
Learning latent representations in high-dimensional state spaces using
polynomial manifold constructions

Rudy Geelen, Laura Balzano and Karen Willcox

Abstract— We present a novel framework for learning
cost-efficient latent representations in problems with high-
dimensional state spaces through nonlinear dimension reduc-
tion. By enriching linear state approximations with low-order
polynomial terms we account for key nonlinear interactions
existing in the data thereby reducing the problem’s intrinsic
dimensionality. Two methods are introduced for learning the
representation of such low-dimensional, polynomial manifolds
for embedding the data. The manifold parametrization co-
efficients can be obtained by regression via either a proper
orthogonal decomposition or an alternating minimization based
approach. Our numerical results focus on the one-dimensional
Korteweg-de Vries equation where accounting for nonlinear
correlations in the data was found to lower the representation
error by up to two orders of magnitude compared to linear
dimension reduction techniques.

I. INTRODUCTION

Dimension reduction rests on the fundamental assumption
that samples from high-dimensional state spaces can be
represented with a smaller number of variables (often called
“latent” variables) without a significant loss of information.
An arsenal of mathematical procedures has been proposed
in the literature to find a compact representation of the
data. The identification of such intrinsic, low-dimensional
structure in problems with high-dimensional state spaces sits
at the heart of this paper. In particular, we explore the use
of state approximations that embed low-order polynomial
terms. These terms are introduced to account for nonlinear
correlations in the data thereby enabling a greater reduction
in the dimensionality for the problem at hand. Our proposed
approach remains interpretable through its formulation in
terms of a modal basis expansion. As the least-squares
method underlies the construction of these approximations,
the framework can also be deployed effectively for large-
scale, real-world datasets.

We start by summarizing the main linear technique for
dimensionality reduction, namely, the principal component
analysis (PCA) [1]–[3]. The PCA performs a linear mapping
of the data to a lower-dimensional space by maximizing
its variance in the low-dimensional representation [3]. The
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breadth of applications for PCA, and its numerous adap-
tations, is largely due to its simplicity and ease of use.
It should be noted, however, that PCA is sometimes also
referred to as proper orthogonal decomposition (POD) [4]–
[6]. PCA and POD are closely related and in some cases
algorithmically equivalent, but have arisen from different
communities. When it comes to dimension reduction in
problems with high-dimensional state spaces associated with
simulation data, POD is the method of choice. Both tech-
niques have at their core the singular value decomposition
(SVD) to identify low-rank structure. The methodology in
this paper is presented from the perspective of POD, but
everything we propose is equally applicable to PCA.

POD analysis dictates that the coefficients of the ba-
sis functions are linearly uncorrelated. Consequently, POD
provides an optimal embedding of the original, high-
dimensional data only into a linear subspace. It is unable
to deal with nonlinear correlations existing in the data.
The ability to define an adequate nonlinear embedding in
high-dimensional state spaces is thus of great importance in
dimension reduction problems. Many alternatives to POD
have been proposed for identifying and unraveling such
nonlinear correlations. These methods include, for instance,
kernel PCA [7], Isomap [8], locally linear embedding [9],
multidimensional scaling (MDS) [10], different variants of
autoencoders, and other architectures that rely on neural
networks as recently reviewed in, e.g., [11]. Despite their
successful deployment in many applications where linear
dimensionality reduction techniques were found to fall short,
machine learning methods are often criticized for their lim-
ited interpretability and susceptibility to overfitting. This can
hinder, for instance, the embedding of physical constraints,
such as boundary conditions, and the preservation of other
data features and properties [12].

In this paper we introduce a new procedure for capturing
key nonlinear interactions of the data by taking into account
the existence of a low-dimensional, nonlinear manifold. The
proposed strategy remains interpretable in that the nonlinear
state approximations are given in terms of a modal basis
expansion, as is the case with POD. The presented approach
is also readily applicable in the dimension reduction of large-
scale problems as its underlying optimization process is fully
data-driven and can be carried out using standard least-
squares solvers. The paper is organized as follows. First,
we briefly review some known results for the POD as it
applies to data compression problems. This is followed by
a description of two instances of a nonlinear dimension
reduction technique based on polynomial manifold construc-
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tions. The effectiveness of the proposed framework is then
demonstrated in a nonlinear problem setting.

