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Regret-Optimal Defense Against Stealthy Adversaries:
A System Level Approach
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Abstract— Modern control designs in robotics, aerospace, and
cyber-physical systems rely heavily on real-world data obtained
through system outputs. However, these outputs can be compro-
mised by system faults and malicious attacks, distorting critical
system information needed for secure and reliable operation.
In this paper, we introduce a novel regret-optimal control
framework for designing controllers that make a linear system
robust against stealthy attacks, including both sensor and actu-
ator attacks. Specifically, we present (a) a convex optimization-
based system metric to quantify the regret under the worst-
case stealthy attack (the difference between actual performance
and optimal performance with hindsight of the attack), which
adapts and improves upon the 7, and . norms in the
presence of stealthy adversaries, (b) an optimization problem for
minimizing the regret of (a) in system-level parameterization,
enabling localized and distributed implementation in large-
scale systems, and (c) a rank-constrained optimization problem
equivalent to the optimization of (b), which can be solved using
convex rank minimization methods. We also present numerical
simulations that demonstrate the effectiveness of our proposed
framework.

I. INTRODUCTION

Recent advances in autonomous control, often enhanced
by machine learning, highlight the critical role of real-
world data in building resilient autonomous systems and
their decision-making processes. When using such data in
robotics, aerospace, and cyber-physical systems, a critical
question arises: “What if the system outputs are compromised
and fail to capture important real-world data, potentially
indicating a system anomaly?”

This paper addresses this issue by examining discrete-
time linear time-varying systems affected by stealthy actuator
and sensor disturbances. We define a disturbance as stealthy
when the difference between the system outputs, with and
without disturbances, stays below a certain threshold. These
disturbances can lead to the loss of crucial adversarial
information in real-world data, occurring in scenarios such
as (1) malicious sensor and actuator attacks, (2) system
faults like actuator or sensor failures, and (3) disturbances
or uncertainties masked by the system’s output. Developing
a framework to detect and optimally mitigate these stealthy
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disturbances is crucial for tackling problems in cybersecu-
rity, Fault Detection, Identification, and Recovery (FDIR),
thereby ensuring reliable autonomy in robotics and aerospace
systems.

Contributions: We propose a novel rank minimization
framework to derive the regret-optimal system-level parame-
terization, specifically designed to enhance resilience against
stealthy actuator and sensor disturbances. The regret in the
presence of adversarial disturbances is defined as Regret =
Jy —J., where J; represents the performance using only causal
information, and J. represents the performance with non-
causal information [1]-[3], i.e.,

Ji = true performance with access only to past attacks
J. = clairvoyant performance with access to past, present,

and future attacks.

Note that the resultant regret-optimal controller does not re-
quire any knowledge of future attacks, although the clairvoyant
J. depends on them: it measures the control performance based
on what it could have done if it had known about future attacks.
Our method further leverages the System-Level Synthesis
(SLS) parameterization introduced in [4]—[7], which provides
a necessary and sufficient characterization of the achievable
system response for the entire closed-loop system. It reframes
the conventional control synthesis problem as designing
the entire closed-loop system, enabling the integration of a
wide range of system-level constraints, such as distributed
constraints, localizability, and robustness, within a convex
formulation [6]. We achieve the following contributions by
combining the approaches of regret optimality and SLS in
systems with stealthy adversaries.

(a) We introduce a new convex optimization-based system
metric that quantifies regret under the worst-case stealthy
attack. This metric adjusts between the average and robust
performances of H; and H,, norms in the presence of
stealthy adversaries.

(b) We formulate an optimization problem for minimizing
the regret of (a) based on system-level parameterization,
enabling scalable implementation in distributed and
localized control systems.

(c) We reformulate the optimization problem of (b) as a rank-
constrained problem, featuring a convex objective with
convex constraints and rank restrictions.

