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Abstract— We study the problem of designing scheduling
policies for communication networks. This problem is of-
ten addressed with max-weight-type approaches since they
are throughput-optimal. However, max-weight policies make
scheduling decisions based on the network congestion, which
can be sometimes unnecessarily restrictive. In this paper, we
present a “schedule as you learn” (SYL) approach, where we
learn an average rate, and then select schedules that generate
such a rate in expectation. This approach is interesting because
scheduling decisions do not depend on the size of the queue
backlogs, and so it provides increased flexibility to select
schedules based on other criteria or rules, such as serving
high-priority queues. We illustrate the results with numerical
experiments for a cross-bar switch and show that, compared
to max-weight, SYL can achieve lower latency to certain flows
without compromising throughput optimality.

I. INTRODUCTION

Scheduling policies in networking have historically fo-
cused on maximizing throughput, as this was the main
bottleneck in communication networks. This is, however,
not the case anymore with modern communication networks
(e.g., 5G), and cloud applications (e.g., collaborative LaTeX
editors and online video games) often require performance
metrics besides throughput to achieve a good quality of ex-
perience. For example, a latency above 250 ms is considered
not suitable for online gaming [1].

Let us illustrate, with a toy example, the problem of a
scheduling policy that focuses only on maximizing through-
put. Consider the network illustrated in Fig. 1; a server
that receives packets from two different flows, and stores
them in separate queues. Flow 1 represents a flow that is
insensitive to latency (e.g., FTP traffic), and flow 2 is a
flow with low-latency requirements (e.g., an online video
game). In this example, the server can transmit at most one
packet at a time, so it has to decide which of the queues to
serve. In this case, the max-weight policy [2] will transmit
a packet from the queue with the largest backlog. Such
a strategy is throughput-optimal in the sense that all the
packets that get into the queues will eventually get out in
a finite amount of time.1 However, the max-weight policy
does not provide low latency to flow 2 (see Fig. 2). Now,
consider a policy that transmits a packet from queue 2 if this
is not empty, and otherwise it serves a packet from queue
1. This alternative policy is also throughput optimal, but
this provides, in addition, low latency to the second flow

1Or more formally, the waiting times of the packets in the queues does
not grow unbounded.
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Fig. 1. Server with two queues. The server can only serve one packet
from the queues at a time. Flow 1 and 2 are directed to nodes 1 and 2,
respectively.
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Fig. 2. Probability distribution of the packets waiting times for the network
in Fig. 1. The waiting times are normalized to the frequency in which
the server selects schedules. The packet arrivals of flow 1 and flow 2 are
Bernoulli with mean (1 − ϵ)0.8 and (1 − ϵ)0.2 respectively, where ϵ =
5 · 10−5.

(see Fig. 2). Hence, it is preferable over max-weight for this
scenario.

Designing throughput optimal policies is highly non-
trivial, especially when the network has arbitrary topology,
the traffic arrival statistics are not known, and the network
connectivity varies over time. The max-weight policy [2] and
variants [3], [4] have become the de facto approaches for
maximizing throughput in networks. Their fundamentals are
well studied by the networking and control communities, and
besides throughput-optimality, they have the appealing prop-
erty that scheduling decisions can be computed in polynomial
time by finding a maximum-weighted matching in a graph
[5]. In addition, well-established extensions of max-weight,
such as the Lyapunov Drift-Plus-Penalty (LDPP) algorithm
[4], can minimize a convex utility function of the average
throughput. For example, LDPP can serve all the traffic in
a wireless network while minimizing the energy used [6].
However, performance metrics, such as latency, are not a
function of the average flow, and selecting schedules to be
maximum-weighted matchings in a graph may not always be
the best choice, as shown in the example in Fig. 1.

In this paper, we study the problem of designing through-
put optimal scheduling policies for networks with arbi-
trary topology when the statistics of the arrival process are
unknown. Unlike max-weight approaches, which seek to
stabilize a system of queues directly, we see the problem
as learning an “average” rate vector that guarantees queue
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stability, and then “stack” a (randomized) scheduling policy
on top that guarantees such an average rate in expectation.
That is, we select schedules as we learn an average rate.
Such an approach is appealing because it decouples the
choice of schedule from the size of the queue backlogs
at a given time, thus providing more flexibility as to how
to select schedules. Max-weight is a throughput-optimal
policy, but not the only one. Among all throughput-optimal
policies, it is interesting to select/design one that boosts other
performance metrics important for the problem of interest,
e.g., low latency or reduced memory usage. To this end, the
main contributions of the paper are:

• A new approach to designing throughput optimal poli-
cies (Sec. IV). The strategy consists of learning an
average rate that guarantees queue stability/maximum
throughput, and then selecting schedules that ensure
such an average rate in expectation.

