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Abstract— This work considers an important problem of
identifying the dynamics of chemical reaction networks from
time-series data. We propose an approach to identify complex
chemical reaction networks (CRN) from concentration data
using the concept of sparse model identification. Particularly,
we demonstrate challenges associated with the application of
the sparse identification of nonlinear dynamics (SINDy) and its
variants to data obtained from CRNs. We develop a SINDy-
CRN algorithm based on the properties of CRNs for identifying
governing equations of a CRN. The proposed algorithm is
illustrated using a numerical simulation example.

I. INTRODUCTION

Analysis of chemical reaction networks (CRN) plays an
important role in many fields, such as process industries,
chemistry, systems, and synthetic biology, etc. The standard
kinetic modeling of CRN involves a set of state equations
that are defined based on the stoichiometry of the chemical
reactions and on the reaction rate laws. A recent review
on the graph-theoretical modeling framework of CRN with
mass-action kinetics is presented in [1], and the extension of
this to general kinetics can be found in [2]. Kinetic models of
CRN have been used in literature for model-based analysis,
model reduction, control, and optimization of these networks
[3], [4], [5]. In biochemistry and chemical engineering,
the identification of kinetic models is typically based on
laborious works of isolating individual reaction and subse-
quently fitting the individual kinetic rate constants based on
the reaction data. The obtained kinetic laws are generally
given by rational functions, which makes this bottom-up
approach not scalable for systems with high-dimension CRN,
e.g. genome-scale kinetic modeling or complex metabolic
pathways. It remains a technical challenge to identify sparse-
and-yet-accurate kinetic models for these systems. Automatic
identification of CRNs from concentration data is an impor-
tant task in the field of CRNs and different approaches to
identify governing equations from time-series data have been
proposed in the existing literature [6], [7], [8], [9], [10].
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The identification of high-dimensional CRNs in the afore-
mentioned complex examples typically involves identifying
the underlying unknown chemical reaction networks (often
called the reaction stoichiometry), and the unknown reaction-
rate structures and corresponding parameters [6], [8]. Op-
timization problems involving all possible combinations of
reaction stoichiometry candidates and reaction-rate structure
are solved to identify an underlying CRN model from data
[11]. Furthermore, efficient model selection methods have
to be applied to discriminate different model combinations
to select an appropriate model [12]. As a consequence,
these approaches are computationally expensive and time-
consuming. In this regard a priori information on either the
reaction stoichiometry or rate structures or both proposed by
human experts is often used to identify CRNs in an efficient
manner [6], [13]. Often, it is difficult to obtain this CRN-
specific information a priori, and it may introduce a bias in
the model identification process.

Recently, sparse model identification approaches have
been proposed for identifying nonlinear dynamics from time-
series data to overcome the problem of model selection,
i.e., selecting an appropriate model from several candi-
date models admitting spare solution[14], [9], [15], [16].
These approaches formulate the identification problem as
a sparse optimization problem in which the dynamics of
the system is a linear combination of a library of over-
complete candidate functions [14], [9]. Typically, sparsity
in the linear combination is induced through a regularization
term in the optimization problem for obtaining a parsimo-
nious model. Sparse identification of nonlinear dynamics
(SINDy) algorithm has been proposed to discover dynamical
equations from time-series data [14]. The SINDy algorithm
has also been extended to handling noisy data, rational func-
tions (implicit-SINDy), etc[17], [12], [18], [19]. Parallel and
Implicit-SINDy algorithm (SINDy-PI), a variant of SINDy,
can handle rational nonlinear functions and implicit function
dynamics [17] and can perform efficiently model selection
for noisy data. SINDy-PI has been applied to identify gov-
erning equations of biological networks [12], [20]. Although
the SINDy class of algorithms can identify the underlying
nonlinear dynamics from data under different conditions, the
construction of an appropriate library of candidate functions
is still a challenging task. Furthermore, the SINDy class of
algorithms assumes that the number of state variables is equal
to the number of measured variables (or concentrations of
species in CRNs). However, this assumption is not valid
in the case of CRNs as the number of state variables are
less than the number of measured concentrations, and the
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SINDy-PI cannot be applied to CRNs in a straightforward
manner. Reactive SINDy proposed in [20] for identifying
CRNs assumes that the reaction rates are governed by mass-
action kinetics to construct a library in application of SINDy.
Note that the assumption of mass-action kinetic is restrictive
one and it doesn’t hold for many biological and chemical
engineering systems. We present a simple enzymatic example
that illustrates issues that can arise in applying the SINDy-
PI algorithm to CRNs that issues can not be handled by
the Reactive SINDy. In this work, we present a variant of
SINDy-PI method for chemical reaction networks, which
we refer to as SINDy-CRN algorithm. Based on a priori
knowledge of CRN properties, our proposed SINDy-CRN
algorithm looks firstly at the minimal number of independent
state variables from the concentration data that is closely
linked to the number of independent kinetics. Subsequently,
the information from the singular value decomposition of
the concentration data matrix is used to construct a family
of functions that can directly be used by the SINDy-PI
algorithm to get a sparse representation. The efficacy of the
proposed SINDy-CRN algorithm is shown via a numerical
simulation example.