The optimization problem in the third contribution is convex
except for the rank constraints, which can be addressed using
established convex rank minimization techniques [8]-[12].
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Related Work: Regret-optimal control [1]-[3]is an adaptive
framework that minimizes the performance gap, or regret,
between a causal controller and an ideal clairvoyant (non-
causal) controller. Building on concepts from online learning
and adaptive control [13]-[19], it dynamically adjusts control
inputs based on real-time observations, aiming to minimize
worst-case regret. While inspired by the minimax approach of
Ho control [20], regret-optimal control is less conservative
due to its consideration of clairvoyant information, striking a
balance between the robust performance of H,, and the average
performance of H; [7], [21], [22].

Recent work [7] shows that dynamic regret-optimal con-
trollers can be synthesized using system-level parameteriza-
tion [4]-[6]. This method enables the design of the entire
closed-loop system response, expanding the range of con-
trollers that can be implemented through convex optimization.

This paper extends these methods to handle more challeng-
ing scenarios involving stealthy adversaries (see [23], [24]
and [25]-[29] for details on stealthy adversaries). In particular,
the security metric we derive generalizes the output-to-output
¢> gain [25], [26] by incorporating regret-optimal control
and system-level parameterization. This approach retains the
adaptive and robust defense capabilities, making it well-suited
for large-scale linear systems facing stealthy attacks. In Sec. VI,
we propose ways to enhance this approach by incorporating the
useful properties of system-level parameterization and regret-
optimal control, such as sparsity and localizability, within an
online learning framework. This fact demonstrates the strong
potential for data-driven applications [30]—[33].

II. PRELIMINARIES

For AecR™"™ weuse A>0, A>0, A<0,and A <0
to denote its definiteness. For x € R", ||x|| represents the
Euclidean norm. We also define blkdiag, rank, and vec as
the block diagonal, matrix rank, and vectorization functions,
respectively. Lastly, O and I represent the zero and identity
matrices, respectively. In this paper, we study the following
discrete-time, time-varying, networked linear control system:

Xia1 = Apxp+ Byt (yi, Vi) + Ba,kak (1a)
Yk =Cy ;X +Dyg rag (1b)
2 = Cp X+ Dy kg (1o

where v represents the network topology (e.g., adjacency
matrix), xi is the system state, u is the control input, ay is
the attack input where B, raj represents the actuator attack
and Dy, ray accounts for the sensor attack, yy is the system
measurement, and z; is the regulated output used to evaluate
control performance.

Operator Formalism: As in [6], we use the following

notations for the system signals: x = [x],---,x;]7, u =
[ug,"-,u;]T, a= [xg’aa'...’a;_lr’ y = [yg,...,y;]'l.',
and z = [z],---,z7]7, where wux = u(yr,vi) and T is

the time horizon. We also use the following notations
for the system matrices: A = blkdiag(Ag,--,Ar-1,0),
8B, =blkdiag(B,.0,:*,Bu,7-1,0), B, = blkdiag(I,B, 0, ",
Ba,r-1), Cp =blkdiag(Cp0,---,Cp 1), and D, = blkdiag(

D g0, Dpg,1), where g € {u,a}, p € {y,z}, and blkdiag
denotes the block diagonalization. Then (1) can be written as

X=ZAx+ZB,u+B,a (2a)
y=Cyx+Dy,a (2b)
z=Cx+D u (20)

where Z is the block-downshift operator, i.e., a matrix with
identity matrices along its first block sub-diagonal and zeros
elsewhere.

Control: We adopt the following output feedback control,
parameterized by the network topology v = (vg,---,vr):

u=K(v)y (3)

This framework includes state estimation-based feedback
control [5], defined by éxs1 = Aekék + Bekyr and uy =
Ce kéx + D ryk, Where & represents the internal state of the
controller.

A. System Level Parameterization

Applying the feedback control from (3), we get the following
system dynamics:

X RSB, + a D,

HE bty el &
R=(I-ZA-ZB8,KC)™! (4b)
N=RZ8.,K (4¢)
M =KC,R (4d)
L=K+KC,RZB,K (4e)

These equations satisfy the following affine relations:

-z -z8,]|% ll\j]z[ﬂ 0|

R N||I-ZA| _|I

M L|| -C | |0O]
ensuring both necessary and sufficient conditions for the
existence of an output feedback controller. This formulation

allows us to leverage the system-level parameterization of (4)
for control design [4]-[6].