• A new algorithm (Algorithm 3) that is throughput
optimal. The algorithm uses Nesterov’s dual-averaging
[7] for learning the “average” rate, and a randomized
policy for selecting the schedules. In our approach,
scheduling decisions do not depend on the size of the
queue backlogs.

• Two numerical experiments for a cross-bar switch
scheduling problem that illustrate the performance of
our approach. In addition, we present a variant of
SYL to illustrate how we can “bias” the selection of
schedules to reduce the latency of a flow while retaining
throughput optimally.

Our approach is novel and provides an alternative perspec-
tive on how to tackle queue scheduling problems. Further-
more, we believe it makes the design of new throughput-
optimal policies conceptually simpler. The learning process
can be offloaded to a subroutine, which allows us to focus
on designing a scheduling policy for a particular system.
Such an approach can be helpful for systems with complex
operational constraints, such as quantum networks with qubit
memory constrains and decoherence [8].

The rest of the paper is organized as follows. Sec. II gives
an overview of previous work and position our contributions.
Sec. III introduces the preliminaries: the notation, a suffi-
cient condition for queue stability, and the dual averaging
algorithm. In Sec. IV, we formulate the problem and discuss
how we can tackle it depending on whether the statistics
of the packet arrivals are known, or not. Sec. V presents
the main technical results (Algorithm 3 and Theorem 1) and
discusses the limitations of our approach. Finally, Sec. VI
presents the numerical experiments for a cross-bar switch,
and Sec. VII concludes. All the proofs are in the Appendix.

II. BACKGROUND AND RELATED WORK

A significant amount of research on throughput-optimal
policies started as result of the paper in [2]. In brief, [2] char-
acterized the set of rates for which throughput-optimal poli-
cies exist and showed how to design a throughput-optimal
policy using a discrete-time Lyapunov control approach.
The throughput-optimal policy presented in [2] is known

as max-weight, as this selects schedules that correspond to
maximum-weighted matchings in the connectivity graph—
the weights of edges are the sizes of the queue backlogs. This
line of work has inspired several extensions of the original
algorithm with applications to many networking and resource
allocation problems. Some notable extension include utility
functions [4], constrained schedules [9], heavy-tailed traffic
[10], and online learning [11].

The appealing features of max-weight algorithms2 moti-
vated researchers to develop convex optimization algorithms
for network resource allocation problems with similar fea-
tures. In short, the approaches often consists of connecting
Lagrange multipliers with scaled queues’ occupancy in a
specific convex optimization method, and then show, via the
Lagrange multipliers, that the queues are stable. See, for
example, [12, Sec. 4.7], [13, Sec. V], [14, Sec. IV-B].

The approach in this paper is conceptually different from
max-weight and convex optimization approaches. We show
that satisfying an average rate vector condition is sufficient
for obtaining queue stability and then aim to find/learn such
a rate. We use dual-averaging (i.e., a convex optimization
algorithm) to learn the rate vector, but other techniques are
possible. Notably, our learning algorithm does not connect
dual variables with queues, which is the distinctive character-
istic of previous convex optimization works [12], [13], [14].
Furthermore, we use diminishing step sizes to learn the rate
vector (i.e., α → 0), which is in contrast to the constant
step size employed in previous approaches to ensure queue
stability (see, for example, [3, Sec. 4.10] and [13, Sec. V]).

III. PRELIMINARIES

This section introduces the notation, a sufficient condi-
tion for strong stability in queuing systems, and the dual-
averaging algorithm that we will use in Sec. V to learn a
rate vector that ensures queue stability.

A. Notation

We use Rn to denote the set of n-dimensional vectors, and
Rn

+ the set of vectors with non-negative entries. All vectors
are in column form, and we use 1 to denote the all ones
column vector—its dimension will be clear from the context.
For two vectors x and y, we use ⟨x, y⟩ to denote their inner
product. We use x ⪯ (⪰)y to indicate that x is component-
wise smaller (greater) than y. The function [x]+ : Rn → Rn

returns a vector where its j-th component is equal to the j-th
component of x if this is greater than or equal to zero, or
zero otherwise. Finally, we use ∥ · ∥ to denote the ℓ2-norm,
and ∇f(x) to denote a (sub)gradient of a function f at x.

