
A Robust Finite Difference Model Reduction for the Uniform Spectral
Observability of a Fully-Clamped Three-Layer Mead-Marcus-type

Smart Laminate
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Abstract— We consider a fully-clamped three-layer Mead-
Marcus beam model, crucial for understanding the interactions
between shear and bending motions. This model is exactly
observable with a single boundary observer. We propose a semi-
discrete Finite Difference approximation, where characterizing
low and high-frequency eigenvalues presents significant chal-
lenges, particularly in proving the uniform gap condition, which
is sufficient for achieving spectral observability. To address this,
we employ the discrete multipliers method and Gershgorin’s
Circle Theorem, highlighting the importance of numerical
filtering. Our results, assuming a small shear modulus in the
core layer, are promising due to the strong coupling between
shear dynamics and overall bending. This complexity contrasts
with a single-layer clamped Euler-Bernoulli beam. Notably,
when the model simplifies to a classical Euler-Bernoulli beam,
our findings extend existing results to multi-layer beams.

Index Terms— Unifrom Spectral Observability, Finite Differ-
ences, Gershgorin’s Circle Theorem, Multi-layer beams, Mead-
Marcus beam

I. INTRODUCTION

Multi-layer sandwich beams, like those found in ultrasonic
transducers [21] with elastic/piezoelectric components, hold
increasing promise in diverse industrial applications such
as aeronautics, civil engineering, defense, biomedicine, and
space structures [3], [22]. A three-layer sandwich beam
comprises perfectly bonded alternating piezoelectric/elastic
layers sandwiching compliant viscoelastic layers [4], [9].
While most sandwich beam theories average stresses and
elastic moduli through the depth, Rao & Nakra’s discrete-
layer theory treats each layer separately, incorporating Euler-
Bernoulli and Mindlin-Timoshenko assumptions [9].

High-frequency multi-layer ultrasonic transducers with
larger bandwidths offer excellent imaging performance in the
biomedical field [21]. However, achieving perfect acoustic
impedance matching between the piezo-element and the
target medium across the frequency spectrum remains chal-
lenging. Researchers in ultrasonic imaging strive for optimal
performance—high frequency, large bandwidth, and high
sensitivity—yet the models in use often rely on oversim-
plified spring-mass systems, as noted in [20].

Throughout this paper, we denote time derivatives with
dots and primes for ∂

∂t and ∂
∂x , respectively. We focus on
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the system of partial differential equations for the multi-layer
Mead-Marcus-type beam model from [2]

z̈ + z′′′′ −Bψ′ = 0,
−Cψ′′ + Pψ = −Bz′′′, (x, t) ∈ (0, L)× R+,
(z, ψ, z′)(x, t)|x=0,L = 0, t ∈ R+,

(z, ż)(x, 0) = (z0, z1)(x), x ∈ [0, L].

(1)

Here, ψ(x, t) and z(x, t) represent the longitudinal and
transverse vibrations of the centerlines of each layer. The
physical constants B,C, P > 0 are defined in [2], [14].

A. State-Space Formulation and Exact Observability

The second equation of (1) can be used to solve for the
shear angle ψ. Define the differential operator D2

x = ∂2

∂x2 on
the domain Dom(D2

x) = {z ∈ H2(0, L) | z(0) = z(L) =
0}. This operator is densely defined, self-adjoint, positive-
definite, and unbounded. Since C and P are positive, the
operator (−CD2

x+P )
−1 exists and is bounded on L2(0, L).

Defining the operator J = 1
C [−I+P (−CD2

x+PI)
−1], it

is shown that J is continuous, self-adjoint, and non-positive
on L2(0, L). Moreover, J = (−CD2

x + P )−1D2
x. [14,

Lemma 1]. By eliminating ψ in the second equation of (1),
a simplified form of the PDE is obtained as

z̈ + z′′′′ +B2(JD2
xz

′)′ = 0, (x, t) ∈ (0, L)× R+

(z, z′)(x, t)|x=0,L = 0, t ∈ R+

(z, ż)(x, 0) = (z0, z1)(x), x ∈ [0, L].
(2)

