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Abstract— Model-based reinforcement learning is an effective
approach for controlling an unknown system. It is based on
a longstanding pipeline familiar to the control community
in which one performs experiments on the environment to
collect a dataset, uses the resulting dataset to identify a model
of the system, and finally performs control synthesis using
the identified model. As interacting with the system may be
costly and time consuming, targeted exploration is crucial for
developing an effective control-oriented model with minimal
experimentation. Motivated by this challenge, recent work has
begun to study finite sample data requirements and sample
efficient algorithms for the problem of optimal exploration in
model-based reinforcement learning. However, existing theory
and algorithms are limited to model classes which are linear
in the parameters. Our work instead focuses on models with
nonlinear parameter dependencies, and presents the first finite
sample analysis of an active learning algorithm suitable for
a general class of nonlinear dynamics. In certain settings,
the excess control cost of our algorithm achieves the optimal
rate, up to logarithmic factors. We validate our approach in
simulation, showcasing the advantage of active, control-oriented
exploration for controlling nonlinear systems.

I. INTRODUCTION

In recent years, model-based reinforcement learning has
been successfully applied to various application domains in-
cluding robotics, healthcare, and autonomous driving [1, 2].
These approaches often proceed by performing experiments
on a system to collect data, and then using the data to
fit models for the dynamics. In the specified application
domains, performing experiments requires interaction with
the physical world, which can be both costly and time-
consuming. It is therefore important to design the experi-
mentation and identification procedures to efficiently extract
the most information relevant to control. In particular, exper-
iments must be designed with the downstream control objec-
tive in mind. This fact is well-established in classical controls
and identification literature [3–6]. While these works provide
some guidance for experiment design, they mostly focus on
linear systems, and supply only asymptotic guarantees.

Driven by the empirical success of machine and deep
learning in solving classes of complex control problems,
the learning and control communities have recently begun
revisiting the classical pipeline of identification to control,
proposing new algorithms, and analyzing them from a non-
asymptotic viewpoint. Early efforts focused on end-to-end
control guarantees for unknown linear system under naive
exploration (injecting white noise inputs) [7, 8]. These
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methods have also been refined by using active learning to
collect better data for control synthesis [9]. This approach has
been extended to nonlinear systems with a linear dependence
on the unknown parameters [10]. Other works studying
model-based control of nonlinear systems also assume linear
dependence on the unknown parameters, or consider related
simplifying assumptions in settings including tabular or low-
rank Markov Decision Processes [11, 12]. Model-based rein-
forcement learning for a general class of nonlinear systems
has also been considered [13]. However, their guarantees
focus on the worst case uncertainty of any control policy
rather than end-to-end control costs for a particular objective.

There is a significant gap in that there are no algorithms
with strong guarantees (achieving the optimal rates) for
model-based reinforcement learning of general nonlinear dy-
namical systems. We leverage recently developed machinery
for non-asymptotic analysis of nonlinear system identifica-
tion to tackle this problem [14].

A. Contribution
We introduce and analyze the Active Learning for Control-

Oriented Identification (ALCOI) algorithm. This algorithm
extends an approach for model-based reinforcement learning
proposed by Wagenmaker et al. [10] for dynamical systems
with a linear dependence on the unknown parameter to
general nonlinear dynamics that satisfy some smoothness
assumptions. The algorithm is inspired by a reduction of the
excess control cost to the system identification error, which
may then be controlled using novel finite sample system
identification error bounds for smooth nonlinear systems.

Leveraging the aforementioned reduction of the excess
control cost and system identification error bounds, we derive
finite sample bounds for the excess cost of our algorithm.

Theorem I.1 (Main Result, Informal). Let the ALCOI algo-
rithm interact with an unknown nonlinear dynamical system
for some number of exploration rounds before proposing
a control policy designed to optimize some objective. The
excess cost of the proposed policy on the objective satisfies

excess cost
hardness of control⇥hardness of identification

# exploration rounds
.

The “hardness of control” captures how the error in esti-
mation of the dynamics translates to error in control, while
the “hardness of identification” captures how challenging it is
to identify the parameters under the best possible exploration
policy. Moreover, our analysis reveals how the respective
hardness quantities interact. Wagenmaker et al. [10] provide
upper and lower bounds for this problem in a setting where
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the dynamics model is linear in the unknown parameters. Our
upper bound is tight up to logarithmic factors in this setting,
and we conjecture that it is also tight up to logarithmic factors
in the setting where the model is nonlinear in the parameters.

The non-asymptotic system identification result may be
of independent interest. It derives from invoking recently
developed machinery for the analysis of nonlinear system
identification along with the delta method, a classical ap-
proach from statistics. These bounds provide rates that match
the asymptotic limit up to logarithmic factors.

