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Abstract—This paper investigates the robot state estimation
problem within a non-inertial environment. The proposed state
estimation approach overcomes the common assumption of static
ground in the system modeling. The process and measurement
models explicitly treat the movement of the non-inertial environ-
ments without requiring knowledge of its motion in the inertial
frame or relying on GPS or sensing environmental landmarks.
Further, the proposed state estimator is formulated as an invari-
ant extended Kalman filter (InEKF) with the deterministic part
of its process model obeying the group-affine property, leading to
log-linear error dynamics. The observability analysis of the filter
confirms that the robot’s pose (i.e., position and orientation) and
velocity relative to the non-inertial environment are observable.
Hardware experiments on a humanoid robot moving on a rotating
and translating treadmill demonstrate the high convergence rate
and accuracy of the proposed InEKF even under significant
treadmill pitch sway, as well as large estimation errors.

Index Terms—state estimation, non-inertial environments, in-
variant filtering, legged robots.

I. INTRODUCTION

Legged robots operating in non-inertial environments, such
as moving vehicles on land, sea, and air, have significant ap-
plications in emergency response, inspection, and surveillance
[1]. These environments present unique challenges for robot
state estimation, as they deviate from the typical assumption of
a static ground, showing continuous and time-varying ground
movements [2]. These environments can also be GPS-denied
and visually constrained, adding to the complexity of filter
design. This paper aims to create an accurate real-time state
estimator for legged locomotion in such challenging settings.

Existing filtering approaches for legged and general ground
robots generally assume a static ground in the inertial frame,
utilizing this static contact point as a pseudo measurement
to ensure accurate state estimation through various odometry
methods and extended Kalman filters [3]—[7]. However, these
methods may fall short in non-inertial settings where ground
movement is temporally persistent and multidirectional.

To relax the zero contact velocity condition, new ap-
proaches have been explored, such as visual-inertial odometry
to account for foot or wheel slippage [8], and inertial-wheel
odometry [9] to reject slippage as outliers. Also, to handle
significant ground accelerations, previous research has relaxed
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Fig. 1: Illustration of the reference frames used in the filter derivation.

the static ground assumption, integrating inertial and leg
odometry without the need for GPS or fixed environmental
landmarks [2]. Yet, this approach assumes accurately known
ground pose and velocity in the inertial frame, which may not
hold in practical scenarios where the ground movement in the
inertial frame cannot be directly sensed or estimated.

State estimation in multi-agent systems, such as those
involving unmanned aerial vehicles, reflects similar complexi-
ties encountered in non-inertial environments where reference
frames move in the inertial frame. Although cameras and laser
scanners can provide data for relative pose estimation [10],
their typical slow data acquisition rates and high costs limit
their applicability for real-world tasks.

Beyond state estimation in non-inertial environments, in-
variant extended Kalman filtering (InEKF) [11]-[13] has been
introduced to enable fast error convergence under significant
errors by exploiting the symmetry reduction for systems
evolving on matrix Lie groups. By the InEKF theory [6], if the
deterministic unbiased process model satisfies the group-affine
property, then there exists an exactly log-linear error dynamics
in the Lie algebra. Also, given an invariant observation, the
filter is provably convergent under arbitrary initial error, and
nonlinear error can be recovered exactly at any time. Although
InEKF has been applied to solve the state estimation problem
for legged [3] and wheeled [4], [14] robots, the applicability
of the InEKF for state estimation in non-inertial environments
remains under-explored due to reasons mentioned earlier.

This paper presents an InEKF approach that estimates the
relative pose and velocity of a legged robot operating in non-
inertial environments under significant estimation errors. The
proposed filter overcomes the common assumption that the
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ground is static in the inertial frame, and its underlying models
explicitly consider the ground movement without requiring
knowledge of the ground motion in the inertial frame. The
key contributions include: (a) We expand the standard leg
odometry-based measurement model to accommodate non-
inertial environments, utilizing the kinetic characteristics of
robot movement on accelerating surfaces. (b) The determin-
istic part of the process model is structured to be group
affine, ensuring that the logarithmic error equations are not
dependent on the state trajectories and are exactly linear.
(c) Our filter fuses leg odometry with data from an IMU
attached to dynamic ground and another onboard the robot,
rendering the robot’s relative position, orientation, and velocity
observable without relying on exteroceptive sensors such as
cameras. (d) Hardware experiments on a humanoid robot
moving on a rotating treadmill validate the theoretical results.