Now, define the energy of (1) on the Hilbert space H =
H2

0 (0, L)×L2(0, L), so that the energy norm ∥ · ∥e on H is
defined by

E(t) =
1

2

∫ L

0

[
|ż|2 + |z′′|2 − (B2Jz′)z′

]
dx (3)

and the associated inner product is ⟨(u, v), (f, g)⟩ =∫ L

0

[
vḡ + u′′f̄ ′′ − Ju′f̄ ′

]
dx. Define the operator A on

Dom(A) = H2
0 (0, L)× L2(0, L) as the following

A(u, v) =
(
v,−

[
u′′′′ +B2(Ju′)′

])
= (v,−Au) (4)

where A := (D4
x + B2DxJDx). Letting y⃗(t) =

(z(t, x), ż(t, x)) the (2) can be rewritten as

˙⃗y(t, x) = Ay⃗(t, x), y⃗(0) = y⃗0 = (z0(x), z1(x)). (5)

Theorem 1 (Exact Observability). [14] The operator A
defined by (4) is the infinitesimal generator of a unitary C0-
group on H. Hence, for all y0 ∈ H there exist a unique
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solution y to (5) in C[R,H]. Moreover, for all T > 0, there
exists a constant C(T ) > 0 such that∫ T

0
|z′′(L, t)|2dt ≥ C(T )E(0). (6)

B. Literature on Model Reductions for Coupled PDEs

The literature on finite-dimensional model reductions for
coupled PDEs emphasizes the importance of considering
all vibration modes when designing sensors. Neglecting
high-frequency residual modes, known as the “spill-over”
effect, can hinder the system’s observability [11]. Moreover,
applying Finite Differences or Finite Elements blindly may
introduce spurious, non-observable high-frequency modes
[18]. To counter this, methods like “direct Fourier filtering”,
known for its efficiency, have been explored for Euler-
Bernoulli and Rayleigh beams with hinged boundary con-
ditions [12], [13].

Recent Finite Differences-based reductions, as analyzed
in [16], [17] and extended to multi-layer systems in [1],
incorporate direct Fourier filtering to achieve uniform observ-
ability in the natural energy space. A significant limitation of
this approach is the necessity of having explicit knowledge
of the entire spectrum of eigenvalues. While the spectrum for
hinged boundary conditions can be analytically established,
the clamped boundary case requires more intricate analysis.

C. Our Contributions

In this paper, we reduce the PDE model (1) using Standard
Finite Differences and find that the reduced model lacks uni-
form spectral observability. Spectral observability refers to
the ability to monitor and reconstruct the entire system state
via its eigen-space components, particularly eigenfunctions
corresponding to the system’s eigenvalues. Uniform spectral
observability in numerical approximations implies that this
property remains consistent as the mesh size decreases.

To address the lack of uniform spectral observability, we
apply direct Fourier filtering to remove problematic high-
frequency components and use discrete multipliers to restore
uniform spectral observability. This establishes the spectral
observability of (1) with a single boundary observer. Our
work pioneers a robust reduction of the Mead-Marcus three-
layer beam model using Standard Finite Differences, which
reduces to the Euler-Bernoulli beam model when B =
C = P ≡ 0 in (1). Thus, our results extend to both
single-layer and three-layer beam models. We rigorously
establish exact observability for the PDE model (1) through
discrete multipliers, extending prior findings [5], [6], [14]
and providing deeper insights into the observability of the
discretized model.

II. SEMI-DISCRETIZATION IN THE SPACE VARIABLE

Let N ∈ N. Define the uniform mesh size h := L
N+1 .

Consider the discretization xi = i·h for i = −1, 0, . . . , N+2
of the interval [0, L].

Define the central difference approximations of the oper-
ator Dx and −D2

x at each xi by the symmetric positive-
definite N × N matrices D1c,h := 1

2h tridiag(−1, 0, 1)
and Ah := 1

h2 tridiag(−1, 2,−1). The eigenpairs

(λk(h), ϕ⃗k(h)) of the matrix Ah are explicitly known, e.g.,
see [12].

Next, define the central difference approximation of the
operator D4

x at each xi by the symmetric positive-definite
N ×N matrix

Bh :=
1

h4



7 −4 1 0 0 0 . . . 0
−4 6 −4 1 0 0 . . . 0
1 −4 6 −4 1 0 . . . 0
0 1 −4 6 −4 1 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . . . . 1 −4 6 −4 1
0 . . . . . . 0 −1 −4 6 −4
0 . . . . . . 0 0 1 −4 7


.