B. Related Work
a) Additional Work Analyzing Identification & Control:

Finite sample guarantees for active exploration of pure
system identification have been studied in linear [15], and
nonlinear (with linear dependence on the unknown parame-
ters) settings [16]. Lower bounds complementing the upper
bounds for the end-to-end control are also present [9, 10], and
have been specialized to the linear-quadratic regulator setting
to characterize systems which are hard to learn to control
[17]. Recent literature considers gradient-based approaches
for experiment design in linear-quadratic control [18]. For
more details on finite sample analysis of learning to control,
see the survey by Tsiamis et al. [19]. The aforementioned
results do not focus on general nonlinear systems. Such
analysis exists for identification; however, in the absence of
end-to-end control error bounds [14, 20]. In contrast, we
achieve end-to-end control error bounds for active learning
applied for learning to control general nonlinear systems.

b) Dual Control: A related paradigm to the “identify
then control” scheme studied in this work is that of dual
control, in which the learner must interact with an unknown
system while simultaneously optimizing a control objec-
tive [21]. Åström and Wittenmark [22] study a version of
this problem known as the self-tuning regulator, providing
asymptotic guarantees of convergence. Non-asymptotic guar-
antees for the self tuning regulator have been studied more
recently from the online learning perspective of regret [23].
Subsequent work provides matching upper and lower bounds
for the regret of the self-tuning regulator problem [24].
Lower bounds refining the dependence on system-theoretic
constants have also been established [25]. The regret of
learning to control nonlinear dynamical systems (with linear
dependence on the unknown parameter) has also been studied
[26, 27]. As in the “identify then control” setting, prior
work in dual control has not provided finite sample analysis
of the end-to-end control error for systems with nonlinear
dependence on the unknown parameters.
Notation: Expectation (respectively probability) with respect
to all the randomness of the underlying probability space is
denoted by E (respectively P). The Euclidean norm of a
vector x is denoted kxk. For a matrix A, the spectral norm
is denoted kAk, and the Frobenius norm is denoted kAk

F
. A

symmetric, positive semi-definite matrix A = A
> is denoted

A ⌫ 0. A ⌫ B denotes that A�B is positive semi-definite.
Similarly, a symmetric, positive definite matrix A is denoted
A � 0. The minimum eigenvalue of a symmetric, positive

semi-definite matrix A is denoted �min(A). For a positive
definite matrix A, we define the A-norm as kxk

2
A
= x

>
Ax.

The gradient of a scalar valued function f : Rn
! R is

denoted rf , and the Hessian is denoted r
2
f . The Jacobian

of a vector-valued function g : Rn
! Rm is denoted Dg,

and follows the convention for any x 2 Rn, the rows of
Dg(x) are the transposed gradients of gi(x). The p

th order
derivative of g is denoted by D

p
g. Note that for p � 2,

D
p
g(x) is a tensor for any x 2 Rn. The operator norm

of such a tensor is denoted by kD
p
g(x)k

op
. For a function

f : X ! RdY , we define kfk
1

, sup
x2X

kf(x)k. A
Euclidean norm ball of radius r centered at x is denoted
B(x, r).

II. PROBLEM FORMULATION

We consider a nonlinear dynamical system evolving ac-
cording to

Xt+1 = f(Xt, Ut;�
?) +Wt, t = 1, . . . T, (1)

with state Xt assuming values in RdX , input Ut assuming
values in RdU , and dX-dimensional noise Wt

iid
⇠ N (0,�2

w
I)

for some �w > 0. For simplicity, we assume X1 = 0. Here,
f is the dynamics function, which depends on an unknown
parameter �? 2 Rd� . We assume that there exists some
positive B such that k�?k  B � 1 and kf(·, ·,�)k

1
 B

for all � 2 Rd� satisfying k�k  B.
We study a learner whose objective is to determine a policy

⇡ = {⇡t}
T

t=1 from a policy class ⇧? to minimize the cost
J (⇡,�?), where

J (⇡,�) = E�

⇡

"
TX

t=1

ct(Xt, Ut) + cT+1(XT+1)

#
. (2)

The functions ct are known stage costs. The superscript on
the expectation denotes that the dynamics (1) are rolled
out under parameter �, while the subscript denotes that
the system is played in closed-loop under the feedback
control policy Ut = ⇡t(X1, U1, . . . , Xt�1, Ut�1, Xt) for
t = 1, . . . , T . The learner follows a two step interaction
protocol with an exploration phase, and an evaluation phase.
In the exploration phase, the learner interacts with the system
for a total of N episodes, each consisting of T timesteps, by
playing exploration policies ⇡ 2 ⇧exp. The policy class ⇧exp

is an exploration policy class, described in more detail below.
The learner does not incur any cost during the exploration
episodes, and seeks only to gain information about the
system. After the N interaction episodes, it uses the collected
data to propose a policy ⇡̂ 2 ⇧?. The learner is then
evaluated on the expected cost of the proposed policy on a
new evaluation episode. In particular, it incurs cost J (⇡̂,�?).