The paper is organized as follows. Section II describes
preliminaries for SINDy-PI and models of CRNs and their
properties. In Section III, the theoretical foundations and
algorithm for SINDy-CRN for identifying CRNs from data
is developed. Section IV demonstrates the proposed SINDy-
CRN on a simulate example and Section V concludes the
work.

II. PRELIMINARIES

A. SINDy-PI

Consider the following state-space model with states x ∈
Rn and measurements y ∈ Rn as follows

ẋ = f(x,θ)

y = x
(1)

where f : Rn × Rp → Rn is a vector of smooth functions,
g : Rn → Rn is a a vector of measurement function, θ ∈ Rp

is the parameter vector. The objective of SINDy (sparse
identification of nonlinear dynamics) is to identify a minimal
representation f(·) using the measurement data y = x and
ẋ for m time instances in an automated way [14][17]. It is
assumed here that each element of f is a sparse combination
of functions of x from a given library/kernel functions. Let
Y = X ∈ Rm×n be the measurement matrix that compiles
all m measurement data for all n states, where the j-th
column of the X matrix corresponds to the time series of the
j-th state variable xj(ti), i = 1, . . .m. Using these notations,
the SINDy problem originated from the reformulation of
relationships between the measurement data x and ẋ as
follows

Ẋ = Φ(X)Σ (2)

where Φ(X) ∈ Rm×l is a library matrix containing l differ-
ent functions of x evaluated at the corresponding values of
X, and the matrix Σ ∈ Rl×n is a sparse matrix containing the

parameters to be identified and truncated to obtain the sparse
representation of f . Accordingly, the following regularized
optimization problem can be formulated to identify Σ

min
Σ

1

2
∥Ẋ−Φ(X)Σ∥2F + αγ(Σ) (3)

where γ(Σ) is a sparsity-inducing regularization function
(such as l0− or l1− norm of Σ), and α is a tuning
parameter (hyperparameter) determining the contribution of
the regularization function. Depending on the form of γ(Σ),
several algorithms have been proposed to solve the problem
[18]. For many chemical reaction networks and biological
systems, their dynamical models often involve implicit and
rational dynamical functional forms of x, where instead of
(1), it takes the following implicit state-space form

f(x, ẋ) = 0

y = x.
(4)

In this case, the factorization in Eq (2) can be generalized
to the implicit state-space systems as follows:

Φ(X, Ẋ)Σ̃ = 0 (5)