Let zi(t) be the approximations of the solutions z(x, t)
at each node {xi}N+1

i=0 . Next, by defining the vectors z⃗ :=

[z1, z2, ..., zN ]T and ψ⃗ := [ψ1, ψ2, ..., ψN ]T , we propose
space semi-discretization of (1) as follows

¨⃗z + Ãhz⃗ = 0,
(z0, ψ0, zN+1, ψN+1)(t) = 0,
(z1, z−1, zN+2 − zN )(t) = 0, t ∈ R+,
(z, ψ, zt, ψt)i(0)
= (z0, ψ0, z1, ψ1)(xi), i = 0, 1, . . . , N + 1,

(7)

where {
Ãh := (Bh +B2D1c,hJhD1c,h)
Jh := −(CAh + PI)−1Ah.

(8)

Define the matrix Ah by Ah(u⃗, v⃗) :=
(
v⃗,−Ãhu⃗

)
. With

y⃗h = (z⃗, ˙⃗z), (7) can be rewritten as ˙⃗yh = Ahy⃗h.
Note that by assuming B = ψ ≡ 0 in (1), the dis-

cretized model (7) simplifies to a single-layer beam, which
corresponds to the semi-discretized Euler-Bernoulli beam as
presented in [5]-[6]. The resulting discretized model is

¨⃗z +Bhz⃗ = 0,
z0(t) = zN+1(t) = 0, z1(t) = z−1(t),
zN+2(t) = zN (t), t ∈ R+,

(z⃗, ˙⃗z)i = (z0, z1)(xi), i = 0, 1, . . . , N + 1.

(9)

The energy of the solutions of (9) is defined by

Eh,EB(t) := h
2

{〈
˙⃗z, ˙⃗z
〉
+ ⟨Ahz⃗,Ahz⃗⟩

}
+h
∣∣ z1
h2

∣∣2 + h
∣∣ zN
h2

∣∣2 . (10)

For the rest of the paper and the ease of the calculations,
define

1
h4∆

4
xzi = δ4xzi :=

zi+2−4zi+2+6zi−4zi−1+zi−2

h4 ,
h3δ3xzi = ∆3

xzi := (zi+2 − 3zi+1 + 3zi − zi−2),
h2δ2xzi = ∆2

xzi := zi+1 − 2zi + zi−1,
hδxzi = ∆xzi = zi+1 − zi.

(11)

Moreover, (D1c,hz⃗)i :=
zi+1−zi−1

2h , and therefore, δ4xzi :=
1
h4 (∆

3
xzi −∆3

xzi−1),
δ3xzi :=

1
h3 (∆

2
xzi+1 −∆2

xzi),
(D1cz⃗)i := zi+1 − zi−1 = ∆xzi +∆xzi−1.

(12)
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Next, define the inner product ⟨u⃗, v⃗⟩ :=
N∑
j=1

uivi, on RN .

Lemma 2. The matrix Jh in (8) can be expressed as Jh =
C−1[−I+P (CAh+PI)

−1]. Furthermore, Jh is self-adjoint
and non-positive on l2.

Proof. Starting with Jhu⃗ = v⃗, we have −C−1u⃗ +
C−1P [(CAh + PI)]−1u⃗ = v⃗. This implies u⃗ =
C2P−1Ahv⃗ + Cv⃗ + P−1CAhu⃗ + u⃗. Rearranging gives
−(CAh + PI)−1Ahu⃗ = v⃗, i.e., Jhu⃗ = v⃗, confirming that
Jh has the form given in (8), thus proving the first claim.

For self-adjointness, let u⃗, v⃗ ∈ Rn so that

⟨Jhu⃗, v⃗⟩ =
〈
−C−1u⃗+ C−1P (CAh + PI)−1u⃗, v⃗

〉
=
〈
−C−1u⃗+ (CAh + PI)−1PC−1u⃗, v⃗

〉
=
〈
[−C−1I + PC−1(CAh + PI)−1]u⃗, v⃗

〉
= ⟨u⃗,Jhv⃗⟩ ,

utilizing the self-adjointness of Ah. To prove Jh is non-
positive, let r⃗ := (CAh +PI)−1s⃗ so that s⃗ = CAhr⃗+P r⃗,

⟨Jhs⃗, s⃗⟩ =
〈
−C−1s⃗+ C−1P [(CAh + PI)]−1s⃗, s⃗

〉
= ⟨−Ahr⃗, CAhr⃗ + P r⃗⟩ ,

and since Ah is positive definite, the proof follows.