II. PROBLEM FORMULATION

The POD provides a systematic manner for the identifica-
tion of a set orthonormal basis functions that can be used for
approximating solutions in problems with high-dimensional
state spaces. The POD basis is computed as the set of left
singular vectors of the data matrix S ∈ Rn×k given by

S =

 | | |
s(t1) s(t2) . . . s(tk)
| | |

 (1)

whose columns consist of a collection of high-dimensional
system states s(t) ∈ Rn, where t ∈ T is some parameter
on which the state depends. The POD then seeks to produce
rank-r approximations of the state variable expressed through
a linear combination of POD modes as follows:

s(t) ≈ Φŝ(t), (2)

where Φ ∈ Rn×r is a basis matrix (the POD basis) contain-
ing as columns the left singular vectors of S corresponding
to the r largest singular values. The column space of Φ then
defines an r-dimensional subspace of the full state space
Rn with, generally speaking, r ≪ n. The vector ŝ(t) ∈ Rr

contains the reduced state (also POD) coordinates.
Provided that the total number of training samples is

smaller than the dimension of the high-dimensional system
states, that is k < n, the singular values of S are denoted
σ1 ≥ . . . σk ≥ 0. The POD basis minimizes the least-squares
error between the original data and their representation in the
reduced space (for a fixed basis size). This error is equal to
the sum of the squares of the singular values corresponding
to those left singular vectors not included in the basis

k∑
i=r+1

σ2
i , (3)

where σi is the ith singular value of S.
From a statistics viewpoint, the orthogonal projection

underlying the POD provides linearly uncorrelated features.
Despite its optimality properties, it cannot unravel nonlinear
correlations in the data. Accounting for such nonlinear
correlations is a crucial factor in further reducing the di-
mensionality of the problem. In what follows, we seek to
represent the high-dimensional data on a low-dimensional
submanifold M ⊂ Rn of the original state space defined
as M = {s(t) | t ∈ T }, which is constructed to approximate
well the elements of the solution manifold for the problem
of interest.

In the field of machine learning, the numerous tools aimed
at identifying dominant nonlinear correlations are often re-
ferred to collectively as manifold learning or representation
learning [11]. We here focus on nonlinear transformations
that can be expressed through a basis expansion. Of particular

interest are nonlinear state approximations of polynomial
form:

s(t) ≈ Vŝ(t)︸ ︷︷ ︸
linear

+Zg(ŝ(t))︸ ︷︷ ︸
nonlinear

, (4)

where

g(ŝ(t)) =


ŝ2(t)
ŝ3(t)

...
ŝp(t)

 , (5)

in which V = [v1 | . . . |vr] ∈ Rn×r is the linear basis
matrix that has vj ∈ Rn, j = 1, . . . , r, as its jth column. The
column space of V spans an r-dimensional linear subspace
of the full state space Rn. The matrix Z ∈ Rn×(p−1)r is a
matrix whose columns span a different subspace from the
one spanned by the columns of V. The vector ŝ ∈ Rr is
the reduced state vector, representing the coefficients of the
basis expansion. The vector g(ŝ(t)) ∈ R(p−1)r denotes a
set of polynomial terms up to degree p ≥ 2 associated with
the nonlinear aspect of solution manifold M. Throughout
this paper, the exponent used in (5) raises each element of
a given vector to the corresponding power. For example, if
ŝ = [ŝ1, ŝ2]

⊤, then ŝp = [ŝp1, ŝ
p
2]

⊤. The use of polynomial
constructions is not new in representation learning problems.
However, the precise manner in which the polynomial ap-
proximations are built and deployed leads to vastly different
approaches [13]–[17].

It is noted that one is permitted to omit the linear contribu-
tion Vŝ(t) from approximation (4). The assumption under-
lying this choice is that the correlations between the latent
space coefficient are expected to be exclusively nonlinear.
The philosophy of our approach is that the structure of the
low-dimensional submanifold of the state space is unknown
and must thus be approximated using regression techniques.