The policy classes ⇧? and ⇧exp are known; ⇧? consists
of deterministic policies, but ⇧exp may be random. We do
not assume ⇧? = ⇧exp. We assume that the policy class ⇧?

has the parametric form:

⇧? =
�
⇡
✓
|✓ 2 Rd✓

 
.
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Fig. 1. Identfication to control pipeline.

No such parametric assumption is made on the exploration
class ⇧exp. It instead consists of whatever experimental
procedures are available. For instance, it may be the class
of policies with power or energy bounded inputs. Policies
belonging to ⇧exp must be history dependent (causal). We
assume that the learner is allowed to randomly select choices
of policies in ⇧exp.1 Given these policy classes, the learning
procedure should seek to identify the best exploitation policy
belonging to ⇧? by playing the most informative exploration
policy in the class ⇧exp.

A. Certainty Equivalent Control
We focus on learners which follow a model-based ap-

proach to synthesize a control policy from interaction with
the system, outlined in Figure 1. In this section, we discuss
the learner’s procedure for the last two steps: system identi-
fication and control synthesis. In Section III, we return to the
question of which experiments the learner should perform.

Given the data collected during the experimentation phase,
the learner finds an estimate for the dynamics by solving a
nonlinear least squares problem. In particular, suppose that
during the N experimentation episodes of length T , the
learner collects data

�
(Un

t
, X

n

t
, X

n

t+1)
 
N,T+1
n,t=1 . The subscript

denotes the time index within each episode, while the su-
perscript denotes the episode index. Using this dataset, the
learner may identify the dynamics of the system by solving

�̂ 2 argmin
�2Rd� ,k�kB

NX

n=1

TX

t=1

��Xn

t+1 � f(Xn

t
, U

n

t
;�)
��2 . (3)

Solving this problem provides a parameter estimate which
is an effective predictor under the distribution of states and
inputs seen during the experimentation. This notion can be
captured via the prediction error.

Definition II.1. We define Err�
?

⇡
(�) as the prediction error

for a parameter � under policy ⇡:

Err�
?

⇡
(�) = E�

?

⇡

"
1

T

TX

t=1

kf(Xt, Ut;�)� f(Xt, Ut;�
?)k2

#
.

Once the learner estimates �̂, the controller parameters
are determined from the dynamics parameters by solving the
policy optimization problem as

✓
?(�̂) 2 argmin

✓2Rd✓

J(⇡✓
, �̂). (4)

The certainty equivalent policy may then be expressed as a
function of the estimated dynamics parameters �̂ as

⇡
?(�̂) , ⇡

✓
?(�̂)

. (5)

1i.e. for any ⇡1,⇡2 2 ⇧exp and any b 2 [0, 1], the policy ⇡mix which
at the start of a new episode plays ⇡1 for the duration of the episode with
probability b and ⇡2 for the duration of the episode with probability 1� b
also belongs to ⇧exp.

We note that both the nonlinear least squares problem (3)
and the certainty equivalent control synthesis procedure
of (5) may be computationally challenging. The focus of
this work is to understand the statistical complexity of the
problem rather than the computational complexity. In the
episodic setting we consider, both of these problems are
solved offline. Therefore, given sufficient time and compute,
it is often possible to determine good approximations to the
optimal solutions using non-convex optimization solvers and
approaches for policy optimization from the model-based
reinforcement learning literature [1].

B. Assumptions
By (5), the optimal policy for the objective (2) under

the true parameter �
? defining the dynamics (1) is thus

given by ⇡
?(�?), and the corresponding objective value

is J (⇡?(�?),�?). Meanwhile, the objective value attained
under an estimate �̂ is J (⇡?(�̂),�?). We abuse notation and
define the shorthand

J
�̃
(�) , J (⇡?(�), �̃) (6)

to describe the control cost of applying a certainty equiva-
lence policy synthesized using parameter � on a system with
dynamics described by �̃. It has been shown by Wagenmaker
et al. [9, 10] that for models which are linear in the
parameters, the gap J�?(�)�J�?(�?) is characterized by the
squared parameter error weighted by the model-task Hessian,
defined below.