Defining L := JhD1c,h, the energy of the solutions of
semi-discretized model reduction (7) can be defined by

Eh,MM (t) := Eh,EB(t)− B2h
2 ⟨Lz⃗,D1c,hz⃗⟩ . (13)

Remark 1. By Lemma 2, and defining

m⃗ := (CAh + PI)−1D1c,hz⃗, (14)

an alternative form of the energy for the solutions of the
semi-discretized model reduction (7) can be expressed as

Eh,MM (t) := Eh,EB(t) +
B2h
2 {C ⟨Ahm⃗,Ahm⃗⟩

+P ⟨Ahm⃗, m⃗⟩} , (15)

noting the boundary conditions m0 = mN+1 = 0 hold.

Lemma 3. The energy (13) along the solutions of (7) is
conservative, i.e. Ėh,MM (t) = 0. So that, Eh,MM (t) ≡
Eh,MM (0), for any time t > 0.

Proof. By taking the time derivative of Eh,MM (t) along the
solutions of (7)

Ėh,MM (t) = h
N∑
i=1

żiz̈i +
h
2

d
dt

N∑
i=1

∣∣δ2xzi∣∣2
+h d

dt

∣∣ z1
h2

∣∣2 + h d
dt

∣∣ zN
h2

∣∣2 − B2h
2

+
[〈

L ˙⃗z,D1c,hz⃗
〉
+
〈
Lz⃗,D1c,h

˙⃗z
〉]
.

(16)

Finally, since the following equality is valid utilizing (7)3 −
(7)5

⟨Bhz⃗, ˙⃗z⟩ =
1

2

d

dt

N∑
i=1

∣∣δ2xzi∣∣2 + d

dt

{∣∣∣ z1
h2

∣∣∣2 + ∣∣∣zN
h2

∣∣∣2} ,
and since D1c,h is anti-symmetric, the conclusion follows
from this together with Lemma 2 and (7).

Next, we establish the equivalence of Eh,MM (t) and
Eh,EB(t). To do so, we require the following lemma.

Lemma 4. The solutions of (9) satisfy the inequality

h
2

N∑
i=1

(
(D1c,hz⃗)i

)2 ≤ h
2 ⟨Ahz⃗, z⃗⟩ ≤ L2Eh,EB (t) . (17)

Proof. By the Cauchy-Schwarz inequality,
N∑
i=1

(
(D1c,hz⃗)i

)2 ≤
N∑
i=0

(δxzi)
2
. (18)

Since
N∑
i=0

(δxzi)
2
= ⟨Ahz⃗, z⃗⟩ . By Hölder’s inequality for

sums, the following inequality follows

N∑
i=0

(δxzi)
2 ≤

{
N∑
i=1

(
δ2xzi

)2} 1
2
{

N∑
i=1

(zi)
2

} 1
2

. (19)

Next, the following discussion is needed to have the discrete

version of Poincare’s inequality to estimate the term
N∑
i=1

|zi|2

above. Since z0 = 0, zi = h
i−1∑
j=0

δxzj , for i = 1, ..., N + 1.

Moreover, with z1 = 0,it is straightforward to show that

δxzi = h
i∑

j=1

δ2xzj .

By the Hölder’s inequality for sums,

(zi)
2 =

(
h

i−1∑
j=0

δxzj

)2

≤

(
h

i−1∑
j=0

1

)(
h

i−1∑
j=0

(δxzj)
2

)
≤ Lh

N∑
j=0

(δxzj)
2
,

and analogously,

(δxzj)
2 =

(
h

i∑
j=1

δ2xzj

)2

≤ Lh
N∑
j=1

(
δ2xzj

)2
,

where we used Nh < L.
Now, using the above inequalities, it is straightforward to

show that
N∑
i=1

(zi)
2 ≤ L2

N∑
i=1

(δxzi)
2 ≤ L4

N∑
j=1

(
δ2xzj

)2
. (20)

Finally, by (18) and (19) and the inequality above we get
N∑
i=1

(
(D1c,hz⃗)i

)2 ≤ L2
N∑
i=1

(
δ2xzi

)2
.

The conclusion (17) follows immediately from this and (10).