If matrix V in (4) is chosen to be the POD basis matrix, Z
can be inferred from the high-dimensional dataset by means
of linear least-squares regression [15]. A different approach
is to consider a parametrization of the form

Z = VΞ ∈ Rn×(p−1)r, (6)

where the matrix V = [v1 | . . . |vq] ∈ Rn×q represents
a basis matrix, and Ξ ∈ Rq×(p−1)r is the corresponding
coefficient matrix that weighs each of the polynomial terms
contained in g(ŝ(t)).

For optimization purposes, see Section III, we choose the
columns of V and V to form orthonormal sets of dimension
r and q, respectively. Additionally, the columns of V are
chosen to be orthogonal to those of V. Equivalently we can
write

[V,V]⊤[V,V] = Ir+q, (7)

where Ia denotes an identity matrix of dimension a × a. It
is noted that constraint set (7) forms a smooth submanifold
of Rn×(r+q) known as the Stiefel manifold.

To construct nonlinear approximations of the form (4) in
an optimal fashion, the representation learning problem is
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posed in terms of the constrained optimization problem

min
V,V,Ξ,Ŝ

J(V,V,Ξ, Ŝ)

such that [V,V]⊤[V,V] = Ir+q,
(8)

with objective function

J =
1

2

k∑
j=1

∥∥∥∥sj − [V,V]

[
ŝj

Ξg(ŝj)

]∥∥∥∥2
2

, (9)

where Ŝ := (ŝ1, ŝ2, . . . , ŝk) ∈ Rr×k is the reduced-state
representation of the given system states sj for j = 1, . . . , k.
Solving (8) means that (4) holds, in the least-squares sense,
at the optimum of the objective of (8).

The use of Frobenius norm regularization was advocated in
[15] to avoid the overfitting of the nonlinear approximations
to the training data. Here we choose to penalise only the
entries of the coefficient matrix Ξ, leading to the modified
optimization problem

min
V,V,Ξ,Ŝ

(
J(V,V,Ξ, Ŝ) +

γ

2
∥Ξ∥2F

)
such that [V,V]⊤[V,V] = Ir+q,

(10)

which is the problem of interest in this paper. Particular
choices for each of the terms {V,V,Ξ} and the correspond-
ing latent space representation ŝ(t), and how these may be
inferred from the data, will be presented next.

The proposed dimensionality reduction method is unique
in its ability to map directly from the latent space to
the original, high-dimensional state space—via (4)—without
invoking additional approximations or the need to evaluate
neural network architectures. Despite the wealth of literature
on manifold learning methods, they do (generally speaking)
not provide such a mapping in explicit form. This inhibits
their application in large classes of problems such as various
model reduction and classification tasks.

III. LEARNING NONLINEAR REPRESENTATIONS

A. Approach 1 – POD-based modeling

Our first option views the learning of nonlinear state
approximations through the lens of the POD. In the following
we demonstrate in step-by-step fashion how conventional
POD approximations can be enriched to produce approxi-
mations of the form (4).

Step 1: Compute basis: In this proposed approach we
start by populating the basis matrix V with the left singular
vectors of S corresponding to its r largest singular values.
We then choose the basis vectors corresponding to the next
consecutive q largest singular values as the columns of V.
A similar idea was also proposed recently in [18]. Figure
1 illustrates the left singular vectors used in conventional
POD and the proposed POD-based polynomial manifold
approach. Note that this choice for the pair of basis matrices
{V,V} automatically satisfies constraint (7) through the
orthogonality properties of the SVD.

V

Fig. 1: The left singular vectors used in the state approximations for
proposed POD-based polynomial manifold approach following a singular
value decomposition of the data matrix S = ΦΣΨ⊤.

Step 2: Low-dimensional representation: Finding the la-
tent space representation for this approach simply amounts
to computing the representation of each data sample j in the
POD coordinates as ŝj = V⊤sj for j = 1, . . . , k.

