕ1), [ρ](ot1,t2 , ϕ2))

[ρ](ot1,t2 , ϕ1 · ϕ2) :=

maxt∈[t1,t2)(min([ρ](ot1,t, ϕ1), [ρ](ot+1,t2 , ϕ2)))

[ρ](ot1,t2 , [ϕ]
[a,b]) :=


{ρ(ot1,t2 , [ϕ]

[a,b]}; (t2 − t1 ≥ b)

[ max
t≥t1+a

{ρ(ot,t1+b, ϕ)}, ρ⊤];
otherwise

(13)

Considering the same specification and word, for monitor-
ing the AGM robustness η at time t′, we define the robustness
interval [η], recursively, using (14),(15).

[η](ot1,t′ , ϕ1 ∧ ϕ2, t
′) := AGM∧([η](ot1,t′ , ϕi)

i=1,2)

[η](ot1,t′ , ϕ1 ∨ ϕ2, t
′) := AGM∨([η](ot1,t′ , ϕi)

i=1,2)

[η](ot1,t′ , H
dπA, t

′) := [η, η̄]

(14)

η̄ :=


d+1
√ ∏

t∈[t1,t′]

(1 + η(ot, πA))(1 + ηmax)|[t
′,d]| − 1; if ∀t ∈ [t1, t

′], η(ot, πA) > 0 ∧ (t′ − t1) < d

1
d+1

∑
t∈[t1,t′]

[η(ot, πA)] ; if ∃t ∈ [t1, t
′], η(ot, πA) < 0 ∧ (t′ − t1) < d

η(ot1,t′ , H
dπA); If (t′ − t1) ≥ d

η :=


|(t′,d]|
|[t1,d]|ηmin; if ∀t ∈ [t1, t

′], η(ot, πA) > 0 ∧ (t′ − t1) < d

1
d+1

( ∑
t∈[t1,t′]

[η(ot, πA)] + |[t′, d]|ηmin

)
; if ∃t ∈ [t1, t

′], η(ot, πA) < 0 ∧ (t′ − t1) < d

η(ot1,t′ , H
dπA); If (t′ − t1) ≥ d

[η](ot1,t′ , [ϕ]
[a,b], t′) :=

{
{η(ot1,t′ , [ϕ]

[a,b])}; if (t′ − t1) ≥ b

AGM∨([η](ot,t1+b, ϕ)t1+a:t2); otherwise

[η](ot1,t′ , ϕ1.ϕ2, t
′) := AGM∨(AGM∧([η](ot1,t′−∆t, ϕ1), [η](ot′,t′ , ϕ2)), . . . ,AGM∧([η](ot1,t1 , ϕ1), [η](ot1+∆t,t′ , ϕ2)))

(15)
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Fig. 1. Demonstration of TWTL robustness and monitoring. (top-left)
Depiction of the valuation of words o1, o2, and o3 w.r.t. time. The evolution
of [ρ] (dashed-line with triangles) and [η] (solid-lines with circles) for words
o1, o2 (bottom-left), and o3 are shown in the top-right, bottom-left, and
bottom-right figures, respectively.

Theorem 4.1: Consider a TWTL formula ϕ and a par-
tial word ot1,t′ , then for any possible completion word
ot1,t2 ∈ C, ρ(ot1,t2 , H

dπA) ∈ [ρ](ot1,t′ , H
dπA) and

η(ot1,t2 , H
dπA) ∈ [η](ot1,t′ , H

dπA).
Proof: See the extended version [27].

Lemma 4.1: (Convergence of Robustness Intervals) Given
a TWTL formula ϕ and word ot1,t2 , where t2 ≥ ||ϕ||; and
for partial words ot1,t′1

and ot1,t′2
, where t′1 < t′2 < t2,

the following set inclusions hold: [ρ](ot1,t′1
) ⊆ [ρ](ot1,t′2

)
and [η](ot1,t′1

) ⊆ [η](ot1,t′2
). For ||ϕ|| ≤ t′ ≤ t2 the

robustness intervals converge to a singleton which is the
true robustness values, i.e., [ρ](ot1,t′) = {ρ(ot1,t2)} and
[η](ot1,t′) = {η(ot1,t2)}.

Example 4.1: (Continued) Given the TWTL unnormal-
ized formula ϕ = [H6πA]

[0,10] with time horizon ||ϕ|| = 10,
we demonstrate the proposed runtime monitors by observing
the robustness intervals [ρ] and [η] of partial words of o1, o2,
and o3 (see the top-left figure of Fig.1). Consider the time
series τ = {0, . . . , 10}. For each partial word we compute [ρ]
and [η] at every t ∈ τ as we the partial words o1(t), o2(t),
and o3(t) become available. The evolution of the intervals
[ρ] and [η] for o1, o2, and o3 are depicted in the top-right,
bottom-left, and bottom-right figures of Fig. 1, respectively,
where the evolution of [ρ] is depicted in dashed-lines with
triangles and the evolution of [η] is depicted in solid-lines
with circles. Notice how the intervals become tighter as the
partial word grows, where eventually when t′ = ||ϕ||, [ρ]
and [η] converge to the true ρ and η values, respectively. In
this example we consider ρ⊤ = 10 and ρ⊥ = −10; one can
notice how the evolution of [η] is smoother than the evolution
of [ρ], due to using the AGM in the computation of η. Note
that we normalize the TWTL formula before computing η
robustness values. Thus, in Fig. 1, η stays within [−1, 1].