Theorem 5. Let F1 := 1 + B2L2

C > 0. The discrete energy
Eh,MM (t) and Eh,EB(t) are equivalent, i.e.,

Eh,EB(t) ≤ Eh,MM (t) ≤ F1Eh,EB(t). (21)

Proof. The first inequality is obvious since −Jh is positive.
We prove the second inequality by the following J̃h = −Jh

is positive and

Eh,MM (t) = Eh,EB(t)− B2h
2 ⟨Lz⃗,D1c,hz⃗⟩

≤ Eh,EB(t) +
B2h
2 ||J̃hD1c,hz⃗||||D1c,hz⃗||

≤ Eh,EB(t) +
B2h
2 ||J̃h||

N∑
i=1

∣∣(D1c,hz⃗)i
∣∣2 . (22)
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Now, if u⃗ = (u1, u2, . . . , uN )T is the eigenvectors of
J̃h corresponding to the eigenvalues λ then the eigenvalue
problem, J̃hu⃗ = λu⃗ leads to (CAh + PI)−1Ah)u⃗ = λu⃗.
Therefore, Ahu⃗ = λ[CAh + P ]u⃗. Rearranging the terms
yields λ = λ(Ah)

Cλ(Ah)+P .

Therefore, ||J̃hu⃗|| ≤ |λ|||u⃗|| ≤
∣∣∣ λ(Ah)
Cλ(Ah)+P

∣∣∣ ||u⃗|| ≤
1
C ||u⃗||. This implies that ∥J̃h∥ < 1

C . Considering this with
(22) and Lemma 4 leads to (21). Therefore, the conclusion
(21) follows immediately.

III. SPECTRAL OBSERVABILITY UNIFORMLY AS h→ 0

This section aims to prove the discrete counterpart of (24)
for the eigen-space. Let w⃗ = (w1, w2, . . . , wN )T be the
normalized eigenvectors, ⟨w⃗, w⃗⟩ = 1, corresponding to the
eigenvalues λ̃ for the eigenvalue problem (7). Consider the
following eigenvalue problem Ãhw⃗ := (Bh +B2D1c,hL)w⃗ = λ̃w⃗,

w0 = wN+1 = 0, w1(t) = w−1(t),
wN+2(t) = wN (t), t ∈ R+.

(23)

To prove our main result, the following lemmas are in order.

Lemma 6. The following identity holds for (23),

− 1
2h3

{
4 (w1)

2
+ 4 (wN )

2
+ w1w2 + wNwN−1)

}
+L

2

(
δ2xwN+1

)2
= B2Ph

2 ⟨Ahm⃗, m⃗⟩

+2h
N∑
i=1

(
δ2xwi

)2
+ B2P 2h

2C

N∑
i=0

(mi)
2

−B2P 2h3

4C ⟨Ahm⃗, m⃗⟩+ B2Ch3

4

N∑
i=1

(
δ3xmi

)2
− λ̃h3

2 ⟨Ahw⃗, w⃗⟩+ B2Ph2

C ⟨iD1c,hw⃗,D1c,hm⃗⟩ .

(24)

Proof. Multiply equation (23)1 by the multiplier
2ih2(D1c,hw⃗)i and sum over i from 1 to N .

2h2
〈
(Bh +B2D1c,hL)w⃗, iD1c,hw⃗

〉
= 2h2λ̃ ⟨w⃗, iD1c,hw⃗⟩ .

(25)

where the right-hand side can be written as

2h2λ̃ ⟨w⃗, iD1c,hw⃗⟩ = −λ̃h
N∑
i=0

wiwi+1 (26)

with a quick index shifting. Due to the following identity,

−
N∑
i=0

wiwi+1 =
1

2

N∑
i=0

(wi+1 − wi)
2 − ⟨w⃗, w⃗⟩ , (27)

2h2λ̃ ⟨w⃗, iD1c,hw⃗⟩ =
λ̃h3

2

N∑
i=0

(δxwi)
2 − λ̃h ⟨w⃗, w⃗⟩ . (28)

Since ⟨Bhw⃗, w⃗⟩ =
N∑
i=0

∣∣δ2xwi

∣∣2 − 2
{∣∣w1

h2

∣∣2 − ∣∣ zNh2

∣∣2} , by

(23) and (14), the following is immediate

λ̃h ⟨w⃗, w⃗⟩ = h ⟨Bhw⃗, w⃗⟩ −
〈
B2Lw⃗,D1c,hw⃗

〉
= h

N∑
i=0

(
δ2xwi

)2 − 2
h3 ((w1)

2 − (wN )
2
)

+B2Ch ⟨Ahm⃗,Ahm⃗⟩+B2Ph
N∑
i=0

(δxmi)
2

(29)

Call the left-hand side of (25) as 1
h (S1 + S2) where

S1 := 2h2 ⟨Bhw⃗, iD1c,hw⃗⟩ , (30)
S2 := 2h2

〈
B2D1c,hLw⃗, iD1c,hw⃗

〉
. (31)