Note that the Σ̃ ∈ Rl×l matrix is in the null space of
Φ(X, Ẋ), and hence, it is not straightforward to find the
solution to the problem in Eq. (5). The SINDy-PI framework
has been proposed in [17] to find a non-trivial solution of
the problem in Eq. (5) through a constrained optimization
formulation as follows:

min
Σ̃

1

2
∥Φ(X, Ẋ)−Φ(X, Ẋ)Σ̃∥22 + α∥Σ̃∥0

s.t. diag(Σ̃) = 0

(6)

where diag(Σ̃) = 0 denotes the diagonal elements of Σ̃ are
zero. Several convex relaxations of the optimization problem
(6) have been proposed to solve the problem [17], [16]. The
sequentially thresholded least-squares (STLS) is an approach
to solve the problem (6) and obtain the sparse representation
of f . In the STLS, the hyperparameter λj , j = 1, . . . , n is
defined as a threshold for the jth variables. In each iteration,
the parameters are pruned based on the solutions of STLS
that are compared to λj . The algorithm will converge to
a fixed set of sparse parameters that is dependent on the
selection of λj . Sensitivity analysis w.r.t λj can be done to
select the sparse model with the least fitting error criteria.

B. Modeling of Chemical Reaction Networks

This work considers an isothermal constant volume (V0)
chemical reaction network (CRN) involving S species and
R reactions with a stoichiometric matrix, N ∈ RR×S , and
reaction-rates vector, r(c(t),θ) ∈ RR. Here, θ ∈ Rp is the
parameter vector. The reaction rate is typically a nonlinear
function of the concentrations c and the parameter vector θ.
The independent reactions can be defined as follows [21].

Definition 1 (Independent reactions): R reactions are
said to be independent if (i) the rows of N (stoichiometries)
are linearly independent, i.e., rank (N) = R, and (ii) there
exists some finite time interval for which the reaction rate
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profiles r(t) are linearly independent, i.e., βTr(t) = 0 ⇔
β = 0R.

Here, it is assumed that the R reactions are independent.
Then, mole balance equations for this system can be written
as

ṅ(t) = V0N
Tr(c(t),θ), n(0) = n0

c(t) =
n(t)

V0
,

(7)

where n and c are the S-dimensional vectors of the number
of moles, and concentrations, respectively. It is assumed that
the initial concentrations (c0) are known. The model (7) can
be written in terms of the concentrations as follows:

ċ(t) = NTr(c(t),θ), c(0) = c0. (8)

In practice, only a subset of concentrations is measured
and hence, c be partitioned into the measured (cm) and
unmeasured cu species concentrations: cT =

[
cT
m cT

u

]
.

Then, the conventional state-space form for CRNs can be
written as follows:

ċ(t) = NTr(c(t),θ)

cm =
[
Im 0

]
c.

(9)

where Im is the m × m-dimensional matrix. The dynamic
equations of c(t) in Eq. (9) are written in an explicit form.
However, the elements of r(c(t),θ) for several types of
CRNs can be rational functions in c and θ. Hence, it can
be re-written in the implicit state-space form as described in
Eq. (4) for the identification purpose. Hence, SINDy-PI is a
suitable approach to solve this class of problems.

Following [5], a linear transformation of the concentra-
tions in Eq. (9) can be defined as follows:[

xr

xiv

]
=

[
NT†

Q

]
(c− c0), (10)

where xr ∈ RR is the vector of the extents of reaction
states (that evolve with time), and xiv ∈ RS−R is the
vector of invariant states (that do not evolve with time). The
invariant states do not change with time. Here, the symbol
’†’ denotes the Moore-Penrose pseudo–inverse of the matrix,
and the matrix Q ∈ RS−R×S is such that NQT = 0. The
concentrations can be related to the reaction variant states as
follows:

c(t) = NTxr + c0 (11)

Correspondingly, the state-space model in form of the reac-
tion variant (or reaction extents) states and invariants can be
written as:

ẋr(t) = r(xr(t),θ)

ẋiv = 0

cm = NT
mxr + c0,m.

(12)

The cu can be computed using cm and Eq. (12). We refer
interested readers to [5] for the exposition of chemical
reaction networks in this form and recall the following
proposition from [5].

Proposition 2 ([5]): Let N and c be partitioned as: N =[
Nm Nu

]
and cT =

[
cT
m cT

u

]
. If rank (Nm) = R then

the unmeasured concentrations cu(t) can be reconstructed
from cm(t) in two steps as follows: (i) computation of the
extents of reaction, xr(t) = (NT

m)†(cm(t) − c0,m), and
(ii) reconstruction of the unmeasured concentrations cu(t):
cu(t) = NT

uxr(t) + c0,u.

