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Abstract— Using only the system output, a stable dynamic
residual-neural-network-based (DRNN-based) estimator with
excellent learning ability is devised to deal with unknown
nonlinearities and disturbances of control systems. First, the un-
known nonlinearities and disturbances are treated as a lumped
disturbance, and an auxiliary variable is introduced to indicate
the adverse impact on the system output. Then, to suppress this
impact, a stable DRNN is organically integrated into a conven-
tional equivalent-input-disturbance (EID) estimator to enhance
the learning or estimation ability for the lumped disturbance.
As for interpretability, the feed-forward neural network (NN)
term can be viewed as a dynamic learning compensator, which
is optimized by the backpropagation algorithm, and the residual
term can be viewed as a performance-oriented adaptive learning
gain. The stability of the DRNN-based estimator is guaranteed.
Finally, comparisons with a conventional EID-based method
show the developed learning method has an incomparable
dynamic performance in a case study of a single-joint robot.

I. INTRODUCTION

Unknown nonlinearities and disturbances widely exist
in practical systems [1]. Developing effective strategies is
crucial to improving system performance in applications like
robotics, aerospace, and smart grids.

Despite the differences between nonlinearities and dis-
turbances, treating nonlinearities as disturbances allows the
transformation of the challenge of nonlinear control into
the problem of disturbance rejection. Accordingly, numerous
methods designed for disturbance rejection are applicable to
tackle both nonlinearities such as classic control methods
(e.g. H∞ control [2] and sliding-mode control [3]) and active
disturbance-rejection (ADR) methods based on disturbance
estimation and compensation (e.g. the disturbance observer
(DOB) [4], the extended-state observer (ESO) [5], and the
equivalent-input-disturbance (EID) approach [6]).

The DOB in the frequency domain employs an inverse
of a plant together with a filter to estimate disturbances of
linear systems [7]. It is not easy to formulate the filter due
to the multiple constraints of causality, stability, and control
performance. A nonlinear disturbance observer (NDOB) was
presented to compensate for disturbances in a nonlinear
system [8]. It required system states and disturbance informa-
tion. Viewing nonlinearities and disturbances as an extended
state of a control system, the ESO estimates the lumped
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disturbance together with the system states [9]. However,
the ESO requires the match condition for disturbances. This
may narrow the range of its applications.

Using the EID concept, the EID estimator effectively
implements disturbance-rejection control through the recon-
struction of an artificial disturbance, known as an EID,
which is defined on the control input channel and has
the same effect as real lumped disturbances on the system
output [10]. The EID approach is effective for both matched
and mismatched nonlinearities and disturbances. It has been
widely used [11], [12].

In recent years, owing to the powerful learning and
adaptive ability, neural networks (NNs) have been widely
used in several fields. For instance, metaheuristic algorithms
were incorporated into recurrent NNs to solve prediction
and optimization problems of kinematic control of redundant
mobile manipulators [13], [14]. However, these results are
mostly limited to open-loop applications. Integrating NN al-
gorithms into the closed-loop system remains a challenge for
improving the control and learning performance of dynamic
systems.

In this paper, a dynamic residual neural network (DRNN)
is organically integrated into the analysis and synthesis of an
EID-based control system with unknown nonlinearities and
disturbances. To be specific, a stable DRNN-based estimator
is developed, which capitalizes on the learning capabilities
of NNs and has remarkable control performance compared
with classic control theory methods. Moreover, the uniformly
ultimately bounded stability is guaranteed for the closed-loop
learning control system. The main novelties of this paper are
listed as follows.

• In order to evaluate the learning or estimation effect for
unknown nonlinearities and disturbances, an auxiliary
indicator is first introduced.

• A performance-oriented adaptive learning law with sta-
bility guarantee is devised for the residual term of the
DRNN.

• The feed-forward neural network (NN) component
serves as a learning compensator, improving dynamic
estimation performance through backpropagation opti-
mization.

In this paper, Rm×n denotes the set of real matrices
with m rows and n columns; P = PT > 0 means P is a
positive-definite symmetric matrix; trace(A), λmax(A) and
λmin(A) denote the sum of diagonal elements, the maximum
and minimum eigenvalue of the matrix A, respectively; |a|
denotes the absolute value of a scalar a; and ∥x∥ denotes the
norm of a vector or matrix x.
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Fig. 1. Configuration of DRNN-based control system

II. SYSTEM CONFIGURATION

The configuration of the developed control system is
shown in Fig. 1. It mainly has four parts: a plant, a state
observer, a DRNN-based estimator, and a state-feedback
controller.