First, we estimate S1

h . By (12)1 and (12)3

S1

h = 1
h4

N∑
i=1

i
(
∆3

xwi −∆3
xwi−1

)
(∆xwi +∆xwi−1)

= − 1
h4

N∑
i=0

∆3
xwi∆xwi + (N + 1)∆3

xwN∆xwN

+ 1
h4

N∑
i=1

i∆3
xwi∆xwi−1 − 1

h4

N∑
i=1

i∆3
xwi−1∆xwi

+ 1
h4

N∑
i=1

i∆3
xwi∆xwi − 1

h4

N∑
i=1

i∆3
xwi∆xwi

+ 1
h4

N∑
i=1

i∆3
xwi−1∆xwi−1 − 1

h4

N∑
i=1

i∆3
xwi−1∆xwi−1,

where the last two terms are added and subtracted.
Since ∆3

xwi = ∆2
xwi+1 −∆2

xwi,

S1

h
= − 2

h4

N∑
i=0

∆2
xwi+1∆xwi +

2
h4

N∑
i=0

∆2
xwi∆xwi

+ 2(N+1)
h4 ∆3

xwN∆xwN − 1
h4

N∑
i=0

i∆2
xwi+1∆

2
xwi

+ 1
h4

N∑
i=0

(i+ 1)∆2
xwi+1∆

2
xwi − (N+1)

h4 ∆2
xwN+1∆

2
xwN

= − 2
h4

N+1∑
i=1

∆2
xwi∆xwi−1 +

2
h4

N∑
i=0

∆2
xwi∆xwi

+ 2(N+1)
h4 ∆3

xwN∆xwN + 1
h4

N∑
i=0

∆2
xwi+1∆

2
xwi

− (N+1)
h4 ∆2

xwN+1∆
2
xwN .

Now use ∆2
xwi = ∆xwi −∆xwi−1 to get

S1 = 2h
N∑
i=0

(
δ2xwi

)2
+ h

N∑
i=0

δ2xwi+1δ
2
xwi

− 4
h3

[
(w1)

2 − (wN )
2
]
− 4L

h4 (wN )
2
.

By adopting (27) again, this leads to

S1 = 3h
N∑
i=0

(
δ2xwi

)2 − h3

2

N∑
i=0

(
δ3xwi

)2
−4L

(
wN

h2

)2 − 6
h3 ((w1)

2 − (wN )
2
).

(32)

To estimate the term h3

2

N∑
i=0

(
δ3xwi

)2
in (32), the following

equality is needed first

h3

2

N∑
i=1

δ4xwiδ
2
xwi = −h3

2

N∑
i=0

(
δ3xwi

)2
− 1

h3

(
w1w2 − 4 (w1)

2 − 4 (wN )
2
+ wNwN−1

)
.

(33)

Now, define the operator T by (Tw)i :=
(
B2D1c,hLw

)
i

so
that ⟨Tw⃗,Ahw⃗⟩ = 0. By this, (23), and (33),

−h3

2

N∑
i=0

(
δ3xwi

)2
= − λ̃h3

2

N∑
i=1

(δxwi)
2

+ 1
h3

(
w1w2 − 4 (w1)

2 − 4 (wN )
2
+ wNwN−1

)
.
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Finally, by substituting this in (32),

S1 = − 4L
h4 (wN )

2
+ 3h

N∑
i=0

(
δ2xwi

)2
− λ̃h3

2

N∑
i=0

(δxwi)
2 − 1

h3

(
10 (w1)

2 − w1w2

−2 (wN )
2 − wNwN−1

)
.

(34)

Next, we estimate S2. By Lemma 2 and (14), i.e. D1c,hw⃗ =
CAhm⃗+ Pm⃗, we have

S2 = −2B2h2 ⟨Lw⃗, iD1c,h(CAhm⃗+ Pm⃗)⟩ .

Now, by the definition of Jh in Lemma 2 and adopting
similar calculations from (26)-(27), this yields

S2 = B2h3C
2

N∑
i=1

(
δ3xmi

)2 −B2Ch
N∑
i=1

(
δ2xmi

)2
+B2Ph

N∑
i=0

(δxmi)
2 − B2PL

h2 (mN )
2
.