Lemma 1. The affine subspace defined by (5) parameter-
izes all possible system responses (4) achievable by the
output feedback control (3). Furthermore, for any matrices
(R,M,N,L) satisfying (5), the feedback control (3) with
K =L —-MR™'N achieves the desired response (4).

Proof. The first part can be shown just by verifying (5) for
(R,M,N, L) of (4). The second part follows from substituting
K =L -MR"'N into (2) with the conditions of (5), which
results in (4). See [4]-[6] for details. ]

Thanks to Lemma 1, we can directly work with the system
level parameterization (4) and the affine conditions to look for a
controller (3) with a desired property. It also enables localized
and distributed control implementation, which is suitable for
large-scale networked control systems in this paper.
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B. Regret-Optimal Control

Let J(u,a) be some performance objective to be minimized
for the control and attack input defined in (2). The dynamic
regret of J, which measures the gap between the actual optimal
performance and the optimal performance in hindsight, is
defined as:

Regret; (u,a) = J(u,a) —J"(a)
J*(a) = J(unc(a),a)

(6a)
(6b)

where u,. represents the optimal non-causal control policy
with access to past and future attacks a.

Regret-optimal control seeks to minimize the worst-case
regret, denoted Regret’; (u) [1]-[3], as:

u” = argminRegret} (u) (7a)
u

Regret’ (u) = max Regret; (u,a) (7b)

llall<1

This approach balances two extremes: the robustness of H,,
which may be overly conservative by focusing on worst-case
scenarios, and the efficiency of H;, which can be too optimistic
under adversarial disturbances [1], [3]. It is also applicable
in the output feedback context considered in this work, as
discussed in [21], [22], [34]. Additionally, recent results [7]
demonstrate the compatibility of regret-optimal control with
the system-level parameterization in Sec. II-A.

III. ProBLEM FORMULATION

We define a class of stealthy attacks called a-stealthy at-
tacks, consistent with the approach in [26], which broadens the
concept of stealthiness. When a = 0, it describes conventional
stealthy attacks where the detector’s output is always zero, such
as zero dynamics attacks [27], [28]. For a > 0, the detector’s
output remains below a specified threshold.

Definition 1. For a given time horizon T, an attack a of (2a)
is a-stealthy in k=1,---,T if the following holds:

JeeR, st |ly-yal? <

where y is given by (2b) and yy is by y of (2b) with a=0.

We summarize the key challenges in designing a general
defense strategy against a-stealthy network adversaries as
follows:

(a) How can we adapt the regret-optimal control approach (7)
to handle the a-stealthy attacks defined in Definition 1,
instead of using ||a|| < 1 (see Theorem 1)?

(b) How can we minimize the metric from (a) using system-
level parameterization for scalable, distributed control in
large networks (see Proposition 1)?

(c) How can we solve (b) for the network topology v in (3)
in a computationally efficient way to optimally detect and
mitigate a-stealthy attacks (see Theorem 2)?

IV. REGRET-OPTIMAL DEFENSE AGAINST STEALTHY ATTACKS

Building on (a), we formulate the following optimization
problem to evaluate the worst-case regret under a-stealthy
attacks, as defined in Definition 1:

o (u) = maxRegret; (u,a) s.t. a is « stealthy. €)
a

This formulation enables the simultaneous consideration of
both regret-based robustness and the stealth characteristics of
the attack sequence aj from(la), analogous to the output-to-
output gain approach used in H,, robustness analysis [26].

A. Optimal Non-Causal Control

We define the performance objective J(u,a) from (6) as
J(u,a) = ||z||* +||u||?, where z is the regulated output for the
control performance given in (2c), and u is the control input .
The non-causal optimal performance 7 *(a) as in J*(a) of (6)
(where 7 is introduced to distinguish it from the performance
objective J in Sec. II-B) can be expressed as follows:

J*(a) =min||Eu+F B,al* +|ul® 9)
u

where & = C.(1- ZA) ' ZB,+ Dy, F = C.(1-ZA) .
This problem is clearly convex and can be solved as [3], [7]
J(a)=a"B8]F (I+8&87) '¥FB,a=a"Qa (10)
where @ is defined appropriately. The optimal non-causal
control policy u,,. of (6) is then given as

Upe(a) =—(7+878) 18T F B,a.