II. MATHEMATICAL PRELIMINARIES AND NOTATIONS

Consider a matrix Lie group G C R"*™. Its Lie algebra
g is the tangent space at the group identity element I;. The
isomorphism, ()" : R1™8 — g maps any vector & € RIimo
to the Lie algebra. The exponential map of the Lie group,
exp : RIM8 5 G is given by exp (£) = exp,, (fA) , Where
exp,,(-) is the usual matrix exponential. For any & € R4m¢
and X € G, the adjoint matrix Adx : g — g performs a
change of basis for velocities to account for the change of
observing frame, and is defined as: (Adx¢)" = Xe XL,

We use (-) and (-) to denote the estimated value and
measurement of (-), respectively. The right subscript ¢ of
(-), indicates the time t. We use {D}, {W}, {F} and {B}
to denote the reference frames attached to the non-inertial
dynamic ground, inertial world frame, robot’s stance foot, and
robot’s base link (see Fig. 1). R, p, and v respectively denote
the orientation, position, and velocity of a given object.

The left superscript of a position, orientation, or velocity
variable denotes the coordinate system where the variable is
expressed. If the right superscript contains two letters, then the
first and the second letters respectively represent the reference
frame and the object of interest. For instance, we use Pp”?
to represent the position of robot’s base frame {B} relative
to the origin of the dynamic ground frame {D}, expressed
in {D}. If the right superscript only has one letter, then it
represents the object of interest. For example, PR denotes
the orientation of {B} with respect to (w.r.t.) {D}.

III. PROBLEM FORMULATION

Navigating robots within non-inertial environments requires
that planners and controllers understand the robot’s movement
state relative to the dynamic ground, rather than the inertial
frame. Standard proprioceptive sensors such as IMUs and
encoders do not directly measure these states. Thus, our
proposed filter estimates the robot’s orientation, velocity, and
position relative to the dynamic ground frame {D}.

A. Sensor Measurements

The sensors include (a) a robot’s IMU mounted at the robot
torso (i.e., the base link), which measures the angular velocity

and linear acceleration of the base w.r.t. the base frame {B},
and (b) joint encoders, which measure the joint angles q; of
the robot. Additionally, we consider an external IMU attached
to the non-inertial dynamic ground frame {D} whose data is
shared with the robot. This IMU can be placed at any location
fixed to the dynamic ground. Such an external sensor setting
is general and common as non-inertial platforms such as ships
and airplanes are typically equipped with onboard IMUs.
Without loss of generality, we assume that the IMU frames
of the robot and the dynamic ground are respectively aligned
with the robot’s base frame {B} and the ground frame {D}.
The joint angle data q; returned by encoders is assumed to
be corrupted by additive white Gaussian noise. The angular
velocity and linear acceleration data from the two IMUs at
time ¢ are respectively denoted as ‘@' and ‘a"V’ with i €
{B, D}. We assume the sensor data is corrupted by additive
white Gaussian noise, ‘w{ and ‘w¢. For brevity, let ‘@; =
iV and 'a, :='alV’. Then, we can express the sensor data
as: '@y = ‘wV 4+ 'w¥ and ‘a = ‘alV’ + ‘w?, where ‘w"!
and ‘a"? are the true angular velocity and linear acceleration.

B. IMU Motion Dynamics

We use WRE, WvVi and Wp!V? to respectively denote
the absolute orientation, velocity, and position of the ref-
erence frame {i} w.r.t. the world frame {W}, with ¢ €
{B, D} (see Fig. 1). The IMU dynamics for the frame {7}
are [3]: 4 (WR}) = WRi['@, — ‘w¢], , & (Wv]V) =
WRi (‘a, —'w¢) +g, and & (WplV) = WiV where [ ]«
denotes the skew-symmetric matrix of a vector and g is the
gravitational acceleration.