The following observations can be made based on the
transformation in Eq. (10) and Proposition 2.

• (O1) xiv(t) does not change with time and depends
on the initial condition, i.e., xiv(t) = Q(c − c0) =
Qd = 0S−R. The state xiv(t) provides the (S − R)
relationships between d or c− c0.

• (O2) The CRN in Eq. (9) can be expressed with the R
differential equations describing the reaction variants.

• (O3) rank (Nm) = R indicates that the minimum
of R species concentrations is required to reconstruct
remaining S −R species concentrations. Since S > R,
this condition is not restrictive from the identification
of the CRN system.

• (O4) The unmeasured concentration cu can be ex-
pressed in terms of measured concentrations: cu(t) =
NT

u(N
T
m)†(cm(t)− c0,m) + c0,u.

These observations have implications for understanding the
limitations of the SINDy-PI algorithm and extending the
SINDy-PI to chemical reaction networks.

III. IDENTIFICATION OF CHEMICAL REACTION
NETWORKS USING SINDY-PI

This section will extend the SINDy-PI approach to identify
CRNs in a systematic manner from concentration data. The
following motivation example demonstrates limitations in
applying the SINDy-PI.

A. Motivating Example

Let us consider a eaction system involving a single enzy-
matic reversible reaction as follows: A ⇌ B. The mass
balance equations in the concentration domain described

by Eq. (9) can be written with c =

[
ca
cb

]
, N = [−1, 1],

r = [r1] =
k1ca
k2+ca

− k3cb
k4+cb

and θ = [k1, k2, k3, k4]
T where

ca and cb are the concentrations of A and B. For numerical
purposes, let the initial concentrations be given by ca0 = 12
and cb0 = 3 and let θ = [5, 2, 4, 3]T . The concentrations
of the components A and B are available at different time
points as follows:

X = C =

[
cTa (t)
cTb (t)

]
=

[
ca(t1) ca(t2) . . . ca(tm)
cb(t1) cb(t2) . . . cb(tm)

]T
Then, the objective of SINDy-PI is to identify the reac-
tion system using the concentration data C. Let us con-
sider the concentration measurements of ca(t) to iden-
tify the differential equation of ca variable. A library
matrix of the following functional form evaluated at
the different time points can be considered: Φ(C) =
[ċa, ca, cb, caċa, cbċa, cacb, cacbċa]. In order to apply the
STLS algorithm, let us choose y = Φj = cacbċa and the re-
maining term can be Φwj = [ċa, ca, cb, caċa, cbċa, cacb].
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Then, the solution of the least-squares y = Φwjσj with
σj being a coefficent vector (the jth column of Σ) is
σj = Φ†

wjy if the Φ†
wj is of the full rank l = 6 for m > l.

It can be shown that rank (Φwj) < l = 6 or is a rank-
deficient matrix for the reaction system. From Observation
(O1), the following invariant relationship between concen-
trations can be established: ca(t) + cb(t) = ca0 + cb0 =
15 =constant. Then, cb(t) = η−ca(t). With this relationship,
the Φwj can be re-written as:

Φwj = [ċa, ca, cb, caċa, cacb, 15ċa − caċa]

By examining the Φwj , it can be seen that the last col-
umn can be expressed as a linear combination of the
remaining columns. Hence, it is a rank-deficient matrix,
and the STLS algorithm cannot be applied to this prob-
lem without re-defining the library matrix with a set of
appropriate polynomial functions. With the redefined Φwj =
[ċa, ca, cb, caċa, cacb], the STLS algorithm can be applied
to the simulated example. The identified dynamic of the state
variable ca from the ca is

ċa = −15 ca − 8cb + cacb
51− cb + cacb

= −r1,i (13)

Note that the identified Eq. (13) is not of the exact form of
the rate expression.