Step 3: Linear least-squares regression: Given the matri-
ces {V,V} and the latent space representation Ŝ, this leaves
the coefficient matrix Ξ to be inferred from the training data.
It is then trivial to show that (10) reduces to an unconstrained
linear optimization problem:

min
Ξ

(
J(V,V,Ξ, Ŝ) +

γ

2
∥Ξ∥2F

)
, (11)

whose exact solution can be computed using the normal
equations as

Ξ = V
⊤
(In −VV⊤)SW⊤(WW⊤ + γI(p−1)r)

−1, (12)

with Ξ ∈ Rq×(p−1)r, where we introduced the data matrix
W as

W :=

 | | |
g(ŝ1) g(ŝ2) . . . g(ŝk)
| | |

 ∈ R(p−1)r×k. (13)

The vector accounting for the nonlinear interactions between
the reduced-state coefficients of the jth data sample, g(ŝj),
contains low-order polynomial nonlinear terms (up to degree
p) and is given in (5).

Contributions & comparison with previous work: The
proposed POD-based polynomial manifold formulation de-
scribed above produces only an approximate minimizer to
optimization problem (8), as explained in [15, Remark 1].
Nonetheless, the formulation is particularly appealing from
a computational perspective: it permits us to embed readily
available POD modes explicitly into state approximation
(4) without modifying the dimensionality of the reduced
problem, an important contribution of this work.

Despite also having its roots in polynomial regression, the
POD-based manifold approach presented in [15] is funda-
mentally different from the one described here in a number
of key aspects. A parametrization of the form (6) permits
us to explicitly leverage POD modes when approximating
system states, rather than needing to compute the columns of
Z from the data. As a result, the number of coefficients to be
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inferred in the proposed approach no longer scales with the
full-state dimension, n, thereby reducing the computational
and storage burden in constructing such approximations.
Furthermore, the nonlinear part of the approximation is
expressed through low-order polynomial terms instead of
Kronecker quadratic product form. Accounting for higher-
order nonlinear correlations existing between the various
POD mode amplitudes will promote an improved compres-
sion of the data.

B. Approach 2 – The alternating minimization approach

In this section we take a different approach from above in
that we propose an iterative algorithm for solving problems
of the form (10) using alternating minimization. Classical
alternating minimization (or projection) algorithms have been
successfully applied in solving optimization problems over
two or more variables or equivalently of finding a point in the
intersection of two sets. Although one sacrifices a certain de-
gree of interpretability by solving the representation learning
problem through optimization procedures, each step of the
proposed method is intuitive yet computationally tractable
and thus scalable. Our approach is detailed in individual
subsections below in step-by-step fashion. We also provide
an adequate choice of the initialization as well as a relevant
stopping criterion in the alternating minimization process.

Step 1: The Procrustes problem: We start with initial
guesses for the representation of the training data in the
low-dimensional coordinate system at each sample ŝj , j =
1, . . . , k, and the coefficient matrix Ξ. The matrix of the
concatenated bases Ω := [V,V] can then be inferred from
the available data. Because the regularizer in (10) depends
neither on V nor on V, an equivalent optimization problem
may be considered without regularization. In the Frobenius
norm (10) then simplifies to

Ω = argmin
Ω∈Rn×(r+q)

1

2

∥∥∥∥S−Ω

[
Ŝ

ΞW

]∥∥∥∥2
F

such that Ω⊤Ω = Ir+q.

(14)

Matrix approximation problem (14) is better known in the
statistical literature as the orthogonal Procrustes problem
[19]. It aims to learn the best possible unitary (orthogonal)
transformation, that is a rotation or reflection, that relates
two given matrices. The solution to (14) was derived by
Schönemann [20] as

Ω = UPV
⊤
P , (15)

where UPΣPV
⊤
P = S[Ŝ⊤, (ΞW)⊤] is an SVD, and is

unique if S[Ŝ⊤, (ΞW)⊤] is full rank.
Step 2: Linear least-squares regression: Given an esti-

mate for the basis matrices, {V,V}, and the same low-
dimensional coordinate system used in Step 1, we now
solve for the coefficient matrix Ξ. In practice this amounts
to solving (11), with the main difference being one of
interpretation: in Approach 1 the basis matrices {V,V} are
the left singular vectors of the high-dimensional training data
whereas in the alternating minimization approach this is no

longer the case as one has to solve an orthogonal Procrustes
problem to find a set of orthonormal basis matrices.