Definition II.2. The model-task Hessian for objective (2)
and dynamics (1) is given by

H(�̃) = r
2
�
J
�̃
(�)|

�=�̃
,

where J
�̃

is defined in (6).

To express the excess cost achieved by a certainty equiv-
alent controller synthesized using the estimated model pa-
rameters �̂, we operate under the following smoothness
assumption on the dynamics.

Assumption II.1. (Smooth Dynamics) The dynamics are
four times differentiable with respect to u and �. Further-
more, for all (x, u) 2 RdX ⇥ RdU , all � 2 Rd� , and
i, j 2 {0, 1, 2, 3} such that 1  i + j  4, the derivatives
of f satisfy

���D(i)
�
D

(j)
u

f(x, u;�)
���
op

 Lf .

The above assumption is satisfied for, e.g., control-affine
dynamics which depend smoothly on �: f(xt, ut;�) =
g1(xt;�)+g2(ut;�)u, with g1 and g2 each three time differ-
entiable with respect to �. In this example, differentiability
with respect to u is immediate from the affine dependence.

We also require that the policy class ⇧? is smooth.

Assumption II.2. (Smooth Policy Class) For t = 1, . . . , T ,
x 2 X , and any policy ⇡ 2 ⇧?, the function ⇡✓

t
(x) is four-

times differentiable in ✓. Furthermore,
���D(i)

✓
⇡
✓

t
(x)
���
op

 L✓

for i = 1, . . . , 4, ✓ 2 Rd✓ , x 2 X , and t = 1, . . . , T .

3013



Note that such smoothness conditions are not imposed for
the exploration policy class ⇧exp. The exploration policy
class could, for instance, consist of model predictive con-
trollers with constraints on the injected input energy, which
do not satisfy such smoothness assumptions.

We additionally require that the costs are bounded for
policies in the class ⇧? and all dynamics parameters in a
neighborhood of the true parameter.

Assumption II.3. (Regular costs) The stage costs ct

are three times differentiable and
���D(i)

u ct(x, u)
���
op



Lcost for i = 1, . . . , 3, ✓ 2 Rd✓ , (x, u) 2 RdX+dU .
There exists some rcost(�?) > 0 such that for all
� 2 B(�?, rcost(�?)), and all ⇡ 2 ⇧?, we have

E�

⇡

⇣P
T

t=1 ct(Xt, Ut) + CT+1(XT )
⌘2�

 Lcost.

We additionally assume that the certainty equivalent pol-
icy is a smooth function of the dynamics parameter in a
neighborhood around the optimal parameter.

Assumption II.4. There exists some r✓(�?) > 0 such that
for all � 2 B(�?, r✓(�?)),
• r✓J (⇡✓

,�)|✓=✓?(�) = 0
• ✓

?(�) is three times differentiable in � and���Di

�
✓
?(�)

���
op

L⇡? for some L⇡? > 0 and i 2 {1, 2, 3}.

It is shown in Proposition 6 of Wagenmaker et al. [10]
that the above condition holds if r

2
✓
J(⇡✓

,�
?) � 0.2 The

above assumption also holds in the setting of linear-quadratic
regulation, as may be verified using the LQR derivative
expressions in Simchowitz and Foster [24].

In order to bound the parameter recovery error in terms of
the prediction error, additional identifiability conditions are
needed. The following definition of a Lojasiewicz exploration
policy is determined from a Lojasiewicz condition that arises
in the optimization literature that measures the sharpness
of an objective near its optimizer [29]. In our setting, it
quantifies the degree of identifiability from using a particular
exploration policy. It does so by bounding the growth of
identification error as a polynomial of prediction error.

Definition II.3 (Lojasiewicz condition, Roulet and
d’Aspremont [29]). For positive numbers CLoja and ↵, we
say that a policy ⇡ 2 ⇧exp is (CLoja,↵)-Lojasiewicz if

����̂� �
?

���  CLojaErr�
?

⇡
(�̂)↵.

To ensure parameter recovery is possible for the learner,
we make the following assumption regarding identifiability.

Assumption II.5. Fix some positive constant CLoja and ↵ 2

( 14 ,
1
2 ]. The learner has access to a policy ⇡0

2 ⇧exp which
is (CLoja,↵)-Lojasiewicz.