B. Strong stability of a queuing system

Consider a system of n queues that operates in slotted
time. In each time slot k = 1, 2, . . . , the queues evolve
according to the following recursion:

Qk+1 = [Qk + Zk]
+

k = 1, 2, . . . (1)

2Throughput optimality; it does not require to know the statistics of the
arrival process; and schedules can be computed in polynomial time.
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Algorithm 1 Dual averaging algorithm
Input: f and C convex, ϕ is σ-strongly convex
Set: s0 = 0, k = 1
while termination condition is not met do

αk > 0
xk = argmaxu∈C{⟨sk−1, u⟩ − ϕ(u)}
sk ← sk−1 − αk∇̃f(xk)
k ← k + 1

end while

where Q1 ∈ Rn
+, and Zk ∈ Rn indicates the net increment

of items in each of the queues.
A queuing system is strongly stable when the expected

backlog of all queues is finite [4], i.e.,

lim
k→∞

1

k

k∑
i=1

E[∥Qi∥] ≺ ∞. (2)

Strong stability is an important property to ensure
throughput-optimality. Informally, by ensuring that the
queues do not overflow, we guarantee that all the packets
that get into the queues will eventually get out. A queueing
system will be strongly stable depending on the properties of
the sequence {Zi}ki=1. The following proposition establishes
a simple condition to have strongly stable queues.

Proposition 1. Consider the update in Eq. (1) with Q1 ∈
Rn

+. Suppose that

E[Zk] ⪯ −η1 for all k = 1, 2, . . .

with η > 0 and ∥Zk∥ ≤ σ for some constant σ < ∞. Also,
suppose that Zk is independent of Qk. Then, the queuing
system is strongly stable.

The result above holds also when the condition E[Zk] ⪯
−η1 is only satisfied for k ≥ τ , where τ ∈ {1, 2, . . . } and
Qτ ∈ Rn

+. We will use this fact in Lemma 3 in Sec. V.

C. Dual averaging

We present Nesterov’s dual averaging algorithm [7] in
generic convex optimization form as this will allow us to
streamline the proofs and exposition in Sec. V.

Consider the convex optimization problem:

minimize
x∈C

f(x) (3)

where f : Rn → R and C ⊆ Rn are convex. The objective
function does not need to be differentiable. To minimize f ,
we generate a sequence {xi ∈ C}ki=1 to query a stochastic
first-order oracle. On querying the oracle at point xk, this
returns vectors of the form

∇̃f(xk) = ∇f(xk) + ξk,

where ξk is a bounded random variable with E[ξk] = 0
for all k. With such an oracle, we can design an algorithm
that solves (3). The following lemma is a special case of [7,
Theorem 1], and we will use it to prove Lemma 2 in Sec. V.

Lemma 1. Consider the optimization in (3). Let ϕ be a σ-
strongly convex function such that ϕ(u) ≥ 0 for all u ∈
C. Suppose that E[∇̃f(xk)] = ∇f(xk). For any w ∈ C,
Algorithm 1 ensures that

E

[
k∑

i=1

αif(xi)− kf(w)

]

≤ E

[
k∑

i=1

αi⟨∇f(xi), xi − w⟩

]

≤ ϕ(w) +
1

2σ

k∑
i=1

α2
i ∥∇̃f(xi)∥2. (4)

An example of function ϕ(u) is 1
2∥u − x0∥2, i.e., a

function that measures the distance between u and a vector
x0 ∈ C. The bound in Eq. (4) is closely connected to
the convergence of subgradient methods [15]. If we set
w = x⋆ := argminu∈C f(u) and assume that ∥∇̃f(xk)∥
are uniformly upper bounded for all k, one can show that
f(xk) converges, in probability, to f(x⋆) (see [15] for the
details).

IV. PROBLEM FORMULATION

Consider a system of queues that evolve as follows:

Qk+1 = [Qk +Ak − Sk]
+

k = 1, 2, . . .

where Qk ∈ Rn
+, {Ai ∈ A}ki=1 and {Si ∈ S}ki=1 are the

packet arrivals and service in a time slot t. Without loss of
generality, we assume that A := {a1, . . . , a|A|} and S :=
{s1, . . . , s|S|} are discrete sets in Rn, e.g., A,S ⊆ {0, 1}n.
Also, we will refer to the elements in S as schedules.

For a given arrival process {Ai ∈ A}ki=1, our goal is
to design a policy that generates a sequence {Si ∈ S}ki=1

that stabilizes the system of queues (see Sec. III-B). Such a
problem is feasible when

λ := lim
k→∞

1

k

k∑
i=1

Ai, Ai ∈ A

is in the set

Λ := {λ ∈ Rn
+ : λ ⪯ µ for some µ ∈ conv(S)},

which is known in the networking literature as the network
capacity region [2]. In short, the network capacity region
contains all the vectors λ such that λ ⪯ µ for a vector µ in
the convex hull of S. Also, note that, by construction, we
can write any vector µ ∈ conv(S) as the running average
of service vectors in S, i.e., µ = limk→∞

1
k

∑k
i=1 Si, with

Si ∈ S.
In the rest of the paper, we will make the following as-

sumption, which ensures that the problem is strictly feasible
(see, for example, [3, pp. 104]).

Assumption 1. λ is in the interior of the network capacity
region. That is, for a given vector λ, there exists a vector
µ ∈ conv(S) and a η > 0 such that λ+ η1 ⪯ µ.
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The problem of designing a service policy that stabilizes
the queuing system can be divided into two cases, depending
on whether λ is known, or not. We are interested in solving
the problem when λ is not known (Sec. IV-B), but present the
case where λ is known since both cases are closely connected
in our work.