B. System Level Approach to Worst-Case Stealthy Attack
Let Q = (R,N,M,L) for the system level parameteriza-

tion (4). Then the constraint of (8) can be written as

a'd(Q) d(Q)a<a,

O(Q) = [Cy(RBa +NDy,) +Z)yu] = [qubx +Dya]

P
bu

by Definition 1. Also, J(u,a) = J(Q,a) = ||z||>+]|Ju||? is given
as
J(Q.a)=a" (¥(Q)"¥(Q)+D,(Q) @, (Q))a

W(Q) = [C.RB, + D, MB, + C.NDy, + D, LDy, |

P
bu
and ®,,(Q) is as in (4a). The metric in (8) can now be for-
mulated as the following quadratically constrained quadratic

program (QCQP), using the system-level parameterization
from (4) and (5):

¢(Q)=maxa"(Y¥+® D, -Q)as.t.a’® Pa<a. (13)
a

(1)

=[c, 0] +Dyq

(12)

= [CZ¢X+Dzu¢u] = [Cz Dzu]

For simplicity, the argument Q for @, ¥, and ®,, is omitted
here. The terms Q, ®, ¥, and ®,, are defined in (10), (11), (12),
and (4a), respectively. QCQPs exhibit strong duality when
Slater’s condition holds [35, pp. 653-658], [7], leading to the
following theorem.
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Theorem 1. The QCQP for the regret-optimal metric for a-
stealthy attacks (13) is equivalent to the following convex
optimization problem:

() = min A (14)

s.t. AD(Q)TP(Q)-Y(Q) ' V(Q)-D,(Q) D, (2)+Q >0

and thus u(Q) = ¢(Q) for ¢ of (13).

Proof. The Lagrangian of the QCQP (13) is given as follows:
L(ad)=1(a’"®@ " Pa-a)+a’ (-P'¥-D,D,+Q)a

which gives the Lagrange dual function g(2) defined as

o ADTDO-YTY-0TD,+Q >0

—oco  otherwise

(1) =minL = {

As aresult, we get the following convex optimization problem:
I}lil(‘)l/la' $.LADO-Y V- D, +Q > 0.
>

Since the original QCQP (13) is strictly feasible for a =0 when
a € R4, strong duality holds [35, pp. 653-658]. O

The metric introduced in (14) provides a novel framework
for quantifying worst-case regret in controllers, leveraging the
system-level parameterization outlined in Sec.II-A. Similar to
the output-to-output gain discussed in [26], this metric can
be interpreted as a system gain from the a-stealthy attack a
in (2a) to the regret of the regulated performance output z
in (2c), thereby addressing problem (a). Theorem 1 introduces
a more refined and flexible method for assessing system
resilience against stealthy attacks through convex optimization,
employing regret as an alternative to traditional system gains
such as H, and H,.

C. Regret-Optimal Defense via Topology Switching

Using the system-level parameterization in Sec.II-A, we
now design a feedback control policy to minimize the metric
u from(14) for regret-optimal stealthy attack mitigation.

Proposition 1. Consider the following optimization problem
defined by the system-level parameterization Q@ = (R,M,N, L)
of (4):

u= I}zli/rll/la/ (15a)
5. AD(Q)TO(Q) - ¥(Q) V() - D, () D, (Q)+Q > 0
(15b)
[[-ZA -Z8.,] [1\1} 1E]:[I[ 0] (15¢)

R N|[1-zZaA| _[1
b 2l E7 |

Q € S(=set for system level constraints), 4 >0 (15e)

where Q, ®, and ¥ are as given in (10), (11), and (12),
respectively, and and other terms are defined in (2). The
output feedback control of (3) with K=K* =L* ~-M*R*~!N*
achieves the desired response (4) and ensures regret-optimal

resilience against a-stealthy attacks (Definition 1). The opti-
mal solution Q* = (R*,M*,N*,L*) guarantees regret-optimal
performance.