While the Lojasiewicz assumption ensures that the data
collected via the exploration policy ⇡0 is sufficient to identify

2Wagenmaker et al. [10] show this result for the linear in the parameters
setting; however, it extends easily to the smooth nonlinear setting. See
Appendix C of [28].

the parameters, the rate of recovery may be slow. To bypass
this limitation, we assume that some policy in the exploration
class satisfies a persistence of excitation condition. This
condition can be expressed by first defining the Fisher
information matrix for a parameter � and a policy ⇡ as

FI⇡(�),
E�

⇡

hP
T

t=1Df(Xt, Ut,�)>Df(Xt, Ut,�)
i

�2
w

, (7)

where Df(Xt, Ut,�) is the Jacobian of f with respect to
�. The Fisher information measures the signal-to-noise ratio
of the data collected from an episode of interaction with the
system under exploration policy ⇡. With this definition, per-
sistance of excitation is equivalent to the positive definiteness
of the matrix FI⇡(�?).

Assumption II.6. There exists a policy ⇡ 2 ⇧exp for which

FI⇡(�?) ⌫ µI � 0.

III. PROPOSED ALGORITHM AND MAIN RESULT

The above smoothness assumptions allow us to charac-
terize the excess control cost of a policy synthesized via
certainty equivalence applied to a parameter estimate �̂, (5).
In particular, we extend a result from Wagenmaker et al. [10]
from the linear in parameters setting to the smooth nonlinear
setting.

Lemma III.1 (Thm. 1 of Wagenmaker et al. [10]). Suppose
Assumptions II.1-II.4 hold. Let r✓(�?) be as defined in As-
sumption II.4. Then for �̂ 2 B(�?,min{rcost(�?), r✓(�?)}),

J�?(�̂)�J�?(�?)
����̂��?

���
2

H(�?)
+ Ccost

����̂��?
���
3
, (8)

where J�?(�) is as defined in (6) and

Ccost = poly(L⇡? , Lf , L✓, Lcost,�
�1
w

, T, dX).

Lemma III.1 informs us that the leading term of the excess
cost is given by the parameter estimation error weighted by
the model-task Hessian,

����̂� �
?

���
2

H(�?)
.

Asymptotically, the distribution of the parameter esti-
mation error is normally distributed with mean zero, and
covariance given by the inverse Fisher information matrix
under the data collection policy ⇡ evaluated at the true
parameter value (cf. Theorem 1 of Ljung and Caines [30]):

lim
N!1

p

NFI⇡(�?)1/2(�̂� �?) ⇠ N (0, I).

We provide a novel non-asymptotic result which character-
izes the H-norm of the parameter error for a positive definite
matrix H in terms of the Fisher information matrix.

Theorem III.1. Suppose Assumption II.1 holds. Consider
the least squares estimate �̂ determined from (3) using data
collected from N episodes via an exploration policy ⇡ which
is (CLoja,↵)-Lojasiewicz for some ↵ 2 ( 14 ,

1
2 ], and satisfies

�min (FI
⇡(�?)) > 0, with FI⇡(�?) as defined in (7). Let H

be a positive definite matrix, � a positive number satisyfing
�  �

2
w

�min(FI⇡(�?))
4 , and � 2 (0, 1

4 ]. Then there exists a
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polynomial poly
↵

depending on ↵ such that the following
condition holds. With probability at least 1� �,
����̂� �

?

���
2

H

 2(1 + ⇠)

⇥

 
tr(HFI⇡(�?)�1)

N
+ 2

��HFI⇡(�?)�1
��

N
log

4

�

!
,

(9)

where ⇠ = 4�
⇣

1
�2
w�min(FI⇡(�?)) + d�

⌘
as long as

N � poly
↵

✓
T, Lf ,d�,dX,�w,logN,log

1

�
,log

B

�w
,CLoja,

1

�

◆
.

By substituting the inequality (9) into the lead-
ing term of (8) and bounding

��H(�?)FI⇡(�?)�1
�� 

tr(H(�?)FI⇡(�?)�1), one would expect that the the excess
cost of deploying the certainty equivalent policy synthesized
on a least squares estimate determined from data collected
using policy ⇡ is characterized by

tr(H(�?)FI⇡(�?)�1). (10)

In light of this, we would like to choose the exploration
policy ⇡ which minimizes this upper bound:

⇡ = argmin
⇡̃2⇧exp

tr(H(�?)FI⇡̃(�?)�1). (11)

Our main result shows that the above intuition can be
made rigorous through careful analysis and design of the
exploration policy. It then proceeds to show that we can
find an exploration policy approximately solving (11), even
though the parameter �? defining the exploration objective
is unknown prior to experimentation. It is also necessary
to address the fact that the model-task Hessian may not
be positive definite. Thus optimizing the above objective
could result in exploration policies which are not persistently
exciting.