A. λ is known

In this case, we can design a service policy in two steps:

(i) Find a vector µ ∈ conv(S) such that λ + η1 ⪯ µ for
some η > 0.

(ii) Decompose µ as the convex combination of elements
in S, i.e., write µ =

∑|S|
j=1 θjsj for some θj ≥ 0 with∑|S|

j=1 θj = 1. Such a decomposition is always possible
because µ is, by construction, in the convex hull of S.

With the decomposition of µ, we can select an element in
S with probability equal to its weight, i.e.,

Prob(Sk = sj) = θj . (5)

Such a policy is often known as the randomized policy; it
will generate a sequence {Si ∈ S}ki=1 where E[Sk] = µ for
all k ∈ {1, 2, . . . }. Thus, we have that E[Ak]−E[Sk] ⪯ −η1
and so the queues will be strongly stable by Proposition 1.

Finding a vector µ that ensures λ + η1 ⪯ µ is easy if
we can check whether a vector is in the convex hull of S.
For instance, we could solve the optimization maxη≥0 η s.t.
λ+η1 ∈ conv(S) with the bisection method. The complexity
of decomposing a vector µ as a convex combination of
vectors in S depends on the problem. For example, if the
number of elements in S is small, we can obtain such a
decomposition by solving the convex optimization problem:
minθj≥0 ∥

∑|S|
j=1 θjsj − µ∥2 s.t.

∑|S|
j=1 θj = 1. However,

that is not always possible. For example, in the cross-
bar switches, the number of actions (i.e., |S|) increases
factorially with the number of input/output ports [16].3

To conclude this section, we present an example of how
to decompose a 3 × 3 traffic matrix of a cross-bar switch
with the approach described above.

Example 1. Consider a 3× 3 cross-bar switch with arrival
matrix (i.e., a 9-dimensional vector):

λ =

0.6 0.3 0.0
0.1 0.0 0.8
0.2 0.6 0.1

 . (6)

Set S corresponds to the permutation matrices plus the null
action (i.e., the all-zeros matrix). Matrix λ is in the interior
of the capacity region since the sum of the rows and columns
is equal to 0.9. A vector µ that satisfies λ+ η1 ⪯ µ is

µ =

0.633 0.333 0.033
0.133 0.033 0.833
0.233 0.633 0.133

 .

3e.g., a switch with 16 ports has over 20 trillion schedules/actions.

Algorithm 2 Dual averaging algorithm with stochastic
(sub)gradients for the Lagrange dual problem (8)

Input: f and C convex, ϕ(u) = 1
2∥u∥

2

Set: s1 = 0, x1 ∈ C, k = 1
while termination condition is not met do

αk ← 1/
√
k

yk = argmaxv⪰0{⟨sk−1, v⟩ − ϕ(v)}
µk = argminu∈C{f(u) + ⟨yk, λ− u⟩}
sk+1 ← sk + αk(Ak − µk)
k ← k + 1

end while

That is, we have added 0.033 to each entry of λ. We can
decompose µ as follows:

19

30

[
1 0 0
0 0 1
0 1 0

]
+

6

30

[
0 1 0
0 0 1
1 0 0

]
+

4

30

[
0 1 0
1 0 0
0 0 1

]
+

1

30

[
0 0 1
0 1 0
1 0 0

]
.

A randomized policy will select each permutation matrix,
respectively, with probability 19

30 , 6
30 , 4

30 , and 1
30 .

B. λ is not known
A straightforward approach to tackle this case is to observe

the arrivals process {Ai ∈ A}ki=1 for long enough to ensure
that 1

k

∑k
i=1 Ai is sufficiently close to λ to estimate a vector

µ such that λ+ η1 ⪯ µ for some η > 0. With that, we can
decompose µ as indicted in the previous section. However,
such an approach is typically not desirable because it requires
to remain idle (i.e., not serve packets) for a long period of
time.

An alternative approach is the following. Suppose that we
have access to a sequence {µ̄i ∈ conv(S)}ki=1 such that λ+
η1 ⪯ E[µ̄k] for all k ≥ τ for some constant τ ∈ {1, 2, . . . }.
Then, we can use µ̄k to construct a “randomized” policy
as explained in Sec. IV-A. In particular, at time k, we will
write µ̄k as the convex combination of elements in S, and
select one of the elements with probability proportional to
the weights. The difference with the approach mentioned in
the paragraph above is that we do not wait to learn a µ that
satisfies λ+ η1 ⪯ µ to start the scheduling process. Instead,
we schedule as we learn. In the next section, we present
an algorithm that learns µ̄k with Nesterov’s dual averaging
algorithm but other optimization techniques could be used
as long as the necessary conditions are met.