Consider the following system{
ẋ(t) = Ax(t)+Bu(t)+B f f (x(t),u(t), t)+Bdd f (t)
y(t) =Cx(t) (1)

where x(t)∈Rn is the system state; u(t), y(t)∈R are the con-
trol input, system output, respectively; f (x(t),u(t), t)∈Rn f is
a function including nonlinearities and internal uncertainties
of the system; d f (t) is an exogenous disturbance; and A, B,
B f , Bd , and C are real constant matrices with compatible
dimensions.

Assumption 1: (A,B) is controllable and (A,C) is observ-
able.

Assumption 2: (A,B,C) has no zeros on the closed left
half of the complex plane.

Assumption 3: For any x(t), z(t) ∈ Rn, the nonlinear
function f (x(t),u(t), t) satisfies f (0,0, t) = 0 and

∥ f (x(t),u(t), t)− f (z(t),u(t), t)∥ ≤ R∥(x(t)− z(t))∥ (2)

where R is a positive number.
Assumption 4: The d f (t) satisfies

|d f (t)| ≤ dm, t ≥ 0 (3)

where dm is an unknown but bounded positive number.
A full-order state observer is constructed to approximate

the states of the plant (1) by{ ˙̂x(t) = Ax̂(t)+Bu f (t)+L(y(t)− ŷ(t))
ŷ(t) =Cx̂(t) (4)

where x̂(t), u f (t), and ŷ(t) denote the state, input, and output
of the observer, respectively; and L represents the observer
gain that needs to be determined.

The feedback control law u f (t) is expressed as

u f (t) = Kpx̂(t). (5)

Denote f̃e(t) as the EID estimate of the DRNN-based
estimator. The details about the DRNN-based estimator are
given in the next section. Integrating the EID estimate f̃e(t)
into the feedback control law u f (t) yields

u(t) = u f (t)− f̃e(t). (6)

III. AUXILIARY IMPACT INDICATOR OF LUMPED
DISTURBANCE

Due to the unknown of the nonlinearities and disturbances,
it is difficult to uncover their impact on the control system
directly. It is well known that an observer can be viewed
as a copy version of a control system where there are no
nonlinearities and disturbances.

By substituting (5) into (4), the dynamics of the observer
can be rewritten as

˙̂x(t) = AK x̂(t)+Lỹ(t) (7)

where
ỹ(t) = y(t)− ŷ(t) (8)

and
AK = A+BKp. (9)

Further, according to (8), we have

y(t) =Cx̂(t)+ ỹ(t). (10)

Therefore, by the auxiliary variable ỹ, the impact of the
nonlinearities and disturbances on the system output can be
seen from the observer dynamics (7) together with its system
output equation (10). Further, when ỹ is zero, the impact of
the nonlinearities and disturbances vanishes.

As a result, the deviation of ỹ from the origin indicates
the impact of the unknown nonlinearities and disturbances
on the system output in a way.
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Fig. 2. Conventional EID estimator.

IV. DRNN-BASED ESTIMATOR

A conventional EID estimator is recalled in this section
and then the developed DRNN-based estimator is introduced.

A. Conventional EID Estimator

Based on the EID concept, the control idea of EID
estimators is to reconstitute an EID estimate and feed it back
to the control input channel. Different from the GESO, the
EID estimator does not require the coordination gain and
is regardless of both matched and mismatched disturbances,
since the estimate is acted on the control input channel.

The conventional EID estimator is shown in Fig. 2, where
the filter is used to select the angular frequency for estimation
and Ke is a control gain [15].

B. Novel DRNN-based Estimator

To incorporate the strong learning ability of NN into EID
estimators, a DRNN-based estimator is constructed as shown
in Fig. 1, which consists of a feed-forward NN and a residual
term. Moreover, a parameter α is introduced to enhance the
stability.

The output of the DRNN is

ϕc(ỹ) =W [2]h(W [1]ỹ)+W [3]ỹ (11)

where W [1],W [2] are the weights of the input layer and the
hidden layer of the feed-forward NN, respectively and W [3]

is the weight of the residual term.
For simplicity, one hidden layer is selected for the feed-

forward NN and the hyperbolic tangent function is used for
the activation function of a neuron. For any neuron of the
hidden layer, we have hi(W

[1]
i ỹ) = tanh(W [1]

i ỹ), where i =
1,2, ...,nn with nn being the neuron number; W [1]

i is the i-th
row of W [1]; and hi(W

[1]
i ỹ) is the i-th element of h(W [1]ỹ).