To circumvent the issue of the unknown parameter �?,
we consider a two step approach in which we first obtain
a crude parameter estimate, and then refine it by playing
a targeted exploration policy. Denote the crude estimate by
�̂
�. This parameter can be used to search for a policy that

approximately solves the optimization problem in (11). A
straightforward approach to do so is to solve the problem
under the estimated parameter:

⇡ = argmin
⇡̃2⇧exp

tr(H(�̂�)FI⇡̃(�̂�)�1). (12)

To address the issue of a model-task Hessian which is
not positive definite, we introduce regularization into the
exploration design. In particular, we set the exploration
policy ⇡ as

⇡ = argmin
⇡̃2⇧exp

tr((H(�̂�) + ⌫I)FI⇡̃(�̂�)�1), (13)

for an appropriately chosen regularization parameter ⌫.
The above discussion motivates Algorithm 1, named Ac-

tive Learning for Control-Oriented Identification (ALCOI).
The algorithm takes as input an initial policy satisfying
the Lojasiewicz condition (Assumption II.5), the exploration

policy class, the target policy, the number of exploration
rounds, a parameter � 2 (0, 1) which controls the ratio
of the exploration budget that the initial loja policy is
played, the level of regularization ⌫, and the precision of
the optimization for the exploration policy ". Given these
components, the algorithm proceeds in three stages. The first
stage begins in Line 2 by playing the initial policy for a
portion of the exploration budget controlled by �. In Line 3,
it uses the collected data to derive a coarse estimate �̂� for
the unknown parameters by solving a least squares problem.
Next, the estimate �̂

� is used to construct the model-task
Hessian as �̂� as H(�̂�) and define an exploration objective
tr
⇣⇣

H(�̂�) + �I

⌘
FI⇡̃(�̂�)�1

⌘
. Optimizing this objective

to precision " over the class of exploration policies provides
the policy ⇡exp. This policy is run to collect data from the
system, and obtain a fresh estimate �̂+ for �?. Finally, the
estimate is used to synthesize the certainty equivalent policy
as in (5).

Algorithm 1 ALCOI(⇡0
,⇧exp,⇧?

, N, �, ⌫, ")

1: Input: Initial policy ⇡
0, exploration policy class ⇧exp,

target policy class ⇧?, initial policy ratio �, regulariza-
tion parameter ⌫, optimization precision ".

2: Play ⇡
0 for b�Nc episodes to collect�

X
n

t
, U

n

t
, X

n

t+1

 
T,b�Nc

t,k=1 .
3: Fit �̂� from the collected data by solving (3).
4: Determine exploration policy as

⇡exp 2

(
⇡ 2 ⇧exp| tr

⇣
H(�̂�)FI⇡(�̂�)�1

⌘

 (1 + ") inf
⇡̃

tr
⇣
H(�̂�)FI⇡̃(�̂�)�1

⌘)
.

.
5: Define ⇡mix which at the start of each episode plays ⇡0

with probability �, and ⇡exp with probability 1� �.
6: Play ⇡mix for b(1 � �)Nc episodes, collecting data�

X
n

t
, U

n

t
, X

n

t+1

 
T,b(1��)Nc

t,k=1 .
7: Fit �̂

+ by solving (3) with the data�
X

n

t
, U

n

t
, X

n

t+1

 
T,b(1��)Nc

t,k=1 .
8: Return: certainty equivalent policy ⇡̂ = ⇡

?(�̂+).

Our main result is a finite sample bound characterizing the
excess cost of the policy return by Algorithm 1.

Theorem III.2 (Main Result). Suppose f , ⇡0, ⇧exp, ⇧?

satisfy Assumptions II.1-II.6. Let ⌫ be a non-negative reg-
ularization parameter such that �min(H(�?)) + ⌫ > 0. Let
the optimization tolerance " 2 (0, 1/2) and the initial policy
ratio � 2 (0, 1/2). Consider running Algorithm 1 to generate
a control policy ⇡̂ as ⇡̂ = ALCOI(⇡0

,⇧exp,⇧?
, N, �, ⌫, ").

Let � 2
�
0, 1

4 ] be the failure probability, and � 2✓
0, µ(�min(H(�?))+⌫)

512d�(kH(�?)k+⌫)

◆
3 be a free parameter in the bound.

3Recall that µ is the persistance of excitation parameter defined in
Assumption II.6.
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There exists a polynomial function poly↵ depending on the
Lojasiewicz parameter ↵ such that the following holds true.
With probability at least 1� �, it holds that

J (⇡̂,�?)�J�?(�?)(1+4�)(1+")(1+⇠)

✓
2 + 4 log

4

�

◆

⇥
inf ⇡̃2⇧exp tr

�
(H(�?) + ⌫I)FI⇡̃(�?)�1

�

N
,

where ⇠ = �

⇣
3 + 16

⇣
128d�(kH(�?)k+⌫)
µ(�min(H(�?))+⌫) + d�

⌘⌘
as long as

N�poly
↵

✓
T, Lf , Lcost, L⇡? , d�, dX,

1

µ
, rcost(�

?), r✓(�
?)