V. NUMERICAL EXAMPLE CASE STUDY

We demonstrate the proposed robustness semantics, by
monitoring ρ and η for pre-computed runs of a simple planar

robot system. Assume the time step, ∆t, of the runs is 1. We
consider a simple sequential navigation task with deadlines
and a safety requirement. In the following unnormalized
TWTL formula, we encode the task that reads: Within time
0 and 8, visit region A and stay there for 3 time steps; right
after that, within time 0 and 10, visit region B and stay
there for 4 time steps; right after that, within time 0 and 11,
visit region C and stay there for 3 time steps; and for all
execution time avoid region O. See the left figure of Fig. 2
for a depiction of the planar regions A,B,C, and O.

ϕ =
(
[H4πA]

[0,8] · [H4πB ]
[0,10] · [H3πC ]

[0,11]
)
∧H50¬πO

(16)
The atomic propositions πA, πB , πC , and πO are defined
as predicated regions over the xy − plane; where A :=
{(x, y)|1 ≤ x ≤ 4 ∧ 1 ≤ y ≤ 4}, B := {(x, y)|8 ≤ x ≤
11∧ 3 ≤ y ≤}, C := {(x, y)|1 ≤ x ≤ 4∧ 9 ≤ y ≤ 12}, and
O := {(x, y)|5 ≤ x ≤ 7 ∧ 5 ≤ x ≤ 7}.

We monitor two runs of the robot, o1 and o2, which are
shown as the blue and green traces in the left figure of Fig.
2, respectively. The robustness of o1 and o2 are ρ(o1, ϕ) =
0.4 and ρ(o2, ϕ) = 0.3, whereas their AGM robustness are
η(o1, ϕ) = 0.00076 and η(o2, ϕ) = 0.00015. To monitor the
robustness measures at runtime, consider the time series τ =
{2, 10, 15, 20, 25, 30, 35, 40, 42}. For each partial word we
compute [ρ] and [η] at every t ∈ τ as the partial words o1(t)
and o2(t) become available. The valuations of the intervals
[ρ] and [η] for o1, and o2 at every t ∈ τ are depicted in
the middle, and right figures of Fig. 2, respectively, where
[ρ] is depicted in dashed-lines with triangles and the [η] is
depicted in solid-lines with circles.

Observe that monitoring convergence of [η] is smoother
than the convergence of [ρ], which would be more useful in
some applications. In our future work, we consider incremen-
tal planning for TWTL tasks for which we require runtime
monitors to use as a heuristic to maximize the satisfaction
of the task. We find that aiming to maximize η in planning
applications would yield smoother paths, we leave the details
of monitoring for planning applications for future work.

VI. CONCLUSION AND FUTURE WORK

Given the richness of Time Window Temporal Logic as a
specification language for dynamical systems, we introduce
two quantitative semantics to measure the robustness of
TWTL formulae. In the first measure, which we call TWTL
robustness, we introduce a distance measure between the
system run and the formula satisfaction decision boundary
based on the most critical values of the run. In the second
measure, which we call AGM TWTL robustness, we quantify
the satisfaction degree by another distance measure using
the arithmetic and geometric mean of the system run values
based on some rules that guarantee the soundness of the
measure. In planning applications, AGM TWTL robustness
enjoys a key advantage over the first one, in that it gives
more reward to values that contribute to the formula satis-
faction whereas TWTL robustness is dominated by the most
critical values. We plan to demonstrate this advantage in
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Fig. 2. Demonstration of monitoring the TWTL robustness and AGM TWTL robustness of precomputed planar robot runs, o1 and o1, against satisfying
formula (16). Words o1 and o2 in an xy − planar environment are shown in the blue and green traces in the left figure, respectively. The valuations of
the intervals [ρ] and [η] for o1, and o2 at every t ∈ {2, 10, 15, 20, 25, 30, 35, 40, 42} are depicted in the middle, and right figures, respectively, where
[ρ] is depicted in dashed-lines with triangles and the [η] is depicted in solid-lines with circles.

future follow-up work. Given partial runs of the system, we
develop runtime monitors that produce interval bounds on
the quantitative semantics. We demonstrate the introduced
quantitative semantics by monitoring TWTL robustness and
AGM TWTL robustness of precomputed planar robot runs
against some TWTL specifications.
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D. Ničković, and S. Sankaranarayanan, “Specification-based monitor-
ing of cyber-physical systems: a survey on theory, tools and applica-
tions,” Lectures on Runtime Verification: Introductory and Advanced
Topics, pp. 135–175, 2018.

[29] E. Bonnah and K. A. Hoque, “Runtime monitoring of time window
temporal logic,” IEEE Robotics and Automation Letters, vol. 7, no. 3,
pp. 5888–5895, 2022.

6840