V. MAIN RESULTS

In this section, we present an approach for constructing a
sequence {µ̄i ∈ C}ki=1 that satisfies λ+ η1 ⪯ E[µ̄k] for all
k ≥ τ for some constant τ ∈ {1, 2, . . . }.

To start, consider the constrained optimization problem:

minimize
µ∈C

f(µ)

subject to λ ⪯ µ
(7)

where λ is the average of the arrivals, µ the average service,
and C := conv(S). Without loss of generality, we assume
that 0 ∈ C, i.e., there is the option to not serve any packets
from the queues.4 The objective function just expresses a

4We will use the fact that 0 ∈ C in the proof of Lemma 2.
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preference on the average service rate µ that satisfy the
constraints. In the schematic example in Fig. 3, the objective
f controls where µ⋆ := argminµ∈C,λ⪯µ f(µ) will be in the
yellow region (i.e., the set of vectors where µ ⪰ λ).

To tackle (7), we formulate the Lagrange dual problem,
which allow us to relax the knowledge of λ by using
stochastic (sub)gradients. This will be clear shortly. For now,
consider the Lagrange dual problem of (7):

maximize
y⪰0

h(y) (8)

where

h(y) := min
µ∈C
{f(µ) + ⟨y, λ− µ⟩}.

The Lagrange dual function h is concave [17, Chapter 5].
Thus, we can use Algorithm 1 since −h is convex.

Next, consider that we minimize −h by querying a
stochastic first-order oracle at yk (see Sec. III-C). The oracle
returns vectors of the form

−∇̃h(yk) = −∇h(yk) + ξk

= µk − λ+ ξk (−∇h(yk) = µk − λ)

= µk −Ak (ξk := λ−Ak)

where

µk ∈ argmin
u∈C
{f(u) + ⟨yk, λ− u⟩}. (9)

There are two important points to note. First, if E[Ak] = λ,
we have that E[ξk] = 0 for all k, and so we satisfy the
condition for dual averaging with stochastic gradients (see
Sec. III-C). The second point is that we do not need to know
λ to compute µk; see Eq. (9). Thus, if E[Ak] = λ, we can
construct such an oracle by solving a convex optimization
and “replacing” λ with Ak. We have the following result.

Lemma 2. Suppose f is m-strongly convex and that Slater’s
condition holds, i.e., there exists a η > 0 such that λ+η1 ⪯
µ for some µ ∈ C. Algorithm 2 (i.e., Algorithm 1 applied to
problem (8)) with ϕ(u) = 1

2∥u∥
2 ensures:

E
[
∥µ̄k − µ⋆∥2

]
≤ B

σm

log(k) + 1√
k

where µ⋆ := argminµ∈C,λ⪯µ f(µ),

µ̄k :=
1∑k

i=1 αi

k∑
i=1

αiµi, (10)

and B := 1
2 maxµ∈C,a∈A ∥µ− a∥2.

The result ensures that E[∥µ̄k − µ⋆∥2] → 0 as k → ∞
at a rate of Õ(1/

√
k). Thus, for large enough k, µ̄k will be

within a ball around µ⋆ with high probability. Fig. 3 shows,
schematically, the intuition behind this idea. The ball where
µ̄k lives shrinks with k, and therefore, for k sufficiently large,
it will eventually happen that λ ≺ E[µ̄k] if λ ≺ µ⋆. The
following lemma establishes a time τ ∈ {1, 2, . . . } for which
E[µ̄k] will be strictly larger than λ for all k ≥ τ .

Rate 1

R
at

e 
2

ball of radius 

Network capacity region

Feasible region:

Scheduling actions in 

Fig. 3. Schematic illustration of the convergence result in Lemma 2. Vector
µ̄k is within a ball of radius B(log(k) + 1)/(σm

√
k) centered at µ⋆. By

construction, µ⋆ is strictly larger than λ.

Algorithm 3 Schedule as You Learn (SYL)
Input: f that ensures λ+ η1 ⪯ µ∗ (see Theorem 1)
while termination condition is not met do

1) Observe packet arrivals Ak

2) Compute µ̄k =
∑k

i=1 αiµi∑k
i=1 αi

with Algorithm 2
3) Decompose µ̄k, i.e.,

µ̄k =

|S|∑
j=1

θjsj , sj ∈ S,

where θj ≥ 0,
∑|S|

j=1 θj = 1.
4) Select a Sk = sj with probability θj .

end while

Lemma 3. Suppose that λ + η1 ⪯ µ⋆ for some constant
η > 0. Then, Algorithm 2 ensures that

λ−E[µ̄k] ⪯ −
η

2
1 ∀k ≥

(
4B

η2σm

)2

.