It can be shown that the simplification of the reaction rate
term (r = r1) and the substitution of the ca = 15 − cb
in the denominator leads to the form of r1,i. Hence, the
original differential equation of ca is identified from the
data. Furthermore, the differential equation of cb can be
identified by simply differentiating the invariant form as
follow: ċb = −ċa = r1,i. It can be noted that the net direction
of the reaction (or stoichiometric matrix corresponding to
independent reaction) can also be proposed using the mea-
surements and the identified equations as follows: A → B.
However, it is not possible to comment on the reversibility
of the reaction without examining the identified reaction rate
r1,i and postulating reaction kinetics.

Based on the analysis of the motivated example, the
following three remarks can be made for identifying CRNs
using the SINDy-PI-based approaches.

Remark 3 (Library Matrix for CRNs): The library matrix
Φ(X, Ẋ) for reaction systems may be rank-deficient due to
the inherent relationships between the measured variables
(concentrations) owing to the structural property of CRNs.
These relationships are due to the reaction invariant states.

Remark 4 (Minimum number of state variables): The re-
action networks may be represented by a less number of
states than the number of measured state variables.

Remark 5 (Ambiguity in reaction rate and stoichiometry):
For CRNs, it is difficult to resolve the ambiguity of
individual (forward and backward reaction rates) from
the identified reaction rates. The lumped reaction rate
expressions can be recovered from concentration data.
Furthermore, the independent reaction stoichiometry can
only be recovered from concentration data. Additional

information is required to resolve these ambiguities in
reaction rates and stoichiometric coefficients.

Next, we will use the results from the analysis of CRN
systems to extend the SINDy-PI approaches to CRN systems.

B. SINDy-PI for Chemical Reaction Network systems
(SINDy-CRN)

In this section, the SIND-PI will be extended to CRN
systems using the properties of CRN systems and their
implications for identifying the dynamics of CRN systems
from time-series data.

1) Identifying Invariant Relationships and Concentration
Variables: First, we will establish the important properties
of concentration data obtained from CRNs. Consider a
(m×S)−dimensional concentration matrix C. The reaction
variant (RV) form of concentration matrix D can be obtained
as follows:

D = C− 1mcT0 , (14)

where 1m is the m−dimensional vector containing one as its
elements. The following lemma describes the rank property
of matrices C and D.

Lemma 6: Consider an isothermal chemical reaction net-
works described by Eq. (9). Then, the concentration and the
corresponding RV-form matrices can be factorized as follows

C = XN+ 1mcT0 , and D = XN, (15)

and the rank of these matrices satisfies

rank (C) = R+ 1, rank (D) = R (16)

For the proof of the lemma, we refer to the same result
presented in [22], [5].

Lemma 6 allows us to determine the number of reaction-
variant states and invariant states for a given data matrix C.
Hence, the minimum number of state variables (Remark 4)
to describe the system can be determined. The minimum
number of state variables is equal to the rank of D. Also,
note that the factorization D with (O1) provides a hint to
determine the relationship between the measured variables.

Theorem 7: Consider the concentration matrix C for the
reaction system described by Eq. (9) with the number of
observations m ≫ S. Then, the number of independent
reaction R is equal to the non-zero element of the singular
value decomposition (SVD) of DT and the number of
invariants is S − R with the basis of invariant space Q be
given by the last S −R left-singular vectors of DT .

Proof. Lemma 6 shows that the rank of D is R. The SVD
of DT will have R non-zero singular values and (S − R)
zero singular values (SV). Then,

SV D(DT ) = USVT = U1S1V
T
1 +U2S2V

T
2 (17)

where S =

[
S1 0
0 S2

]
is the S × S-diagonal singular value

matrix with the first R− non-zero SVs (corresponding to S1)
and (S−R) zero SVs (corresponding to S2), and U and V
are the orthogonal matrices of eigenvectors of matrices DTD
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and DDT , respectively. By examining the S, the number of
states and the invariants relationships can be established to be
R and (S−R), respectively. With D = XN, it can be shown
that Q can be computed from the D as QDT = QNTXT =
0. Then, using Eq. (17) and the orthogonal property of the
columns of U, we get

UT
2 D

T = UT
2 U1︸ ︷︷ ︸
0

S1V
T
1 +UT

2 U2︸ ︷︷ ︸
I

S2︸︷︷︸
0

VT
2 = 0. (18)