In particular, for the dynamic regret Regret (€,a) =
J(Q,a) — J*(a) where J* and g are defined in (9)
and (12), the optimal value u* of (15) satisfies

Regret /(Q",a) < u*, Va-stealthy attacks a (16)

Moreover, for the worst-case a-stealthy attack dywe(), which
minimizes (13) (the optimal value given in Theorem 1), we
have

K" =Regret £(Q",a") < Regret £(2,a), VQ with (5)  (17)

where a* = dy(Q*) and a = dyw(Q).

Proof. As discussed in Lemma 1, the conditions (15c)
and (15d) ensure that the feedback controller with K = K* =
L* — M*R*~'N* achieves the desired response (4). Since the
problem (15) is formulated to find €2 that minimizes the metric
u of (14) in Theorem 1, the relations (16) and (17) naturally
follow by construction of ¢ in (13). ]

Due to the affine nature of the system-level parameterization
in Lemma 1, the system-level constraints S can accommodate
a wide range of system properties, including temporal and
spatial locality, distributed control, and scalability [4]-[6]. In
particular, for networked control systems, the control gain can
be adjusted by switching the topology as in (3), and distributed
control constraints can be incorporated directly into (4) in
affine terms based on the network topology. This leads to the
following assumption.

Assumption 1. Given the history of topologies of v (4) and
their adjacency matrices, we can define a convex constraint
Q e C(v) for restricting Q to be in a set consistent with the
network topologies and the system’s causality.

However, despite using S = €(v) from Assumption 1, the
optimization problem (15) in Proposition 1 remains nonlinear.
Before proceeding, we introduce the following lemma useful
for convexification (see also, e.g., [8], [9]).

Lemma 2. For any real column vector a € RP and real
symmetric matrix S € SP*P, we have the following:

{(a,S)|s=aaT}={<a,S>H} ¢

>0 & rank(S) = 1}
(18)
where rank(S) denotes the matrix rank of S.

Proof. Let (LHS) = £ and (RHS) =R.

(8 c R): Sincerank(S) =rank(aa")=landS=aa™ = S >
aa’, applying Schur’s complement lemma [35, pp. 650-651]
shows £ c R.

(R c 2): Since S is real symmetric, we can always write S as
S =Vdiag(w@y,---,@p)VT, where V is an orthogonal matrix of
the orthonormal eigenvectors and @; are the real eignenvalues
of S. Also, since rank(S) = 1, § has at most one non-zero
eigenvalue @, which implies S = wvv ™ for the corresponding
unit eigenvector v. Defining a as a = V@v shows R c 8. O
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The following theorem provides one way to reformulate
the problem (15) of Proposition 1 into an almost equivalent
optimization problem in a computationally efficient form.

Theorem 2. Let Assumption 1 hold and let S = €(v) as
in (15). Consider the following optimization problem, where
the objective and constraints are convex, except for the rank
constraints in (19e):

A"= min A« (19a)
Q.1,X,A
_/lian‘i'f(X) \P(Q)T q)u(Q)T-
s.t. Y (Q) Al (0) >0, (15¢), (15d)
@, (Q) 0 Pl
(19b)
X vec(®(Q)) (A 2

vec(@(Q))T 20 a0 99
QE(S(V), A= [/l,/linV]T, /l>0, A]2=A21 =1 (19d)
rank(X) = 1,rank(A) = 1 (19¢)

where € is a linear function of the decision variable X
defined by {(X) = ®(Q)T®(Q), and vec(®(Q)) denotes the
vectorization of the matrix ®(Q). Other notations follow
those in Proposition 1. If 1* £ 0 for the optimizer (17,Q")
of (15), which is the case when the optimal regret u* =
Regret (Q2*,a*) > 0 in (17), then we have
A= (20)
If 7* =0, which is the case when the optimal regret u* =
RegretJ(Q*,a*) =0, then we have