C. Leg Odometry

We denote the position of the robot’s stance foot relative
to the robot’s base, expressed in the base frame as BptBF .
Since the robot’s joint angles q; are directly measurable, we
introduce the forward kinematics function s(q:) satisfying
BpBF = s(qz), where s(q;) is known for a given robot.

The usual measurement model built upon the leg odometry
typically assumes a stationary ground in the inertial frame to
ensure the observability of the robot’s base orientation (roll
and pitch) and linear velocity. However, this assumption breaks
down for non-inertial environments. Thus, we will introduce

a new measurement model based on the leg odometry.
IV. PROCESS AND MEASUREMENT MODELS

This section presents the proposed process and measurement
models that serve as the basis of the proposed InEKF.

A. Process Model
The process model describes the propagation step, i.e.,
during the time period between successive instants of measure-
ment updates. For brevity, let R; :== PR? and p; := PpP5.
Given the IMU motion dynamics in Sec. III and the relation-
ship PRE = (WRP)T(WRP), the dynamics of the robot’s
relative orientation PR during the propagation step is:

%Rt = Rt [B(.:Jt — BW;’J} « I:D(;Jt — DW;J:I % Rt. (1)
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Since the dynamic ground frame {D} translates and rotates
in the inertial frame, the dynamics of the robot’s relative
position during the propagation step are given by:

D ~
ape=—[Po —wh] pi+vi, )

where v; = (WRP)T (WP — Wy VD) | Taking the first
time derivative of both sides of this equation yields:

%Vt = — [D(:Jf — DW‘{]] % Vi + Rt (Bét — BW?)
- (Dfit — DW?) .

The state variables Ry, v, and p; can be expressed on the

3)

R: vi p¢
matrix Lie group G C R%*® as: X, = |03 1 0 |, where
03 0 1

0., is an m x n zero matrix. Here the Lie group G is the
direct isometries group SE»(3) [15].

Defining the input u; to the process model as: u, =
[(Poy)T (PoyT (Pa,)" (Pa,)T], the process models in
(1), (2), and (3) can be expressed as:

%Xt = -PUX + X "0, + (DWt)AXt - Xt(BWt)A

= fu, (Xe) + (Pwe) " Xe — X (Pwi)",

[(w)T (w)T 015]"

}, with i € {D, B}.

4)
where ‘w; = and ‘U, =
[Z@t]x ‘ay 03,1
05 0 1
01,3 0 0

Proposition 1: The deterministic part of the system dynamics
in (4), ie., %Xt = fu, (X4t), is group affine.

Proof: From the process model in (4), we know f,, (X;) :=
-PU,X, + X, BU;. Thus, for any X, Xy € G, we have:

fur (X1X3) = —PUX, X,y 4+ X, X, P U, )

Meanwhile, by the definition of f,,, the following
expressions can be obtained: f,, (X1) Xg(*DthXL +
X180 Xo, Xify, (X2) = X1~(_DUtX2 +~X2BUt),
and Xif,, (I)Xe = X;(-PUd; + L,PU)X, =
~-X;PU,X, + X;8U,X,. Note that for the system in
(4), the group element I; becomes I; = Ig with I, an
m x m identity matrix. Combining these equations yields:
S (X1)~X2+X1fu,, (X2) =X fu, (Ia) X2 = —-PU X X0+
X1X,BU, = fu, (X1X5). Thus, the group affine condition
defined in Theorem 1 of [6] is met, confirming the determin-
istic part of the proposed process model is group affine. [l
B. Process Model Discretization

Since filters are implemented in a discrete-time fashion in
real-world applications, the process model in (4) needs to be
discretized in order to be used during the propagation step.

Let t;, denote the time instant of the £ measurement update
with & € N;. With abuse of notation, we use (-); to represent
the value of a variable (-) at tj. Further, the real scalar
At denotes the period between two successive measurement
updates; i.e., At := tr11 — tg.