Then, an EID estimate f̂e(t) is

f̂e(t) = ϕc(ỹ)+u f (t)−u(t). (12)

As f̂e(t) is a self-referential function, a filter F(s) is em-
ployed to address this issue. Denote a state-space represen-
tation of F(s) as{

ẋg(t) = Agxg(t)+Bg f̂e(t)

f̃e1(t) =Cgxg(t).
(13)

According to Fig. 1, the filtered estimate f̃e(t) is

f̃e(t) = f̃e1(t)+αϕc(ỹ) (14)

where α is a scalar to improve the stability.

V. LEARNING CONTROL OF DRNN-BASED ESTIMATOR

The learning control of the DRNN-based estimator is
divided into two parts. The feed-forward NN is treated as
a dynamic compensator. The residual term is treated as a
performance-oriented adaptive learning control gain for the
estimator, which is updated to reduce the impact of the
nonlinearities and disturbances on the system output.

A. Dynamics of DRNN-Based Observer
Let the state error between the plant (1) and the observer

(4) be
x̃(t) = x(t)− x̂(t). (15)

A combination of (1) and (4) gives{
˙̃x(t) = ALx̃(t)−B f̃e(t)+B f f (x(t),u(t), t)+Bdd f (t)

ỹ(t) =Cx̃(t)
(16)

where
AL = A−LC.

According to (13) and (14), we have{
ẋe(t) = Aexe(t)+Beϕc(ỹ)

f̃e(t) =Cexe(t)+Deϕc(ỹ)
(17)

where xe(t) = xg(t), Ae = Ag+BgCg, Be = Bg, Ce =Cg, and
De = αI.

According to (11), combining (16) and (17) gives{
ψ̇(t) =Aψ ψ(t)+Bψ ϕc(ỹ)+Bψ f f (x(t),u(t), t)+Bψdd f (t)

ỹ(t) =Cψ ψ(t)
(18)

where
ψ(t) =

[
x̃(t)
xe(t)

]
,Aψ =

[
AL −BCe
0 Ae

]
,Bψ =

[
−BDe

Be

]
Bψ f =

[
B f
0

]
,Bψd =

[
Bd
0

]
,Cψ =

[
C 0

]
.

(19)
Lemma 1: (Kalman–Yakubovich–Popov [1]) For a system

G(s) = (A,B,C,D) with (A,B) being controllable and (A,C)
being observable, G(s) is strictly positive real if and only
if there exist matrices P = PT > 0, W , M, and a positive
constant ε such that the following equations hold: PA+AT P =−MT M− εP

PB =CT −MTW
W TW = D+DT .

(20)

B. Learning Control of Feed-Forward NN
For performance-oriented estimation, the weights of the

feed-forward NN are optimized by the backpropagation
algorithm.

Theorem 1: The output of the feed-forward NN is
bounded as long as the weight learning laws for the feed-
forward NN are adopted by

Ẇ [1] =−η1κ1(ỹ)−ρ1W [1], (21)

Ẇ [2] =

{
−η2κ2(ỹ)−ρ2W [2], for ∥W [2]∥ ≤W [2]

m

0, for ∥W [2]∥>W [2]
m

(22)

3601



where η1,η2 are the learning rates; ρ1,ρ2 are small positive
numbers; W [2]

m is the bound of W [2]; and
κ1(ỹ)=

(
ỹT ∂ ỹ

∂ϕc
W [2]

Ξ

)T

ỹT ,Ξ = (I −h(W [1]ỹ)hT (W [1]ỹ))

κ2(ỹ)=
(

ỹT ∂ ỹ
∂ϕc

)T

hT (W [1]ỹ),
∂ ỹ

∂ϕc
=Cψ(eAψ t − I)A−1

ψ Bψ .

(23)
Proof : Choose the cost function as

J =
1
2

ỹT ỹ. (24)

On the other hand, ∂J
∂W [2] and ∂J

∂W [1] are{
∂J

∂W [2] =
∂J
∂ ỹ

∂ ỹ
∂ϕc

hT (W [1]ỹ) = (ỹT ∂ ỹ
∂ϕc

)T hT (W [1]ỹ)
∂J

∂W [1] =
∂J
∂ ỹ

∂ ỹ
∂ϕc

ỹT = (ỹT ∂ ỹ
∂ϕc

W [2]Ξ)T ỹT (25)

where Ξ is given by (23).
According to (18), we have

ỹ = Cψ eAψ t
ψ(0)−

∫ t

0
Cψ eAψ (t−τ)Bψ ϕc(ỹ(τ))dτ

+
∫ t

0
Cψ eAψ τ Bψ f f (x(t − τ),u(t − τ), t − τ)dτ

+
∫ t

0
Cψ eAψ τ Bψdd f (t − τ)dτ.

(26)

Then, we have

∂ ỹ
∂ϕc

=−
∫ t

0
Cψ eAψ (t−τ)Bψ dτ =Cψ(eAψ t − I)A−1

ψ Bψ .