A=t (21

Proof. If A* #01in (15),1.e., u* = Regretj(ﬂ*,a*) >0in (17),
the constraint (15b) can be equivalently expressed as

AnQ+P P(Q)T @,(Q)7
¥ (Q) AT o |>o0, (22)
@, (Q) o) Al
My =1, P = 0(Q)TO(Q) (23)

using Schur’s complement lemma [35, pp. 650-651], which
is nonlinear due to the equality constraints (23). Still, since
the nonlinearity is at most quadratic/bilinear, these constraints
can be written as a function of additional decision variables
(i.e., liftings) for A = 2127 and X = vec(®(Q)) vec(®(2))7,
where A = [4, Aj,y] 7. This observation leads to the following
equivalent constraints of (23) due to (18) of Lemma 2:

X vec(D(Q)) -0 A 2
vec(®(Q)) " 1 =7 at 1

rank(X) =1, rank(A) = 1.

23) & >0,

Rewriting the constraints (22) and (23) using these additional
lifted variables completes the proof for (20).

The relation (21) can be immediately obtained by the fact
that {1 e R|A > 0} c {1 e R|1 > 0}. O

Since the optimization problem derived in Theorem 2 is
convex except for the rank constraint, we can apply various
convex rank minimization techniques from the literature,
including, but not limited to, [8]-[12].

D. Relaxed Regret-Optimal Control

As in the relaxed, suboptimal H,, control (see, e.g., [36]),
we can consider a suboptimal, bounded regret-optimal gain
for stealthy attacks in Proposition 1, which results in a simpler
optimization problem as follows.

Corollary 1. If we consider a relaxed problem with a fixed
A=A €R, in (15) of Proposition 1, then the problem (19)
simplifies to the following feasibility problem:

Find (L, X) (24a)
(Q+0(X) ¥(Q)T @,(Q)7
s.t. Y (Q) I O >0, (15¢), (15d)
| D, (Q) (@) I
(24b)
X vec(®(Q))
vec(@(Q))T 1 >0, Qe(v), (24¢)
rank(X) =1 (244d)
which is convex except for the rank condition (24d).
Proof. This follows from Theorem 2 by fixing A = A. O

Also, dropping the rank constraints in the problems (19)
and (24) results in a convex optimization problem with a well-
known relaxation approach.

Corollary 2. Applying Shor’s relaxation [37] to the prob-
lem (15) of Proposition 1 yields the problem (19) of Theo-
rem 2 without the rank constraints (19e). The solution of this
problem [, = gives the lower bound of u* in (15a), ie.,

— % *
Hshor = M-

Proof. This follows from (18) of Lemma 2, which indicates
that dropping the rank constraint there results in Shor’s
relaxation. See also, e.g., [38, pp. 220-225], [8]. m|

V. NUMERICAL EXAMPLE

This section presents the results of numerical simulation to
demonstrate the efficacy of our proposed method.

Two approaches are used: 1) Fix A and solve the feasibility
problem in Corollary 1 using iterative rank minimization [9],
adjusting A via linear search until a satisfactory sub-optimal
solution is found. 2) Fix A and solve the relaxed problem in
Corollary 2, compute the worst-case regret cost (14) under
stealthy attacks, and iterate with a linear search on A until the
cost (14) is sub-optimally minimized.

Using the above, we implement our proposed controller on
a spring-damper system with two masses and a sampling time
of Ty = 0.5 s, with the stealthiness measure set to @ =0.1. We
compare its performance to the classical H,, robust controller,
with the results shown in this section. A comparison with
the typical regret-optimal controller, consistent with (25), is
omitted for brevity, as its performance under stealthy attacks
closely resembles that of He,. Our formulation also allows
the implementation of controllers resilient to stealthy attacks
using any quadratic cost function, such as H, cost function,
along with stealthiness constraints, which would prioritize
robustness over adaptability.
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Fig. 1. (Left) Stealthiness of the attacks measured as ||y — yn||® =

a’®(Q)T®(Q)a, for He and our controller. Both attacks satisfy the
constraint: ||y — ynll2 < 0.1. (Right): Worst-case regret cost (13). Our
controller achieves a 15x lower cost compared to Ho.