Finally, the columns of the matrix UT
2 provide a basis of

the invariant space and Q = UT
2 . ■

Therefore, the RV-form of the concentration matrix, D,
is used to find out the number of states and the relation-
ships between the concentration variables. Note that these
relationships are linear in nature. The main implication of
Theorem 7 is that only the identification of dynamical models
corresponding to R species is sufficient. The dynamical
models corresponding to the remaining (S −R) species can
be identified using the Q and the identified R models through
algebraic manipulations. The question of the selection of
the concentrations of R species for applying the SINDy-PI
algorithm can be addressed by examining the Q matrix as
given in the following corollary.

Corollary 8: Consider the identified invariant relationship
Qd = Q(c − c0) = 0 for CRN as in Eq. (9). Let d be
partitioned into independent variables di of dimension R
and dependent variables dd of dimension (S−R) following
Theorem 7, in which case the sub-matrices of Q correspond-
ing to di and dd are denoted by Qi ∈ R(S−R)×R and
Qd ∈ R(S−R)×(S−R), respectively. Then for any partition
of d variables satisfying rank (Qd) = S − R, the variables
di can be selected as the R species for applying the SINDy-
PI algorithm.

Proof. Note that Q satisfies the following relationship

Qd = 0⇔
[
Qd Qi

] [dd

di

]
= 0⇔ Qddd = −Qidi

Here, Qd has to be invertible to express the (S − R)
concentrations in terms of the R concentrations. Hence, any
partition of S variables that ensures rank (Qd) = S−R can
be used to obtain the dynamical models of S −R variables
from those of the R variables. In this case, dd = Pdi with
P = −Q−1

d Qi. ■

Corollary 8 allows us to use only the concentration data
of R species from S species for applying the SINDy-PI
to identify the CRN. This addresses an important question
on the data-driven identifiability of CRN based only on
measurement of a subset of species concentrations. Note that
several such sets of species can satisfy the rank condition.
Furthermore, it can be shown that the matrix P is a unique
matrix for a given partition.

2) Systematic Generation of Library Matrix: Corollary 8
demonstrates that once the R independent concentration
variables ci (or di) are determined, we can apply the SINDy-
PI approach using the time series of these ci concentration

variables to identify the dynamics of CRN. As presented
before in Section II, we first need to define a suitable library
matrix Φ(X, Ẋ) which must contain the candidate terms to
identify the model. The choice of the candidate terms is an
important step in applying the SINDy-PI approach. Here, a
priori knowledge regarding CRN can be used to select the
candidate terms.

As mentioned in Remark 3, the selection of library matrix
Φ(X, Ẋ) in CRN should be done carefully to avoid rank-
deficiency of Φ(X, Ẋ) due to inherent relationships or
dependencies between the variables. In Corollary 8, we have
established that R independent concentration variables ci
can be identified solely based on data. This implies that the
problem of rank deficiency due to the invariant relationships
will not arise when these R independent variables are used
to generate the library matrix Φ(X, Ẋ). Based on this ob-
servation, we have the following proposition that establishes
a systematic way to build a library matrix for the application
of SINDy-PI.

Proposition 9: For CRN as in (9), if the R concentration
variables are selected according to Corollary 8 then Φ(X, Ẋ)
is full column rank matrix.

Proof. Let us denote Ci = [cT1 , . . . , c
T
R]

T be the (m ×
R)−dimensional matrix with each column representing mea-
surements of one of the independent concentration variables.
The library matrix for the R independent concentration
variables ci can be written as: Φ(X, Ẋ) = Φ(Ci, Ċi).
Without loss of generality, a library matrix containing the
nonlinear functions in terms of ci and ċi variables can be
written as follows

Φ(Ci, Ċi) =
[
1m Ci (Ci ⊗Ci) (Ci ⊗2 Ci) . . .

. . . (Ci ⊗ Ċi) . . .
]
,

(19)
where a⊗b denotes all unique product combinations of the
components in the a and b, and a ⊗n b = a⊗a⊗ . . .⊗︸ ︷︷ ︸

n times

b.