As the process model in (4) is a differential Sylvester
equation [16], the closed-form solution of (4) is:

Xit1 = PZ; ' X, P2y, (6)

where the matrix ‘Z, with i € {B, D} is defined as [17], [18]:

) Fo(ikat) Fl(ikat)iak I‘Q(iO.’kAt)iakAtQ
‘Zy = 01,3 1 At
01,3 0 1
@)

Given the expression of Zj, we can use (6) to discretize
the process model and propagate the estimated state X; during
the propagation step of the filter, as explained later.

C. Measurement Model

When the robot’s foot has static contact with the ground of
the non-inertial environment (i.e., no foot slipping or rolling
on the ground), the foot velocity satisfies: < (PpP¥) = 05 ;.
For brevity, we define d; := PpPF.

Using the kinematics relationship associated with the leg
odometry, we obtain: d; —p; = Rys(q;). Taking the first time

d

derivative of both sides of this equation gives: J; (d; — p¢) =

R, ([Bwt] Tt [Dwt] X) s(q¢) + ReJ(qs)qe, where J(q;) =
%&‘:) is the Jacobian of leg odometry s(q;) and q; is the
time derivative of the joint angle q;.

Combining the equations above gives the observation as:
ye = h(Xy) +ny, )

where h(X;) = R ([cht] Res(@) — v+ [Po] pt),
vi = [B&;t] " s(ae) + Jélt, and ny is the lumped white
Gaussian noise of the uncertainty in the encoder reading q;
and foot slippage on the ground.

The deterministic portion of the measurement model in (8)
does not satisfy the right-invariant observation form, which is
defined as y; = X b with a known constant vector b [6].
Thus, the log-error equation associated with the proposed mea-
surement model does not enjoy the attractive properties of an
invariant observation and is thus not necessarily independent
of state trajectories or exactly linear for the deterministic case.

Instead, we linearize the measurement model as follows:

ze = h(X;) — h(Xy) :== Hi&, + hot (§,). )]
where H; := g%. As m, ~ I+ &}, the following first-order

approximations hold: R,R/ ~ I3 + €8, v —RRJv, ~
¢, and p; — RyRTp; ~ €7, with ¢, ¢7, and &7 defined as:

&1, & &
£tA =] 013 0o O0f.
05 0 0

(10)

We substitute the definition of h(X;) from (8) into (9)
and simplify it using the first-order approximations mentioned
above, while dropping the higher-order terms. By differentiat-
ing the resulting equation w.r.t. §,, we obtain the expression
of the update matrix H, as:

H = [C/ -R] Rf[%&] ] (11)

with C, := R} “Da;t} ) Rts((i)} RI[P@], [Res(@)],

R [[P@r], pe| —RT [P, [P,
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V. FILTER DESIGN

A. Propagation Step

1) Error Dynamics of Process Model: By the methodology
of InEKF, the right-invariant estimation error 77, between the
state X; and its estimate X, is defined as: i, = X;X; !

Because of the group-affine property of the proposed pro-
cess model [6], the right-invariant error dynamics in the
absence of noise are independent of state trajectories and
exactly log-linear in the deterministic case.

The dynamics of the right-invariant error 7, is given by [6]:

(Xe(Pw) "X ) my + (Pwe)n,, (12)

where g,,(m,) = fu,(m;) — m,/(Ls). Note that by the
InEKF theory, the deterministic part of the right-invariant

error (4n, = gu,(n,)) are state trajectory independent and
accordingly independent of estimation errors.

By using the first-order approximation n, = exp (§,) =~
I, + &), we linearize (12) to yield:

40, = gu,(ny) +

gu, (exp(§,)) = (As€,)" + hot([&]) ~ (Ag,)", (13)
where h.o.t(-) represents the higher-order terms of (-).
Then, the linearized log-error dynamics become:
i€ = A, + Adg, Pwi o+ Pwy. (14)

Since the deterministic part of the right-invariant error
equation are state trajectory independent, the logarithmic error
dynamics are naturally independent of state trajectories in the
absence of noise, as indicated by (14). Further, the linear error
equation (14) is exact in the absence of noise.