The classical H,, controller, which isn’t designed specifi-
cally for stealthy attacks, solves the following problem:

min max J(Q,a)

QeC(v) |lall<1
= rgzl’lllll/la/ (25a)
AT YT o,Q)7
s.t. | P(R) I @) >0, (15¢), (15d) (25b)
D,(Q) (@) I
QeC(v) (25¢)

where J(Q,a) =a" (¥(Q)T¥(Q) +D®,(Q)"®,(Q))a as in
(12).

We compare the worst-case regret cost of H,, and our
controller under stealthy attacks, as quantified by (13), (14).
Table I shows that our controller consistently outperforms Ho.
as the horizon increases.

We also compute the worst-case stealthy attacks for each
controller and apply them to our system (2). Figure 1 shows that
these attacks remain a-stealthy (@ = 0.1), with our controller
achieving a 15x lower cost than H,. Figure 2 illustrates
that only our controller regulates the output near zero. For
computational efficiency, we chose a horizon of T = 5. A model
predictive control scheme, however, can be used to manage
longer horizons in practice.

This example shows the potential of our system-level
approach in detecting and mitigating stealthy attacks with
regret-optimal strategies. Again, as will be detailed in the next
section, the framework extends to a wider class of constrained
controllers, including predictive control and online learning,
while maintaining a convex formulation.

TABLE I
‘WORST-CASE REGRET UNDER STEALTHY ATTACKS AS IN (13) FOR DIFFERENT

TIME HORIZONS (T=2, T=5).

T=2 T=5
H controller 41.38 1312.6
Proposed approach 10.19 87.10
Improvement Factor: Heo (Cost) 4.02 15.07

Proposed approach (Cost)

VI. PoTENTIAL EXTENSIONS
This section explores various extensions of the topology
switching strategy from Proposition 1 and Theorem 2, high-
lighting the broad applicability of our regret-optimal metric

—z1, Proposed Approach)|
10 29, Proposed Approach

Regulated Output
& o

1 2 3 4 5
Time

Fig. 2. Regulated output z (2¢) under Ho and our controller. For a horizon
of T =5, our controller manages to keep the regulated output near 0, while
the regulated output under Ho, shows big oscillations.

in more general problem settings under stealthy attacks. The
purpose of this section is just to emphasize and outline the
potential research directions that this paper would open up.

A. Sparsity on System Responses

If the convex constraint Q € €(v) of (19d) in Theorem 2
includes sparsity constraints due to, e.g., distributed commu-
nications of the network, we could use the following corollary
for additional simplification.

Corollary 3. Suppose that we have sparsity constraints
for Q, which leads to linear constraints of the form
vec(®(Q)); =0. Then all the entries in the ith column and
ith row of the matrix X of (19) in Theorem 2 are also equal
to zero.

Proof. This follows from the definition of X introduced in the
proof of Theorem 2. m}

Another potential direction for addressing sparsity is con-
sidering spatial regret (SpRegret) defined in [39] as the regret
between the cost of a topology € which belongs to a sparse set
€(v), and that of a topology € which belongs to a denser set
C(v): SpRegret(Q,Q)= max|q|<1J(Q,a)- J(,a). Under no
further constraints, ideally, the constraint set should satisfy a
quadratic invariance condition to ensure the optimality of the
control strategy. In cases where it is not, there exist methods
that allow for the synthesis of the controller even when the set
is not Quadratic Invariant (QI). As in [39], we could use the
denser topology as the one that satisfies the QI condition.

We could further extend the notion of regret to spatiotem-
poral regret by defining it as the difference in costs of a sparse
topology and of a denser topology that also knows the future
attacks. In this case, the challenge we face is ensuring that the
problem is well-posed (i.e., regret > 0) and finding the closest
QI, noncausal sparse set.