Since rank (C)i = R, it is not possible to express any
column of Ci in terms of other columns of Ci. The same
conclusion goes for the other terms of Φ(Ci, Ċi). In this
case, if the number of time instances m is greater than the
size of library candidate terms, then Φ(Ci, Ċi) is of full
column rank. ■

As shown in the proof of Proposition 9, the library
matrix Φ(Ci, Ċi) can be chosen as in Eq. (19) which is
guaranteed to have full column rank. This property still holds
even when the library matrix has been pruned during the
recursive computation of SINDy algorithm. Accordingly, the
constrained optimization problem for CRN can be written as

min
Σ

1

2
∥Φ(Ci, Ċi)−Φ(Ci, Ċi)Σ∥2F + α∥Σ∥0

s.t. diag(Σ) = 0.
(20)

In contrast to the optimization problem in (6), the problem in
(20) uses only a subset of concentration data corresponding
to the R independent concentration variables. As before the
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STLS algorithm can be applied to solve the optimization
problem in (20), and several sparse model candidates (one
for each column σj of Σ) will be obtained and these models
can be discriminated to identify a suitable sparse model using
the model selection approach described in [17].

3) SINDy-CRN algorithm: The SINDy-CRN algorithm to
identify CRNs based on the previous sections’ findings is
presented in this section. The steps to identify CRN are
presented as follows.

• Input: C, Ċ, thresholding parameter in the STLS, ϵ,
library matrix Φ(C, Ċ)

• Output: Sparse Matrix Σ
• Step 1: Compute D = C− 1cT0 .
• Step 2: Apply SVD to DT ; [U, S,V] =SVD(DT ).
• Step 3: Examine the singular values (SVs) (diagonal of

S). Assign R= Number of non-zero SVs and S − R =
Number of zero SVs.

• Step 4: Obtain Q = UT
2 U2 : Left singular vectors

corresponding to the S −R zero SVs.
• Step 5: Choose a valid set of independent and de-

pendent concentration variables such that rank (Qd) =
S −R.

• Step 6: Determine the invariant relationships Q(c −
c0) = 0.

• Step 7: Choose the columns of C corresponding to the
independent concentration variables: Ci.

• Step 8: Generate a library matrix Φ(Ci, Ċi)
• Step 9: Apply Sequentially thresholded least-squares

(STLS) methods using Φ(Ci, Ċi) to identify sparse
matrix Σ.

The columns of the identified sparse matrix Σ will be
examined to discriminate different models and to obtain the
R differential equations for the R independent concentration
variables. Using Q, the (S − R) differential equations for
the dependent concentration variables can be identified from
the R differential equations.

IV. SIMULATION STUDIES

In this section, we evaluate the efficacy and validate the
proposed SINDy-CRN algorithm. The following CRN is
considered for the numerical simulation.

A+ 2B
r1−→ C

r2←→ D. (21)

The different matrices and vectors as in (9) are described by

c =
[
ca cb cc cd

]T
; N =

[
−1 −2 1 0
0 0 −1 1

]
;

r =

[
r1
r2

]
; r1 =

k1 ca cb
k2 + k3 ca cb

; r2 =
k4 cc

k5 + cc
− k6 cd

k7 + cd

θ = [k1, k2, k3, k4, k5, k6, k7]
T = [0.5, 3.5, 1.5, 2, 5, 1.5, 6]T ;

c0 = [1.5, 2.5, 0, 0]T

The data matrix of concentrations C =
[ca(t) cb(t) cc(t) cd(t)] is generated for the CRN (21)
which will be used to validate SINDy-CRN algorithm. The
SVD(DT ) leads to the following singular values: 20.77,
0.6, 0, 0. This shows that rank (D) = 2 and hence, the

S−R = 4−2 = 2 invariant relationships can be established.
The matrix Q corresponding to the last zero SVs is

Q = UT
2 =

[
0.1348 0.2697 0.6742 0.6742
0.8944 −0.4472 0 0

]
.