Vector µ̄k will ensure queue stability for k ≥ τ . How-
ever, the queue updates require that the service vectors are
schedules so that they can be implemented in practice. For
that, we can decompose µ̄k as the convex combination of
schedules, and select one randomly—as when λ is known
(see Sec. IV-A). We have arrived at the following theorem.

Theorem 1. Consider an arrival process {Ai}ki=1 with
E[Ak] = λ for all k ≥ 1. Select Sk as indicated in Algorithm
3, and suppose that λ+ η1 ⪯ µ⋆ for some constant η > 0,
where µ⋆ is the solution to the optimization in (7). Then, the
queuing system is strongly stable.

Algorithm 3 can be seen as an “online” version of a
randomized algorithm when λ is known (Sec. IV-A). It
generates randomized schedules in each time slot k where
the expected throughput will, eventually, be strictly larger
than the mean arrival rate. Thus, the queuing system will be
strongly stable (Proposition 1).

There are multiple ways to ensure λ + η1 ⪯ µ⋆. One of
them is to let µ := µ̂− γ1 where µ̂ ∈ C and γ ≥ 0 a slack
variable, and use f(γ) = γ2−γ. The objective enforces γ to
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Fig. 4. Aggregated backlogs in the 3 × 3 cross-bar switch example in
Sec. VI-A for different arrival rates τ(λ/0.9), where λ is given in Eq. (6).

be strictly positive when there exists a µ̂ ∈ C that is strictly
larger than λ, which is the case by Assumption 1. Thus,
we will have µ⋆ = µ̂⋆ − γ⋆1 where γ⋆ > 0 and therefore
λ + γ⋆1 ⪯ µ̂⋆. The randomization of the schedules should
be over the running average 1∑k

i=1 αi

∑k
i=1 αiµ̂i.

To conclude, we note some limitations of the approach
compared to max-weight approaches:
(i) Finding a decomposition of µ̄k is computationally more

expensive than finding a maximum-weighted matching
in a graph. For instance, in cross-bar switches, decom-
posing µ̄k can require computing up to (n − 1)2 + 1
perfect matchings/linear programs [16], [18]. This has
an impact on the frequency in which we can select
schedules.

(ii) To obtain µ̄k, we need to solve a convex optimization
problem at each time slot (step 2 in Algorithm 3 and
implicit steps in Algorithm 2). While this can be carried
out efficiently with off-the-shelf solvers, this is a step
that max-weight approaches do not need to carry out.

(iii) The approach presented assumes that the network con-
nectivity is static, whereas in max-weight approaches,
the network connectivity can vary over time. Or, equiv-
alently, when the network connectivity changes, only a
fraction of the schedules in S are available at a given
time. In our approach, the main technical difficulty of
having a time varying connectivity is that we may not
be able to express µ̄k as the convex combination of the
available schedules.

VI. NUMERICAL EXPERIMENTS

This section presents two numerical experiments for a 3×3
cross-bar switch. Experiment A compares the performance
of SYL (Algorithm 3) in terms of queue sizes. Experiment
B shows an example of how we can improve the latency of
a flow with a heuristic strategy based on SYL that prioritizes
a flow while aiming to maintain the expected rate µ̄k.

A. Experiment A

Consider a 3× 3 cross-bar with arrivals matrix τ(λ/0.9),
where λ is as in Eq. (6), and τ ∈ [0, 1) a parameter that
controls the intensity of the arrivals while being within the
network capacity region. The arrivals are assumed to be

Bernoulli distributed with probabilities given by the matrix
τ(λ/0.9). We run max-weight and SYL for 100k iterations
and different values of τ in the range [0.9, 1). The simulation
results are shown in Fig. 4. Observe from the figure that in
both policies, the average queue backlog increases as τ → 1
and it explodes as we surpass the capacity boundary. This
is the typical behaviour in max-weight approaches when the
arrival rate is close the boundary of the capacity region (see,
for example, [3, Fig. 4.2]). However, note that max-weight
has smaller backlogs sizes compared to SYL. This is because,
unlike SYL, max-weight aim to minimize the total number
of packets in the queues. Minimizing the total number of
packets in the queues is, however, not the best strategy if
flows have different requirements in terms of latency, as we
show in the following example.

B. Experiment B

In this experiment, we consider the setting in Sec. VI-A for
a fixed τ = 0.98, and suppose that the flow 1-2, going from
input port to 1 to output 2, has low latency requirements.5

We compare four policies: max-weight [2], delay max-weight
[19], SYL (Algorithm 3), and a heuristic variant of SYL.
In particular, the SYL variant reserves a fixed number of
“tokens” for schedules serving flow 1-2. In each time slot, it
selects a schedule using a randomized policy as in SYL, but
when sensitive flow packets arrive and tokens are available,
it selects a schedule serving these packets and allocates a
token to the unused schedule. If tokens are not available, it
selects to the randomized schedule. In the absence of packets
from the sensitive flow 1-2, if the random selection would
serve it, the algorithm instead chooses the schedule with the
most tokens and subtract one.