Proposition 2: In the absence of the noise terms in the
stochastic process model (4), the deterministic portion of the
logarithmic error dynamics (14), i.e., %ﬁt = A&, are exact
and represent the true error dynamics during propagation.

Proof: By Proposition 1, the deterministic part of the process
model (4) is group affine. Then, by Theorem 2 in [6], the
logarithmic error dynamics in the absence of noise “@w; and
D&, are exact, which completes the proof. (]

By Proposition 2, the linear equation in (14) is the exact
dynamics of the error &, in the absence of noise terms. Such
linearity is rare for nonlinear process models, and holds here
because the deterministic portion of the process model is group
affine for the deterministic case, as stated in the proof.

The log-error equation in (14) is used to form the propa-
gation step of the proposed InEKF, and the advantage of its
exactness is illustrated via experiment results.

To obtain the matrix A;, we substitute the right-invariant
error dynamics (12) into (13), which yields:

gu, (exp(&)) = f(Ta+ &) — (La+ &7) f(Ta)
—[P@], &
= |- [Pa], & - [Pa], &
& —[Pad], &

Then, based on (13), we obtain the matrix A; as:

A

15)

— [Pan] o 03,3 03,3
A= |—[Pa], —[Pa], 03,3 (16)
03,3 Is - [D‘:Jt]

2) State and Covariance Propagation: Between two suc-
cessive instants of measurement updates, i.e., t € [tx, tri1)
(k € N.), the estimated state X; can be propagated [1 8] using
the discretized process model in (6): X 1 = Z X BZ;.

By the theory of the standard Kalman ﬁltermg for
continuous-time systems, the covariance matrix P, is propa-
gated based on the following Riccati equation [19] associated
with the linearized log-error equation in (14):

P, =AP, +P,Al +Q, (17)

where Q; is the process noise covariance defined as Q; =
AdgtCov(B_wt)Ad}(t + Cov(Pwy), with Cov(‘w;) the co-
variance of ‘w; (i € {B, D}).

In filter implementation, the discrete version of the Riccati
equation (17) is used for covariance propagation.

B. Update Step

Based on the measurement model introduced in Sec.
IV-C, the wupdate equations of the proposed InEKF
are: X = exp (Kt(yt —h(Xt))) X; and P/ =
(I, K,H,)P, (Iy — K,H,)" + K,N,K/, where X;* and P}
are the updated values of the state estimate X; and covariance
matrix P, respectively, K; is the Kalman gain, and N; is
the measurement covariance matrix. The Kalman gain K,
is given by: K; = PthTSt_l, S; = HtPthT + Ny, and
Nt = RtCov(nf)RI

VI. OBSERVABILITY ANALYSIS

Assuming that IMU measurements are constant over the
propagation step on [tk,tr+1), the matrix Ay is constant.
Thus, the discrete-time state-transition matrix, denoted as

¢ 033 033
®,, is given by [20]: @) = exp,,(ArAt) | Pk, ok, 033],
b5 Pra P
where ¢]f1 = ‘1’]52 = ¢§3 = exp,, (—[Pwi]xAb),
¢]2€1 :_[Dak]XeXan(_[Dwk']XAt)At’ ¢§1 = _%[Dak]x
exp,, (—[Pwi]x At)At2, and ¢h, =exp,, (—[Pwi]x At)At.
Then, the local observability matrix O [21]
at the state estimate Xj is expressed as: O =
[(H;)Tv (Hk+1<I>+) (HIZH@’Ll‘I’ﬁ)T’ T By
definition, O can be computed as:
c. Rl R [Pw,
021 02 R, [Dwk+1]x¢§3
©= 031 Ry o[Pwita]x b b, | (18)