(35)

Then, using (29)- (31), (34), and (35), (25) reduces to

4h
N∑
i=0

(
δ2xwi

)2 − λ̃h3
N∑
i=0

(δxwi)
2

+B2Ph
N∑
i=0

(δxmi)
2
+ B2Ch3

2

N∑
i=1

(
δ3xmi

)2
= 4L

h4 (wN )
2
+ B2PL

h2 (mN )
2 −B2Ph

N∑
i=0

(δxmi)
2

− 1
h3 (12 (w1)

2 − 4 (wN )
2 − w1w2 − wNwN−1).

(36)

Next, multiply (14) by 2ih2(D1c,hm⃗)i and take the sum
from 1 to N to get

B2PL
h2 (mN )

2
= B2Ph

N∑
i=0

(δxmi)
2
+ B2P 2h3

2C

N∑
i=0

(δxmi)
2

−B2P 2h
C

N∑
i=0

(mi)
2 − 2B2Ph2

C ⟨iD1c,hw⃗,D1c,hm⃗⟩ .

Now, substitute this in (36) to obtain (24).

Lemma 7. For (23), λ̃h = Eh,MM (t).

Proof. Since ⟨w⃗, w⃗⟩ = 1, multiply (23) by hwi, sum over i
from 1 to N , and use (14) and Lemma 2 to conclude.

Remark 2. The identity λ̃h = Eh,EB(t) is true for the eigen-
solutions of Bhλ̃ = λ̃w⃗ of (9).

Lemma 8. Let σ > 0, be the numerical filtering parameter,
then for each λ(Ah)h

2 ∈ (0, 4− σ), the following inequal-
ities hold true for the solutions of (23){

(2w1−w2)
2

4h3 + (2wN−wN−1)
2

4h3 ≤ Eh,MM (t) ,
⟨Ahw⃗, w⃗⟩ ≤ 4−σ

h2 .
(37)

Proof. First note that from Lemma 2, Jh is non-positive by
a quick calculation, it can be shown that

⟨Ahw⃗,Ahw⃗⟩ ≤
〈
Ãhw⃗, w⃗

〉
= λ̃ ⟨w⃗, w⃗⟩ . (38)

Since the eigenvectors of (23) are normalized, we have

λ̃ ≥ ||Ahw⃗||20 =
N∑
i=1

δ2xwi · δ2xwi. Multiply both side by h
2 to

obtain λ̃h
2 ≥ (2w1−w2)

2

4h3 + (2wN−wN−1)
2

4h3 . Next, use Lemma-
7, and apply the boundary conditions in (23) to obtain (37)1.
Since ⟨Ahw⃗, w⃗⟩ ≤ ||Ah||, by Gershgorin’s Circle Theorem
[10], for any Strictly Diagonally Dominant (SDD) matrix,
|λ(Ah)| ≤ ||Ah||∞. Thus, λ(Ah)h

2 ≤ 4 − σ. Finally, the
conclusion (37)2 follows immediately.

We can now state the main result.

Theorem 9 (Spectral Observability). Let B be small such
that B < 1, 2C > Ph2, and 4B2L4P << C(2C − Ph2),
ensuring 4B2L4P

C(2C−Ph2) > 0 is small. Choose the numerical

filtering parameter σ ∈
(

B2L2

B2L2+C + 4B2L4P
C(2C−Ph2) , 4

)
. For

0 < ξ1 <
σ

2
− 2B2L2

B2L2 + C
− 2B2L4P

C(2C − Ph2)︸ ︷︷ ︸
>0

, 0 < ξ2 ≤

2C − Ph2

2L︸ ︷︷ ︸
>0

, since λ̃(Ah) ∈ (0, 4−σ), there exists a constant

R(h) =
σ
2 − B2L2

B2L2+C
−B2L3P

Cξ2
−ξ1

2L+ h
2ξ1

> 0 (as h → 0) such that

the following estimate holds∣∣∣wN

h2

∣∣∣2 ≥ R(h)Eh,MM (0). (39)

Proof. First, apply the generalized Young’s inequality with
ξ1 > 0 to majorize the left-hand side of (24) in Lemma 6,
and use Remark 2 to obtain

L
2

(
δ2xwN+1

)2
+ 1

2h3

{
(w1)

2

2ξ1
+ (2w1−w2)

2ξ1
2 + (wN )2

2ξ1

+ ξ1(2wN−wN−1)
2

2

}
− 1

h3

(
(w1)

2 + (wN )2
)

−B2Ph2

C ⟨iD1c,hw⃗,D1c,hm⃗⟩ ≥ 2Eh,EB (t)

− λ̃h3

2 ⟨Ahw⃗, w⃗⟩+
(

B2Ph
2 − B2P 2h3

4C

)
⟨Ahm⃗, m⃗⟩ .