1

�min(H(�?)) + ⌫
, kH(�?)k , ⌫,�w,�

�1
w

, logN,

log
1

�
, logB,CLoja,

1

�
,
1

�

◆
.

The above result characterizes the excess control cost
in terms of three key quantities. First, the term H(�?)
is the model-task Hessian, which describes how error in
identification of the dynamics model parameters translates
to the control cost. Second is the inverse Fisher information
of the optimal exploration policy term, which measures a
signal-to-noise ratio quantifying the hardness of parameter
identification. Finally, the number of exploration episodes
N on the denominator captures the rate of decay from
increasing the experimental budget.

In the setting where the dynamics model has linear de-
pendence on the parameters, Wagenmaker et al. [10] present
a lower bound on the excess control cost achieved by
any learner following the model based interaction protocol
described in Section II. If we choose the free parameter in the
upper bound as � 

⇣
128d�(kH(�?)k+⌫)
µ(�min(H(�?))+⌫) + d�

⌘�1
, then the

upper bound of Theorem III.2 matches this lower bound up to
universal constants, and the term log (4/�). Future work will
pursue general lower bounds that hold for dynamics models
with a nonlinear dependence on the unknown parameter.

The burn-in time is currently polynomial in the relevant
system parameters; however, we do not pursue tight burn-
in times in this work. It may be possible to improve the
dependence of the burn-in on various system quantities,
e.g. by leveraging stability or reachability to obtain optimal
dependence of the burn-in on T . We additionally draw
attention to the utility of the parameter � and the algorithm
hyperparameters ⌫ and � for navigating the tradeoff between
a good burn-in time, and optimal rates. One can take �, ⌫, �
and " arbitrarily close to zero, meaning that the coefficient
characterizing the excess cost can become arbitrarily close to
2+4 log 8

�
. The cost of doing so is an increase in the burn-in

time. A notable exception is the situation where H(�?) � 0,
i.e. the setting where all parameters are necessary for control.
In this case, one can take ⌫ = 0, while the burn-in time must
exceed a polynomial in 1

�min(H(�?)) .

IV. PROOF SKETCH

Full proof details may be found in the appendix of Lee
et al. [28]. Here, we present a sketch. Our main result

proceeds by demonstrating the following sub-steps. In these
sub-steps, let C be a polynomial of the problem parameters
and log of the reciprocal of the failure probability, �, as in
the burn-in requirement of Theorem III.2.
1) With high probability, the coarse parameter estimation

error decays gracefully with the total amount of data:
����̂� � �

?

��� 
C

(TN)↵
, (14)

as long as N exceeds some polynomial burn-in time. This
result is derived from recent results characterizing non-
asymptotic bounds for identification [14], and takes the
place of the estimator consistency requirements in clas-
sical asymptotic identification literature [30]. By making
the number of episodes N sufficiently large, we can make
this error arbitrarily small. It thus characterizes a type of
“consistency burn-in”.

2) As long as the coarse estimation error of (14) is suf-
ficiently small, the ideal optimal exploration objective
of (11) is well-approximated by the objective (12). In
particular, for any exploration policy ⇡ 2 ⇧exp,
����tr
⇣
H(�̂�)FI⇡(�̂�)�1

⌘
�tr(H(�?)FI⇡(�?)�1)

����

C

����̂���?
��� .

(15)

3) For N sufficiently large, we may use the consistency
guarantee (14) to prove Theorem III.1. The proof of this
fact follows by revisiting the delta method [31] through
the lens of concentration inequalities. Doing so results in
the near sharp4 rates we obtain.

Using the above results, our argument proceeds according
to the following series of inequalities applied to the excess
cost. With high probability,

J�?(�̂+)�J�?(�?) 
����̂+ � �

?

���
2

H(�?)
+Ccost

����̂+ � �
?

���
3

 ⇠(�)
tr((H(�?) + ⌫I)FI⇡mix(�?)�1)

N
+

C

N3/2
,

(16)
where the first inequality follows by Lemma III.1, and the
second inequality follows by applying Theorem III.1 with
H = H(�?) + ⌫I for the first term, and H = I for the
second term. The quantity ⇠(�) is a trades off the burn-in
time and the final bound. In our analysis, it can become as
small as 2 + 4 log 1

�
. Next, it follows that

tr((H(�?) + ⌫I)FI⇡mix(�?)�1)
(i)


C

N↵
+ tr

⇣⇣
H(�̂�) + ⌫I

⌘
FI⇡mix(�̂�)�1

⌘

(ii)
 2

C

N↵
+

1

1� �
inf

⇡̃2⇧exp

tr

 ⇣
H(�̂�)+⌫I

⌘
FI⇡̃(�̂�)�1

!