032

where 09; = CkH(plfl—RZ+1¢§1+RZ+1[Dwk]X¢§1, 099 =
- = : k1 ok
13;“22212 ']L‘ R,H%[ wil—ld)?ff’ 03}T: DCk+2¢1frk<_Z:%1 .
Rk+2¢ b11 Rk+2¢’ ¢’2_1 + Ry ol ‘-"k+2}x¢31 lo¥g)
+Rk+2[ Wet2)x ¢’32 ¢’21 +Rk+2[ We2)x d’gs ¢31’ and
5 — —RT L TGE2 L RT [Pwil b Lok, +RT
032 ,H_Q k+1l Wk]x 22 k+1
[Dwk] ¢32
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Fig. 2: Experimental setup that includes a Digit robot, motion capture cameras,
a pitch sway treadmill, and an IMU mounted on the dynamic ground.

To evaluate the observability of each variable of interest,
we examine whether the associated column vectors in the
observability matrix O are linearly independent.

From the expression of O, the observability of the state

variables depends on the estimated relative orientation R; as
well as the linear acceleration data Pa, and angular velocity
data Pw, of the dynamic ground. The estimate R, is always
a non-zero matrix. Thus, when the ground is rotating and
translating (i.e., Pa; # 0 and Pw; # 0), all columns of O
are linearly independent, indicating the relative orientation R,
velocity v, and position p; are observable.
When the ground is stationary, the angular velocity data
W, 1s zero in the absence of sensor noise, and thus the entire
third column block becomes zeros, indicating the relative
position p; is no longer observable. Also, when the ground
is not moving, D3, remains nonzero because P&, includes
the vertical gravitational acceleration. Thus, the third column
of [Pa;]  is zero, indicating the yaw angle is non-observable
when the ground is stationary.

D

VII. EXPERIMENTAL VALIDATION
A. Experimental setup

Experiments are conducted on a Digit humanoid robot
(Agility Robotics, Inc.) and a Motek M-Gait treadmill (Fig. 2).
Digit is 1.6 m tall with 6 encoders on each leg. The robot
stands on the treadmill commanded by its proprietary con-
troller. The treadmill serves as a dynamic ground, simul-
taneously performing a pitch motion of 10° sin%t and a
sway motion of 0.05m cos %t An IMU (WT901BLECL from
WitMotion Co.,Ltd) is attached to the treadmill and measures
the angular velocity and linear acceleration of the dynamic
ground frame at 200 Hz via Bluetooth. The robot IMU and
encoders return data at 500 Hz. Additionally, a Vicon motion
capture system gives the ground-truth value of the state X;.

TABLE I: NOISE STANDARD DEVIATION

Measurement types SRS Proposed
Robot linear acc. (m/s2) 0.3 0.1
Ground linear acc. (rad/s) NA 0.1
Robot angular vel. (m/s?)  0.01 0.01
Ground angular vel. (rad/s) NA 0.01
Encoder reading 1° 0.1 m/s
Contact vel. (m/s) 0.01 NA

The proposed filter is compared with an InEKF [3] designed
for locomotion on a static, rigid surface (denoted as “SRS"),
so as to highlight the advantage of explicitly treating the
environment/ground motion in the filter formulation.

The key difference between the proposed and SRS filters
is that the SRS filter assumes a static ground. Accordingly,
the SRS filter aims to estimate the absolute base position,
orientation, and velocity w.r.t. the world frame, which is
different from the proposed filter. Although the process models
of the two filters are different due to different choices of
state variables, both models meet the group-affine property
for the deterministic case. This indicates that both filters obey
the attractive property of invariant filtering, such as the exact
linearity and state independence of log-error dynamics for the
deterministic part of the process model. Also, the measurement
models of both filters exploit the leg odometry, with the
SRS and proposed filters using position- and velocity-based
ones, respectively. Yet, the baseline filter has a right-invariant
measurement model, while the proposed one does not.

The setting of the standard deviation (SD) of both filters
is shown in Table I. All the SD values are individually tuned
based on the IMU specifications provided by the manufacturers
for the two filters to achieve their respective best performance.
Both filters are assessed using the same hardware sensor data.
To highlight the proposed InEKF can handle large errors, 50
simulations of each filter were performed, using the same ini-
tial position, velocity, and orientation errors uniformly sampled
from [—3, 3] m, [—1,1] m/s, and [—23, 23] deg, respectively.