We run the four policies for 100k iterations and show
the delay distribution in Figure 5. We only show in the
figure flows 1-2, 1-1, and 2-3 due to space constraints, but
the behavior of these flows is representative. First, observe
that max-weight incurs high delays to flow 1-2 since max-
weight prioritizes serving queues with larger backlogs. In
other words, max-weight does not prioritize queues that
grow “slower”, which is the case of flow 1-2 since this
is the flow with lowest intensity. This “unfair” behavior is
fixed by the delay max-weight policy, which provides similar
delay distributions to all flows. However, making all delay
distribution similar does not guarantee low latency to the flow
of interest. Finally, observe that the SYL variant provides low
latency to flow 1-2 at the price of increasing the delay of the
other flows. Importantly, the waiting times of the packets in
the queues are bounded, which means that all the packets
that get into the queues will eventually get out.

VII. CONCLUSIONS

This paper has presented a novel approach to designing
throughput optimal policies for queueing systems. The ap-
proach consists of learning an average rate that ensures queue
stability, and then selecting schedules in a “randomized”

5i.e., flow 1-2 is the entry with value 0.3 in matrix λ in Eq. (6)
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Fig. 5. Comparative histograms of delay distributions across the four scheduling policies (max-weight, delay max-weight, SYL, and SYL-variant) and
three different flows, showcasing the probability density of delays for pairs of nodes under three different traffic flows. For the SYL-variant we used 100
tokens for the schedules that serve the sensitive flow 1-2 (see Sec. VI-B).

manner that generate such a rate in expectation. An appealing
characteristic of our approach is that the learning process
can be offloaded to a subroutine, which allows us to focus
on designing a scheduling policy for a particular system.
A natural follow-up of this work is to design scheduling
policies that are “non-randomized”, and that their expected
throughput ensures queue stability.
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APPENDIX

A. Proof of Proposition 1

The proof is inspired by the method of proof in max-
weight policies [3], but we replace max-weight by a ran-
domized policy. To start, observe

∥Qk+1∥2 = ∥[Qk + Zk]
+∥2

≤ ∥Qk + Zk∥2

= ∥Qk∥2 + ∥Zk∥2 + 2⟨Qk, Zk⟩
≤ ∥Qk∥2 + σ2 + 2⟨Qk, Zk⟩

Rearrange terms and sum from i = 1, . . . , k

∥Qk+1∥2 ≤ ∥Q1∥2 + kσ2 + 2

k∑
i=1

⟨Qi, Zi⟩.

Take expectations w.r.t. Zk, and since Qk and Zk are
independent,

E[∥Qk+1∥2] ≤ ∥Q1∥2 + kσ2 − 2η

k∑
i=1

E[∥Qi∥1].
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Rearrange terms and divide by 2ηk to obtain:

1

k

k∑
i=1

E[∥Qi∥1] ≤
∥Q1∥2

2kη
+

σ2

2η
.

Finally, since ∥Q1∥2 ≤ ∥Q1∥1, take k → ∞ to obtain the
result.

B. Proof of Lemma 1

This proof follows the strategy explained in [7, Sec. 2]. To
start, let lk(w) :=

∑k
i=1⟨αi∇f(xi), xi − w⟩. Next, observe

that we can write

lk(w) =

k∑
i=1

⟨αi∇̃f(xi), xi − w⟩+Nk

=

k∑
i=1

⟨αi∇̃f(xi), xi⟩+ ⟨sk, w⟩+Nk

where Nk :=
∑k

i=1⟨αiξi, xi−w⟩, ξk = ∇f(xk)−∇̃f(xk),
and sk = s0 −

∑k
i=1 αi∇̃f(xi).

We proceed to upper bound ⟨sk, w⟩. Since ϕ is convex,
by Fenchel’s inequality [17, Sec. 3.3.2], ⟨sk, w⟩ ≤ ϕ(w) +
ϕ∗(sk). Thus,

lk(w) ≤ ϕ(w) + ϕ∗(sk) +

k∑
i=1

⟨αi∇̃f(xi), xi⟩+Nk (11)

Now, we upper bound the second and third terms in the
right-hand-side of the last equation. First, observe that by
the 1

σ -smoothness of ϕ∗ [20],

ϕ∗(sk)

≤ ϕ∗(sk−1) + ⟨∇ϕ∗(sk−1), sk − sk−1⟩+
1

2σ
∥sk − sk−1∥2

= ϕ∗(sk−1)− ⟨∇ϕ∗(sk−1), αk∇̃f(xk)⟩+
α2
k

2σ
∥∇̃f(xi)∥2

where sk − sk−1 = −αk∇̃f(xk). Apply the argument
recursively from i = 1, . . . , k to obtain