Consequently, we have the learning laws (21) and (22).
Due to the boundedness of the weight W [2] by (21) and
∥h(W [1]ỹ)∥ ≤ 1, the output W [2]h(W [1]ỹ) of the feed-forward
NN is bounded. This completes the proof.

C. Learning Control of Residual Term
A performance-oriented adaptive learning law is designed

for the residual term with guaranteed stability in this sub-
section.

Theorem 2: The system of (18) is input-to-state stable as
long as the system (Aψ ,Bψ ,Cψ) is strictly positive real and
the adaptive weight W [3] of the residual term is taken by

W [3] = kσ
T (t) (27)

where
σ̇ =−sign(k)γ ỹT ỹ−βσ (28)

k is an nonzero number; and γ,β are positive numbers.
Proof : Choose a Lyapunov function as

V = ψ
T Pψ +

|k|
γ

σ
T

σ (29)

where P = PT > 0. The derivative of V along the system of
(18) is

V̇ =ψ
T (PAψ +AT

ψ P)ψ +2ψ
T PBψW [3]+2

|k|
γ

σ
T

σ̇

+2ψ
T PBψ π(ỹ)+2ψ

T PBψdd f +2ψ
T PBψ f f (30)

where π(ỹ) =W [2]h(W [1]ỹ) is the output of the feed-forward
NN. By Lemma 1, we have

V̇ =−ψ
T (MT M+ εP)ψ +2ỹTW [3]+2

|k|
γ

σ
T

σ̇

+2ψ
T PBψ π(ỹ)+2ψ

T PBψdd f +2ψ
T PBψ f f . (31)

When the adaptive weight W [3] is selected as (27) we have

V̇ =−ψ
T (MT M+ εP)ψ − |k|

γ
βσ

T
σ +2ψ

T PBψ π(ỹ)

+2ψ
T PBψdd f +2ψ

T PBψ f f . (32)

Using the following inequalities

2ψ
T PBψ f f ≤ ε

4
ψ

T Pψ +
4
ε
(Bψ f f )T PBψ f f

2ψ
T PBψdd f ≤

ε

4
ψ

T Pψ +
4
ε
(Bψdd f )

T PBψdd f

2ψ
T PBψ π(ỹ)≤ ε

4
ψ

T Pψ +
4
ε
(Bψ π(ỹ))T PBψ π(ỹ),

we have

V̇ ≤−ψ
T (MT M+

ε

4
P)ψ +

4
ε
(Bψ f f )T PBψ f f − |k|

γ
βσ

T
σ

+
4
ε
(Bψdd f )

T PBψdd f +
4
ε
(Bψ π(ỹ))T PBψ π(ỹ).

(33)
According to Theorem 1, the output of the feed-forward
NN is bounded. For f (x(t),u(t), t) and d f (t) satisfying
Assumption 3 and Assumption 4, we have

V̇ ≤−(λmin(MT M+
ε

4
P)− 4

ε
λmax(BT

ψ f PBψ f )R2)∥ψ∥2

− |k|
γ

βσ
T

σ+
4
ε

λmax(BT
ψdPBψd)d2

m+
4
ε

λmax(BT
ψ PBψ)(W

[2]
m )2.

Therefore, the system of (18) is input-to-state stable [1].
This completes the proof.

VI. STABILITY ANALYSIS OF CLOSED-LOOP SYSTEM

This section summarizes a robust stability condition by
Theorems 1 and 2.

Theorem 3: When the matrix Aψ of (19) and the matrix
AK of (9) are designed to be stable; the system (Aψ ,Bψ ,Cψ)
is strictly positive real; and the weights are selected by (21),
(22), and (27), then the DRNN-based closed-loop system is
uniformly ultimately bounded stable.

The proof is clear. So it is omitted here.
A closed look clarifies that the system (Aψ ,Bψ ,Cψ)

is actually the series system of the system (AL,−B,C)
and the system (Ae,Be,Ce,De). To make the series system
(Aψ ,Bψ ,Cψ) stable, Ae should be selected to be stable.
Summarizing the key findings leads to the design procedure
outline as illustrated in the Algorithm 1 for the developed
DRNN-based control system.