B. Results

1) Convergence Rate: Figure 3 presents the results of the
proposed filter for the relative velocity v;, orientation R, and
position p; w.r.t. {D} in subplot a), and the baseline filter
results for the absolute velocity V' vV & orientation W R?, and
position Wp"W B wrt. {W} in subplot b). Both filters drive
the errors of the base roll, pitch, and velocities close to zero,
confirming the observability analysis results from Sec. VI and
previous work [3]. Both filters show fast error convergence
for their respective observable state even under large initial
errors, thanks to InEKF’s provable error convergence under
the deterministic case. The proposed filter shows a much faster
convergence rate than that of the SRS filter due to its explicit
treatment of the ground motion.

2) Yaw and Position Observability: Notably, under the
proposed filter, the robot’s relative base yaw and position
converge to the ground truth, confirming that they are indeed
observable during ground motion. In contrast, the absolute
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Fig. 3: Estimation results of a) relative velocity, orientation, and position under
the proposed filter and b) absolute velocity, orientation, and position under
the existing filter. The same set of robot on-board sensor data is used. The
red, dashed lines are the ground truth. The solid lines are the state estimations
corresponding to different initial errors. The light blue and white background
denotes the transient and steady-state periods, respectively.

TABLE II: RMS ERROR COMPARISON

SRS

(0.048, 0.080, 0.041)
(1.889, 1.520, 10.91)
(1.145, 1.688, 1.225)

State variables

(Vz, vz, vz) (W/s)
(roll, pitch, yaw) (°)
(pz» Py, Pz) (m)

Proposed

(0.017, 0.018, 0.040)
(1.886, 0.980, 2.871)
(0.283, 0.336, 0.165)

yaw and position under the SRS filter are not observable as
predicted by the previous study [3].

3) Estimation Accuracy: The estimation results with white
background in Figure 3 show the steady-state periods on
t € [2, 15]s. Table II reports the comparison of the root-mean-
square (RMS) errors between the state estimate and the ground
truth for both filters. As the state variables estimated by the two
filters have different physical meanings, directly comparing
their specific accuracy may not be meaningful. Still, the
smaller errors of the proposed method do highlight the need to
explicitly consider the ground motion in the state estimation,
especially under significant ground motions such as the tested
treadmill movements. Without explicit treatment, the ground
motion acts as temporally persistent, significant uncertainties
that could notably degrade estimator performance.

VIII. CONCLUSION

This paper developed a real-time state estimation approach
for legged locomotion inside a non-inertial environment with
an unknown ground motion. The process and measurement
models underlying the estimator were formulated to explicitly
consider the movement of the non-inertial environment. A
minimal suite of proprioceptive sensors and an inertial mea-
surement unit attached to the environment were used to inform
the proposed InEKF. The observability analysis revealed that
all state variables (i.e., relative pose and linear velocity)
are observable during environment translation and rotation.
Hardware experiment results and comparison with a baseline
InEKF demonstrated the fast convergence rate and high accu-
racy of the proposed filter under various ground motions and

substantial estimation errors. The proposed system modeling
can be readily used in filtering and optimization frameworks
beyond InEKF, and can be combined with data returned by
exteroceptive sensors such as cameras and LiDARs. Future
work includes the study of fully onboard sensing and learning-
aided methods to remove the need for an external IMU
attached to the moving environment.

REFERENCES

[11 A. Igbal, Y. Gao, and Y. Gu, “Provably stabilizing controllers for
quadrupedal robot locomotion on dynamic rigid platforms,” IEEE/ASME
Trans. Mechatron., vol. 25, no. 4, pp. 2035-2044, 2020.

[2] Y. Gao, C. Yuan, and Y. Gu, “Invariant filtering for legged humanoid
locomotion on a dynamic rigid surface,” IEEE/ASME Trans. Mechatron.,
vol. 27, no. 4, pp. 1900-1909, 2022.