ϕ∗(sk) ≤ ϕ∗(s0)−
k∑

i=1

⟨∇ϕ∗(si−1), αi∇̃f(xi)⟩

+
1

2σ

k∑
i=1

α2
i ∥∇̃f(xi)∥2 (12)

where ϕ∗(s0) ≤ 0 since ϕ is non-negative and s0 = 0. Also,
since xk = ∇ϕ∗(sk−1) = argminu∈C{⟨sk−1, u⟩−ϕ(u)} for
all k = 1, 2, . . . [21, Proposition 11.3], we can use Eq. (12)
in Eq. (11) to obtain

lk(w) ≤ ϕ(w) +
1

2σ

k∑
i=1

α2
i ∥∇̃f(xi)∥2 +Nk.

Finally, note that E[Nk] = 0 because the noise vector
ξk is independent of xk by assumption, i.e., E[∇̃f(xk) −
∇f(xk)] = E[ξk] = 0. Hence,

E[lk(w)] ≤ ϕ(w) +
1

2σ

k∑
i=1

α2
i ∥∇̃f(xi)∥2.

To conclude, note that the left-hand-side of Eq. (4) follows
by the convexity of f .

C. Proof of Lemma 2

Slater’s condition ensures that strong duality holds [17,
Chapter 5], i.e., h⋆ := supy⪰0 h(y) = minu∈C,λ⪯u f(u) =:
f⋆. Next, since h(y) ≤ h(y⋆) for every y ⪰ 0 and h(y⋆) =
f⋆, we have

k∑
i=1

(h(yi)− f⋆) ≤ 0 (13)

Now, note that h(yk) = f(µk) + ⟨yk, λ − µk⟩ where µk ∈
argminu∈C{f(u) + ⟨yk, λ − u⟩}. Thus, rearranging terms
and multiplying each term in the sum by αk, we have

k∑
i=1

αi(f(µi)− f⋆) ≤ −
k∑

i=1

αi⟨yi, λ− µi⟩ (14)

Next, note that −h is convex, and that the (sub)gradient of
−h(yk) w.r.t. yk is −(λ − µk). Thus, by Lemma 1 with
w = 0 (0 in the domain of −h), we have

E

[
k∑

i=1

αi(f(µi)− f⋆)

]
≤ ϕ(0) +

1

2σ

k∑
i=1

α2
i ∥λ− µi∥2

where ϕ(0) = 0. We proceed the lower bound the left-hand-
side of the last equation. By the convexity of f ,

E

[
k∑

i=1

αi(f(µi)− f⋆)

]
≥ E

[(
k∑

i=1

αi

)
(f (µ̄k)− f⋆)

]
.

Since f (µ̄k)−f⋆ ≥ ⟨∇f(µ⋆), µ̄k−µ⋆⟩+m
2 ∥µ̄k − µ⋆∥2 (by

the m-strong convexity of f ) and ⟨∇f(µ⋆), µ̄k − µ⋆⟩ ≥ 0
because −∇f(µ⋆) ∈ NC(x

⋆) := {z ∈ Rn | ⟨z, µ − µ⋆⟩ ≤
0 ∀µ ∈ C} (see [21, Ch. 6b] and [22]), we have

E

[
k∑

i=1

αi(f(µi)− f⋆)

]
≥ m

2

(
k∑

i=1

αi

)
E
[
∥µ̄k − µ⋆∥2

]
.

Finally, divide across by m
2

∑k
i=1 αi to obtain a bound on

E[∥µ̄k − µ⋆∥2], where
∑k

i=1 αi ≥
√
k and

∑k
i=1 α

2
i ≤

log(k) + 1 since αk = 1√
k

.

D. Proof of Lemma 3

We will show that µ̄k generated by Algorithm 2 satisfies
λ + η

21 ⪯ E[µ̄k] for all k ≥ τ for some τ ∈ {1, 2, . . . }.
Since

√
x is concave for x ≥ 0, we have that

E[∥µ̄k − µ⋆∥] = E
[√
∥µ̄k − µ⋆∥2

]
≤
√
E[∥µ̄k − µ⋆∥2.

Hence, from Lemma 2, E[∥µ̄k− µ⋆∥] ≤
√

B
σm

log(k)+1√
k

, and

therefore E[∥µ̄k − µ⋆∥] ≤ η
2 for k ≥

(
4B

η2σm

)2
.

Finally, since ∥·∥∞ ≤ ∥·∥2, we have that µ⋆−E[µ̄k] ⪯ η
21.

And since λ + η1 ⪯ µ⋆ (by assumption in the lemma), it
follows that

λ+ η1−E[µ̄k] ⪯
η

2
1,

and, therefore, λ−E[µ̄k] ⪯ −η
21 for all k ≥

(
4B

η2σm

)2
.
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