Step 3: Unconstrained nonlinear least-squares: In the
final step of the minimization process we compute the
representation of the high-dimensional data on M. For this
we have new estimates for V,V and Ξ at hand, meaning
that (10) simplifies to

Ŝ =argmin
Ŝ∈Rr×k

1

2

k∑
j=1

∥∥∥∥sj − [V,V]

[
ŝj

Ξg(ŝj)

]∥∥∥∥2
2

, (16)

which is an unconstrained optimization problem that can
thus be treated efficiently using Levenberg-Marquardt and
trust-region-reflective methods available in many off-the-
shelf solvers.

Initial guess and termination criterion: The iterative pro-
cess must be initiated with guesses for the representation
of the data in the low-dimensional coordinate system, ŝj
for j = 1, . . . , k, as well as the coefficient matrix Ξ.
These are readily available in our POD-based polynomial
manifold approach (Approach 1). In the proposed alternating
minimization scheme we solve the problems in Steps 1 to
3 in a sequential fashion, constituting one iteration in the
optimization procedure. Iterations are terminated when a
global stopping criterion is satisfied. We choose to monitor
the retained information content, see [15] for a motivation,
accounted for by approximation (4) across the iterations,
denoted by the ℓ superscript, as

eℓ :=
∥VℓŜℓ +V

ℓ
ΞℓWℓ∥2F

∥S∥2F
. (17)

We then define convergence if |eℓ+1 − eℓ| ≤ TOL with TOL
a predefined tolerance.

IV. NUMERICAL RESULTS

A. Error metric & good practices

In the numerical experiments conducted in this work we
represent a given dataset S(µi) in the computed reduced-
state coordinate system, after which we attempt to recon-
struct that same dataset in the original, high-dimensional
state space as S̃(µi). The different parameter instances are
given by µi with i = 1, . . . ,m. Importantly, the data used
for testing are unseen in learning process. This enables
us to quantify the representation error of nonlinear state
approximation (4) as follows:

1

m

m∑
i=1

∥S(µi)− S̃(µi)∥2F
∥S(µi)∥2F

(18)

The data matrices under consideration are centered by their
column-averaged mean value. The regularization parameter
γ in (10) is found through a grid search and confirmed to
provide an adequate amount of regularization irrespective
of the polynomial degree of the state approximation or the
number of basis vectors r + q. There usually is a trade-off
between choosing r, the dimension of the linear subspace
described by basis V, and q, the number of basis vectors in
V. In what follows, r is user-specified as it corresponds to the
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Fig. 2: Normalized singular values of the mean-subtracted data matrix
for the Korteweg-de Vries problem. The blue and red areas denote the
singular values whose corresponding left singular vectors are in V and V,
respectively.

desired dimension of the latent space. Dimension q is then
chosen in accord with the targeted level of representation
accuracy which is informed by the singular value decay of
the shifted data matrices. The tolerance for the alternating
minimization algorithm, see Section III-B, is chosen to be
TOL = 10−3.

B. Korteweg-de Vries equation

Our numerical experiments are concerned with travel-
ing wave physics. Consider a single soliton propagating
at constant speed over a domain with periodic boundary
conditions. The evolution of the wave field is given by the
one-dimensional Korteweg-de Vries equation

∂ts = −αs∂xs− β∂3
xs (19)

in the space-time domain [−π, π] × [0, 0.1] with initial
condition s0(x) = 1 + 24 sech2

(√
8(x− µ)

)
and with ∂x

and ∂t denoting partial derivatives with respect to x and t,
respectively [21]. An equidistant grid was used consisting of
256 grid points. The state data are saved every 0.0002 time
units. We choose the model constants to be α = 8 and β = 1
and generate five individual datasets at µ = [0, 0.5, 1, 1.5, 2],
yielding a total of 2,500 samples to be used for learning the
state representations. Each data sample appears in the form
of an n-dimensional column vector and is stored column-
wise in the data matrix S, as given in (1).

As evidenced by the decay of the singular values of the
dataset, shown in Fig. 2, 82 POD basis vectors are necessary
for approximating the training data with a projection error
below 10−5 in the Euclidean norm. The decay is also found
to reach a plateau around this value, at which point increas-
ing the reduced basis dimension no longer meaningfully
improves the quality of the state approximation. In the
numerical experiments that follow we therefore maintain a
constant r+q = 82. The regularization parameter was chosen
to be γ = 500.