[3] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-
aided invariant extended Kalman filtering for robot state estimation,”
Int. J. Rob. Res., vol. 39, no. 4, pp. 402-430, 2020.

[4] T.-Y. Lin, T. Li, W. Tong, and M. Ghaffari, “Proprioceptive invariant
robot state estimation,” arXiv preprint arXiv:2311.04320, 2023.

[5] M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring,
C. D. Remy, and R. Siegwart, “State estimation for legged robots-
consistent fusion of leg kinematics and IMU,” Rob., vol. 17, pp. 17-24,
2013.

[6] A. Barrau and S. Bonnabel, “The invariant extended kalman filter as a
stable observer,” IEEE Transs. Autom. Contr., vol. 62, no. 4, pp. 1797—
1812, 2016.

[71 X. Yu, S. Teng, T. Chakhachiro, W. Tong, T. Li, T.-Y. Lin, S. Koehler,
M. Ahumada, J. M. Walls, and M. Ghaffari, “Fully proprioceptive slip-
velocity-aware state estimation for mobile robots via invariant Kalman
filtering and disturbance observer,” in Proc. IEEE Int. Conf. Intel. Rob.
Syst., 2023, pp. 8096-8103.

[8] S. Teng, M. W. Mueller, and K. Sreenath, “Legged robot state estimation
in slippery environments using invariant extended Kalman filter with
velocity update,” in Proc. IEEE Int. Conf. Rob. Autom., 2021, pp. 3104—
3110.

[91 M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger,
and R. Siegwart, “State estimation for legged robots on unstable and
slippery terrain,” in Proc. IEEE Int. Conf. Intel. Rob. Syst., 2013, pp.
6058-6064.

[10] F. Aghili and C.-Y. Su, “Robust relative navigation by integration of icp
and adaptive Kalman filter using laser scanner and IMU,” IEEE/ASME
Trans. Mechatron., vol. 21, no. 4, pp. 2015-2026, 2016.

[11] S. Bonnable, P. Martin, and E. Salatin, “Invariant extended Kalman filter:
theory and application to a velocity-aided attitude estimation problem,”
in Proc. IEEE Conf. Dec. Contr., 2009, pp. 1297-1304.

[12] A. Barrau and S. Bonnabel, “Intrinsic filtering on Lie groups with
applications to attitude estimation,” IEEE Trans. Autom. Contr., vol. 60,
no. 2, pp. 436449, 2014.

[13] ——, “Extended kalman filtering with nonlinear equality constraints: A
geometric approach,” IEEE Transactions on Automatic Control, vol. 65,
no. 6, pp. 2325-2338, 2019.

[14] M. Brossard, A. Barrau, and S. Bonnabel, “AI-IMU dead-reckoning,”
IEEE Trans. Intel. Veh., vol. 5, no. 4, pp. 585-595, 2020.

[15] A. Barrau, “Non-linear state error based extended Kalman filters with
applications to navigation,” Ph.D. dissertation, Mines Paristech, 2015.

[16] M. Behr, P. Benner, and J. Heiland, “Solution formulas for differential
Sylvester and Lyapunov equations,” Calcolo, vol. 56, no. 4, p. 51, 2019.

[17] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv
preprint arXiv:1711.02508, 2017.

[18] M. A. Shalaby, C. C. Cossette, J. L. Ny, and J. R. Forbes, “Multi-robot
relative pose estimation and IMU preintegration using passive UWB
transceivers,” IEEE Trans. Rob., pp. 1-20, 2024.

[19] P. S. Maybeck, Stochastic models, estimation, and control.
press, 1982.

[20] Z. Huai and G. Huang, “Robocentric visualinertial odometry,” Int. J.
Rob. Res., vol. 41, no. 7, pp. 667-689, 2022.

[21] Z. Chen, K. Jiang, and J. C. Hung, “Local observability matrix and its
application to observability analyses,” in Proc. Ann. Conf. IEEE Ind.
Electron. Soc., 1990, pp. 100-103.

Academic

2474