B. Data-Driven Control

The system level parameterization is also useful for the
case where we have access only to the system’s input and
output data u[o,7y,,~1] = {U0 Uy, -1} and y[o,1,,-1] =
{y0,"**» YTyuu—1} Of the system (1) with ax = 0. Let H (oo, ;1)
be the Hankel matrix of depth D, associated with the signal

1946



0710, Ty 1] defined as follows:

oo T O—Tdatu_D

7_{(O-[Odeala_ 1 ] ) = (26)

OD-1 O—Tdula_ 1

where D < Tyaga.

Definition 2. The signal oo 1,,,-1] IS persistently exciting
of order D if the Hankel matrix H (oo 1,,,-1]) (26) has full
row rank.

The Hankel matrix of (26) leads to the following lemma
essential in the data-driven system level synthesis [40], [41].

Lemma 3. Suppose that the input data o 1,,.-1] iS persis-
tently exciting of order n+ D as in Definition 2, where n
is the number of the system state x of (1a). Suppose also
that the system (la) is time-invariant and controllable. Then
(@tj0,p-11-¥[0,p-1]) is a valid input/output trajectory of (1)
with ax =0 if and only if g € RTaa=D+1 ¢

110, Ty 11 | _ W(M[o,rdatal])] 7
[y[o,rdm—l]} H(Y(0.7300-11) | & @7
Proof. See, e.g., [40], [41]. ]

It is shown in [30] that g of (27) in Lemma 3 can be
characterized by the system level parameterization of (4) for
the case of full-state feedback. Its robust properties allow for
extending this idea to perturbed trajectory data, as also shown
in [30]. These observations imply the great potential of our
approach to model-free settings as in [30], [32], [33].

C. Additional Constraints

1) Performance Constraints: We can clearly see that the
control input u in (4) of Sec. II-A is linear in the system level
parameters €; the constraint

lull = [[Mdy +Ddy [, < ttmas

where umax € Ry is some constant, is always a convex constraint
for any norm *. We can also consider other performance
requirements as convex constraints on top of the problems (19)
of Theorem 2 and (24) of Corollary 24, the examples of which
are given in [4]-[6].

2) Localizability: For large-scale networks, we could apply
spatiotemporal constraints to further reduce the computa-
tional burden thanks to the system level parameterization. In
particular, if we assume that 1) the closed-loop disturbance
responses have finite-impulse responses and that 2) the effects
of disturbances are felt only in local neighborhoods of each
agent, then we can decompose the problems (19) of Theorem 2
into small subproblems that can be solved locally [4]—-[6]. This
allows the model predictive control-like formulation of the
system level synthesis [31].

3) Controllability, Observability, and Sensitivity: As dis-
cussedin [5], [42], [43], the localizability of Sec. VI-C.2 allows
for verifying the observability and controllability conditions
using a set of affine constraints, which can be readily added
to the problem (19) in Theorem 2 while preserving its convex

structure. The minimum attack sensitivity (or detectability in
the original paper [29]) could potentially be considered directly
as a constraint in this problem using a similar approach.
Alternatively, we could enforce the sensitivity constraint by
using the H_ index [25]-[27], [44], [45] as in [46], with the
same lifting procedure of Theorem 2.

4) Stability: For infinite-horizon problems, we can still
ensure the internal stability of our formulation in a convex
manner as discussed in [4]-[6] and in [47] for adversarial
settings. Even in our finite-horizon setting, we could still
enforce the Lyapunov-type stability constraint as in [46] due
to the affine nature of the system level parameterization as to
be implied in the numerical example.

VII. CoNCLUSION

This paper introduced a system-level, regret-optimal frame-
work for designing linear systems that are resilient to stealthy
attacks and disturbances. We equivalently reformulated the
nonlinear problem of minimizing regret in the presence
of stealthy adversaries as a rank-constrained optimization
problem, which can be solved using convex rank minimization
methods. We also explored extensions such as incorporating
system-level parameterization for sparsity and localizability
in online learning, highlighting the potential for predictive,
data-driven applications in an interpretable framework.
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