(iii)
 3

C

N↵
+

1

1��
inf

⇡̃2⇧exp

tr

 
(H(�?)+⌫I)FI⇡̃(�?)�1

!
,

4Rates matching the asymptotic limit up to logarithmic factors.
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where inequality (i) follows from (15) and (14), inequality
(ii) follows from the definition of the policy ⇡mix and
inequality (iii) follows from (15) and (14). The main result
then follows by substituting the above bound into (16), and
taking N to exceed a polynomial burn-in time so the higher
order terms become negligible.

V. NUMERICAL VALIDATION

We deploy ALCOI on an illustrative example to illustrate
the benefits of active control-oriented exploration. For more
experiments, and further details, see Appendix C. Consider
the two dimensional system

Xt+1 = Xt + Ut +Wt +
4X

i=1

 (Xt � �
(i)
? )

with Xt, Ut,Wt and �
(i)
? assuming values in R2. Here  :

R2
! R2 is defined by  (x) = 5 x

kxk
exp(�x

2). The noise is
distributed according to a standard normal distribution. The

parameters �(1)? , �(2)? , �(3)? , �(4)? are set as

5
0

�
,


�5
0

�
,


0
5

�

and

0
�5

�
, respectively.

We consider model-based reinforcement learning with a
horizon T = 10 and quadratic cost functions: for all t 2 [T ],

ct(x, u) =

����x�


5.5
0

�����
2

, cT+1(x) =

����x�


5.5
0

�����
2

.

The policy class ⇧? consists of feedback linearization con-
trollers defined by parameters ✓ = (K, �̂

(1)
, . . . , �̂

(4)), with
K 2 R2⇥2 and �̂(i) 2 R2 for i = 1, . . . , 4:

⇡
✓(Xt) = K

✓
Xt �


�5.5
0

�◆
�

4X

i=1

 (Xt � �̂
(i)).

The exploration class ⇧exp consists of policies with input
energy bounded by T :

P
T

t=1 kUtk
2
 T .

We compare ALCOI with random exploration and approx-
imate A-optimal experiment design. For random exploration,
the learner injects isotropic Gaussian noise which is normal-
ized such that

P
T

t=1 kUtk
2 = T . For approximate A-optimal

experiment design, the learner runs the ALCOI, but with the
model-task Hessian estimate, H(�̂�), replaced by I .

Figure 2 illustrates that ALCOI achieves a lower excess
control cost than the alternatives at all iterations. To under-
stand why this is the case, note that in order to regulate
the system to the position Xt =

⇥
5.5 0

⇤>, the parameter
�
(1)
? must be identified accurately. However, due to the

Gaussian kernel, accurately estimating �(1)? requires that the
experiment data consists of trajectories where the state is
near �(1)? . Random exploration clearly fails to collect such
trajectories. Approximate A-optimal experiment design does
collect such trajectories; however, it also collects trajectories
steering the state to

⇥
�5 0

⇤>,
⇥
0 5

⇤>, and
⇥
0 �5

⇤> in
order to identify the parameters �(2)? ,�

(3)
? and �(3)? . ALCOI,

in contrast, designs experiments that are effective for identi-
fying the parameters most relevant for control. For the chosen

Fig. 2. Comparison of the proposed control-oriented identification proce-
dure with approximate A-optimal design, and random experiment design.
The mean over 100 runs is shown, with the standard error shaded.

objective, this means that the algorithm invests the most
exploration energy in collecting data in the neighborhood of
�
(1)
? . This illustrative example hints at the practical benefit

of the proposed approach.

VI. CONCLUSIONS

We have introduced and analyzed the Active Learning for
Control-Oriented Identification (ALCOI) algorithm, marking
a significant step towards understanding active exploration
in model-based reinforcement learning for a general class
of nonlinear dynamical systems. We provide finite sample
bounds on the excess control cost achieved by the algorithm
which offer insight into the interaction between the hardness
of control and identification. Our bounds are known to be
sharp up to logarithmic factors in the setting of nonlinear
dynamical systems with linear dependence on the parame-
ters, and we conjecture that they are sharp in general. Future
work will attempt to verify that this is the case. It would also
be interesting for future work to consider learning partially
observed dynamics using general prediction error methods,
rather than assuming a noiseless state observation.
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