An additional ten datasets are generated, based on the
initial conditions, by uniformly drawing µ in the range
[0, 2]. In this experiment we are looking to better understand
the ability of the POD, Manifold-POD (Section III-A), and
Manifold-AM (Section III-B) formulations in building an

(a) Reference solution (b) POD reconstruction with r = 6

(c) Manifold reconstruction (POD)
with r = 6, p = 4

(d) Manifold reconstruction (AM)
with r = 6, p = 4

Fig. 3: Reconstruction of the high-dimensional system-states using the
different state approximation at µj = 1.9298 with reduced basis dimension
r = 6. The manifold models have polynomial embeddings of degree p = 4.

r-dimensional reduced-space representation and, from that,
reconstruct a set of high-dimensional system-states with a
minimal loss of information. Fig. 3 gives an illustration
of the performance of the different reduction methods at
a reduced dimension of r = 6. The numerical experiment
considers a polynomial embedding of degree p = 4 for the
nonlinear state approximations. The POD clearly struggles
with capturing the space-time evolution of the Korteweg-de
Vries equation. As it represents the optimal solution that can
be approximated using a linear subspace spanned by only r
basis vectors, the reconstruction fails to capture the soliton’s
amplitude and shows Gibbs oscillations in its vicinity. The
reconstructions from the polynomial manifold formulations
on the other hand, shown in Figs. 3c and 3d, are clearly better
suited for this by accounting for correlations of polynomial
nature between the latent space coefficients. This ability is
beneficial in reducing the problem’s dimensionality.

The test errors in function of the reduced basis dimension
are shown in Fig. 4. As expected, POD is the least able
in accurately reconstructing the test data. When account-
ing for an additional q POD modes through the addition
of low-order polynomial terms to the state approximation,
the representation error decreases. However, the proposed
alternating minimization approach, in which we rely on the
solution to a Procrustes-type problem for inferring a set of
orthonormal basis vectors, is considerably more accurate than
both aforementioned alternatives. Improvements up to two
orders of magnitude in accuracy were obtained compared
to POD. Both nonlinear manifold approaches were found
to benefit from increasing the polynomial degree in the
nonlinear part of the approximation (4).

The number of iterations at which (17) falls below the
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Fig. 4: Plot of the representation error, (18), in function of the reduced basis
dimension, r, for the standard POD approach (black curve), POD-based
polynomial manifold approach (blue curves) and alternating minimization
based polynomial manifold approach (red curves). For the manifold formu-
lations we vary the degree p of the polynomial embedding.

TABLE I: The number of alternating minimization cycles at which (17) falls
below the specified threshold at different reduced basis dimensions, r, and
values for the polynomial embedding degree, p.

Reduced basis dim. r 2 4 6 8 10 12 14

# iterations
p = 2 4 8 11 20 9 10 5
p = 3 6 13 18 15 6 5 4
p = 4 19 29 9 6 4 3 3

specified threshold for the alternating minimization proce-
dure is listed in Table I. While there is a quite a bit of
variation at different values of the reduced basis dimension,
r, and the degree of the polynomial embeddings, p, the
number of iterations remains small for all numerical ex-
periments reported here. This shows that learning nonlinear
state approximations of the form (4) through minimization
techniques is computationally tractable.

V. CONCLUDING REMARKS

We present a general framework for building nonlinear
state approximations that is particularly applicable for di-
mension reduction in problems with high-dimensional state
spaces. By embedding low-order polynomial terms in the
modal basis expansion we account for nonlinear correlations
in the data through interactions of the reduced space coor-
dinates. The proposed framework prompts two different rep-
resentation learning approaches. The POD-based polynomial
manifold approach is intuitive due its connection to conven-
tional POD, yet enables a reduction of the dimensionality
for the problem at hand. If one is willing to depart from
POD, and its interpretable nature, the proposed alternating
minimization based variant offers an even better compression
performance by finding basis matrices with orthonormal
columns through a Procrustes-type problem. Importantly,
both learning approaches can effectively be deployed at scale
using only least-squares techniques.
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