VII. SIMULATIONS AND ANALYSIS

In this section, we apply the developed method to a single-
joint robot system. The single-joint robot contains one joint
and one rigid link, and its physical structure is shown in Fig.
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Algorithm 1: Learning Control Design Algorithm

1 Design Kp and L such that AK of (9) and AL of (16)
are stable, respectively;

2 Select the filter (Ag,Bg,Cg) such that Ae is stable;
3 repeat
4 Select α;
5 until The system (Aψ ,Bψ ,Cψ) of (18) is strictly

positive real;
6 repeat
7 Select k,γ , and β for the adaptive learning law

(27) and (28);
8 Select η1,η2,ρ1,ρ2;
9 Initiate W [1](0),W [2](0) within [−1, 1];

10 Train the DRNN;
11 until The disturbance-rejection performance is

satisfactory;
12 End.

x

y

q

Robot joint

Center of mass

Endpoint

l

g

m,J

τ

Fig. 3. Physical structure of the single-joint robot.

3, where q is the angle of the link relative to the vertical axis;
m is the mass of the link; l is the distance from the robot
joint to the center of mass of the link; J is the moment of
inertia relative to the link shaft; and τ is the torque of the
motor.

The Euler–Lagrange model [16] of the single-joint robot
is

(ml2 + J)q̈+mglsin(q) = τ +d (34)

where d denotes joint friction and exogenous disturbance.
The value of the system parameters in (34) are{

m = 0.7980 kg, l = 0.1238 m
g = 9.80 m/s2, J = 0.0198 kg ·m2.

(35)

Let x1 = q,x2 = q̇, u = τ , and y = x1 +x2. The parameters
in the state-space model (1) are A =

[
0 1
0 0

]
, B = B f =

[
0

31.234

]
, Bd =

[
1
1

]
C =

[
1 1

]
, f (x(t),u(t), t) = 0.9682sin(x1(t)).

(36)
Let the disturbance be

d f (t) = 10, 3 ≤ t ≤ 7. (37)

Use the linear quadratic regulation (LQR) method to
design Kp and L such that AK and AL are Hurwitz. The

corresponding weighting matrices are{
QK = diag{10,10}, RK = 1
QL = diag{1000,1000}, RL = 1

which give

Kp = [−3.1623 −3.1941] , L = [13.800 31.623] . (38)

As the conventional EID estimator, the low-pass filter F(s)
is selected as

F(s) =
100

s+100.1
. (39)

To ensure the system (Aψ ,Bψ ,Cψ) of (18) is strictly
positive real, α is selected as

α =−1000.

For the DRNN-based estimator, by trial and error, the
parameters are chosen as{

k = 10, γ = 106, β = 1
η1 = 0.0010,η2 = 0.0010,ρ1 = 0.0002,ρ2 = 0.0002.

Choose 5 neurons for the hidden layer of the feed-forward
NN and let the initial values W [1](0), W [2](0) be random
numbers within the range [−1,1]. Train the feed-forward NN
five times for proper initial weights and the final weights are{

W [1](t f ) = [0.3318,−0.0910,−0.1065,−0.9678,0.7232]
W [2](t f ) = [0.8751,−0.0423,0.1399,0.9871,−0.1932].

where t f = 10 s is the final time.
To validate the developed method in the real environment,

bandwidth-limited white noise with a signal-noise ratio being
about 40 dB and a sampling time being 0.01 s is added to the
system output. The output response is shown in Fig. 4. The
output almost has no error during the whole process. It is
worth noting the developed DRNN-based learning estimator
has remarkable dynamic performance when the large force
is imposed at the 3th s and then removed at the 7th s.

The disturbance-rejection performance of the DRNN-
based system is compared with the conventional EID-based
system [15]. To be fair, the state-feedback control gain,
the observer gain, and the bandwidth of the first-order
filter are the same as the DRNN-based control system. For
comparison, the results of the proceeding two methods are
shown in Fig. 5.

Although the conventional EID method is able to provide
a similar steady-state performance, the overshoots of the
control action and system output are near zeros, which are
far less than those of the conventional EID method. This is
an incomparable advantage.

VIII. CONCLUSION

To enhance the learning or estimation performance for un-
known nonlinearities and disturbances, this paper appropri-
ately integrated a DRNN into an EID-based control system.
First, an auxiliary indicator was used to evaluate the impact
of nonlinearities and disturbances on the system output.
Then, a DRNN was integrated into a conventional EID
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Fig. 4. System response of DRNN-based control system.

estimator framework. This methodology utilized a residual
term as a performance-focused adaptive learning mechanism
to ensure stability. The feed-forward NN acted as a dynamic
learning compensator, refined through backpropagation opti-
mization. Finally, the efficacy and superior performance of
the DRNN-based estimator were demonstrated on a single-
joint robot system.
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