Using Step 6 in the SINDy-CRN algorithm, the two invariant
relationships can be obtained after the appropriate simplifi-
cation steps:

ca + 2cb + 5cc + 5cd = 6.5

2ca − cb = 0.5
(22)

The different partitions of the Q are examined and any
partition with rank (Qd) = S − R = 2 can be chosen.
The choice of Qd =

[
0.2697 0.6742
−0.4472 0

]
corresponding to the

variables cb and cc satisfies the condition, and hence, they
are selected as dependent variables, and the variables ca and
cd are taken as independent variables. The corresponding
time series data ca(t) and cd(t) will be used for identifying
two differential equations by constructing a library matrix
involving terms related to these independent variables.

To identify the dynamics of the independent variables,
we propose two libraries which are based on the reaction
(21) and the aforementioned invariant relationships (22). The
first proposed library can be obtained by looking at (21)
and (22). Using these relations, we construct two separate
libraries as follow. For the first reaction, the library contains
terms involving power of ca up to degree 3, and its time
derivative. For the second reaction depends, the library
contains the terms involving ca, cd, their powers are up to
degree 3, the mixed multiplication elements and their time
derivatives. Finally, the identification mechanism used in this
section is the sequentially thresholded least squares (STLS),
where a parameter λ can be tuned to force a parsimonious
identification of the system.

For a value of λ = 0.1 we obtained the following sparse
realizations for the dynamics of the independent variables:

ċa =
0.1721 · ca − 0.7188 · c2a + 0.2205 · c3a

1.51 + ca
,

ċd =
0.9299− 0.6217 · ca − 0.9959 · cd

1.51 + ca · cd
.

(23)

The dynamic equations of the dependent variables, cb and cc,
can be obtained by differentiating Eq. (22) and substituting
the dynamics of ca and cd identified in Eq. (23). Fig. 1
shows that the time evolution of the identified dynamics
using the SINDy-CRN is identical to the measured concen-
tration trajectories. However, one-to-one comparison with the
simulated rates may not be possible as the multiple models
can fit the concentration data.

V. CONCLUSIONS AND DISCUSSION

Identification of chemical reaction networks is an impor-
tant problem in the areas of systems biology, chemistry,
and chemical engineering. Developing efficient algorithms
to identify CRNs from data is a still challenging task,
particularly, large and complex CRNs. In this work, we
proposed a SINDy-CRN algorithm to identify CRNs from
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Fig. 1. Time evolution of the measured concentrations (ca cb, cc, cd)
compared to the time evolution of the identified dynamics (ĉa ĉb, ĉc, ĉd).

data by incorporating the properties of CRNs in the sparse
identification of nonlinear dynamics (SINDy). First, we
demonstrated using a simple example that the SINDy family
of algorithms cannot be applied to data from CRNs in a
straightforward manner owing to the properties of CRNs.
Based on the analysis of CRNs, we demonstrated that CRNs
can be modeled using a less number of state variables
(minimal number of measurements) than the number of
measured variables. We proposed an approach to identify the
invariant relationships between state variables from the data.
It is shown that the invariant relationship can be used to select
appropriate concentration time-series data corresponding to
the minimal number of state variables. Furthermore, the
invariant relationships also help in constructing a library
matrix involving candidate nonlinear functions. The SINDy-
CRN algorithm was proposed by incorporating the findings
of our analysis of CRN. The SINDy-CRN algorithm has
finally been illustrated via a numerical example involving
two enzymatic reactions.

Several open questions have to be addressed in the future
for broad applications of the SINDy-CRN algorithm in the
practice. This work assumes that the time-series data are
noise-free and have the information content for identifying
the underlying model. In the future, it is proposed to extend
the SINDy-CRN to handle noisy data. In contrast to the
SINDy algorithm, the SINDy-CRN uses only a subset of
independent concentration time series for generating a library
of candidate nonlinear functions. Hence, the resulting identi-
fied models of a CRN are functions of only the independent
concentration variables. Finding physically (or biological)
interpretable reaction kinetics from the identified models will
be investigated in the future. The extension to the known
reaction stoichiometric matrix will also be studied.
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