By the symmetry of the eigenvalue problem (23)), (w1)
2 =

(wN )2. Now, use Lemmas 7, 8 to obtain

−B2Ph2

C ⟨iD1c,hw⃗,D1c,hm⃗⟩
+
(

L
2 + h

8ξ1
− h

2

) (
δ2xwN+1

)2 ≥ 2Eh,EB (t)

−
(
ξ1 +

4−σ
2

)
Eh,MM (t)

+
(

B2Ph
2 − B2P 2h3

4C

)
⟨Ahm⃗, m⃗⟩ .

(40)

Since Nh < L, apply generalized Young’s inequality with
ξ2 > 0 and Lemma 4 to obtain

−B2Ph2

C ⟨iD1c,hw⃗,D1c,hm⃗⟩

≤ B2PhL
2Cξ2

N∑
i=1

∣∣(D1c,hw⃗)i
∣∣2 + B2PhLξ2

2C

N∑
i=1

∣∣(D1c,hm⃗)i
∣∣2

≤ B2PhL3

Cξ2
Eh,MM (t) + B2PhLξ2

2C ⟨Ahm⃗, m⃗⟩ .

Substituting this in (40) and using Theorem 5 gives(
L
2 + h

8ξ1

) (
δ2xwN+1

)2
≥
(

σ
2 + 2C

B2L2+C − B2PL3

Cξ2
− ξ1 − 2

)
Eh,MM (t)

+
(

B2Ph
2 − B2P 2h3

4C − B2PhLξ2
2C

)
⟨Ahm⃗, m⃗⟩ .

Since
∣∣δ2xwN+1

∣∣2 = 4
∣∣wN

h2

∣∣2, use Lemma 3, and choose
ξ1, ξ2 as in the theorem to obtain (39).
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A. Numerical Experiments
To validate our theoretical findings, we consider a com-

posite structure consisting of PZT-silicone, rubber, and alu-
minum layers, arranged from bottom to top, with dimensions
L = 1,m, h1 = h3 = 0.1m, and h2 = 0.03m. The filtering
parameter is set within σ ∈ (0.1, 4), and the corresponding
parameters are calculated as B ≈ 0.09, C ≈ 0.7, and
P ≈ 5.4× 10−9. For more details, see [2].

Table I shows the effect of increasing N with a fixed filter-
ing parameter σ = 2.75. As N increases, more eigenvalues
are retained, improving numerical accuracy. For N = 20 (40
eigenvalues), 16 are retained, and 24 are filtered out. As N
grows, more eigenvalues are retained.

Filtering par. # of total # of retained # of filtered
σ < 4 e-values=2N e-values e-values
2.75 40 16 24
2.75 80 30 50
2.75 160 60 100

TABLE I: Increasing N with a fixed σ increases the number
of retained eigenvalues.

Table II highlights the relationship between the desired
number of retained eigenvalues and the corresponding filter-
ing parameter σ. To retain 20 eigenvalues as N increases,
σ must be reduced. For example, with 40 total eigenvalues,
σ = 3.97 is needed, while for 160 eigenvalues, σ must be
reduced to 0.6.

Desired # of e-values Total # of # of filtered σ < 4
to be retained e-values=2N e-values

20 40 20 3.97
20 80 60 1.97
20 160 140 0.6

TABLE II: Adjusting σ to retain 20 eigenvalues as N
increases.

IV. CONCLUSIONS & FUTURE WORK

Key conclusions include the alignment of the smallness
assumption for B in Theorem 9 with findings in [2], high-
lighting the importance of large shear in the middle layer
for improved damping. The filtering parameter σ is critical
for uniform spectral observability. As σ → 4, only low-
frequency eigenvalues are retained; as σ → 0, insufficient
filtering compromises observability as h → 0. Therefore,
appropriate filtering is essential to eliminate spurious high-
frequency eigenvalues. Increasing the number of nodes N
and applying suitable filtering is recommended to retain high-
frequency modes without sacrificing accuracy.

Proving uniform spectral observability paves the way
for our next goal of establishing uniform exact boundary
observability of the reduced model of (1) as h → 0. Using
the discrete multiplier approach and Haraux’s theorem, we
aim to achieve uniform observability as h→ 0 for arbitrarily
small observation times [7], inspired by [1].

The methodology developed in this paper is also being
applied to a more complex three-layer beam model in [15],
which includes additional wave equations [8].
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