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Abstract— In this article, we study the optimal design of High
Occupancy Toll (HOT) lanes. In our setup, the traffic authority
determines the road capacity allocation between HOT lanes and
ordinary lanes, as well as the toll price charged for travelers
who use the HOT lanes but do not meet the high-occupancy
eligibility criteria. We build a game-theoretic model to analyze
the decisions made by travelers with heterogeneous values of
time and carpool disutilities, who choose between paying or
forming carpools to take the HOT lanes, or taking the ordinary
lanes. Travelers’ payoffs depend on the congestion cost of the
lane that they take, the payment and the carpool disutilities. We
provide a complete characterization of travelers’ equilibrium
strategies and resulting travel times for any capacity allocation
and toll price. We also calibrate our model on the California
Interstate highway 880 and compute the optimal capacity
allocation and toll design.

I. INTRODUCTION
High Occupancy Toll (HOT) lanes are traffic lanes or

roadways that are open to vehicles satisfying a minimum
occupancy requirement, but also offer access to other ve-
hicles with a toll price. In practice, HOT lanes have been
implemented on several interstate highways in California,
Texas, and Washington states. With the proper design of lane
capacity and toll price, HOT lanes can effectively mitigate
traffic congestion through incentivizing carpooling and tran-
sit use, while also generate revenue to support transportation
infrastructure through toll collection.

The goal of our work is to study the optimal design of
HOT lane systems and its impact on traffic congestion. In
our model, a traffic authority designs the HOT lane systems
by choosing the road capacity of HOT lanes, and the toll
price. Given the design of HOT, we develop a game-theoretic
model to analyze the strategic decisions made by travelers
who have the action set of paying or carpooling to use the
HOT lane, or using the ordinary lane. Travelers are modeled
as a population of nonatomic players with a continuous
distribution of value of time and carpool disutility. Both the
HOT lanes and the ordinary lanes are congestible in that the
travel time of each lane increases with the aggregate flow
induced by travelers’ decisions. The outcomes of the system
in terms of average travel time cost and toll collection are
jointly determined by travelers’ equilibrium strategies and
the design by the traffic authority .

We provide a complete characterization of Wardrop equi-
librium in this game. In particular, we identify two qualita-
tively distinct equilibrium regimes that depend on the traffic
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authority’s design of lane capacity and toll price. In the first
equilibrium regime, all travelers who take the HOT lane
form carpools and no one pays the toll due to the relatively
high toll price. In the second equilibrium regime, a fraction
of travelers with high carpool disutilities and high value of
times make toll payment to take the HOT lanes, while the
rest either form carpools or take the ordinary lanes. In both
regimes, travelers are split between taking the HOT lanes
and the ordinary lanes.

The equilibrium characterization provides the system de-
signer with insights on how the equilibrium flows and travel
time costs of both the HOT lanes and the ordinary lanes
depend on the system parameters that include travel time cost
functions, capacity allocation and toll price. Moreover, we
present comparative static analysis on how the equilibrium
flow and costs change with the fraction of capacity that is
allocated to the HOT lanes.

We calibrate our model using the data collected from
the express lanes of the California Interstate highway 880.
We compute the equilibrium strategy profile for a set of
discretized design parameters of capacity allocation and toll
price. We also compute the Pareto front of the design of HOT
lanes, which demonstrates the system authority’s tradeoff
between minimizing road congestion and maximizing the
total toll revenue.

Related Literature. Our model and analysis build on the
rich literature of congestion games that includes the equilib-
rium analysis of routing strategies made by atomic agents [1],
[2] and nonatomic agents [3] in networks, and the analysis on
the price of anarchy [4], [5], [6]. Most of the classical results
in congestion games have focused on the settings where all
agents have homogeneous preferences. The papers [7], [8]
extended these results to study the equilibrium existence and
efficiency with player-specific costs.

Previous literature has studied the problem of optimal
design of tolling mechanism that minimizes the total travel
time cost of nonatomic agents who have homogeneous
preferences in both static and dynamic settings [9], [10],
[11], [12]. The papers [13], [14] have extended the optimal
toll design to incorporates travelers’ heterogeneous value of
time. Moreover, the papers [15], [16] have studied tolling
and resulting equilibrium costs when tolls on edges are set
by strategic operations whose goal is to maximize the toll
revenue.

Our paper extends the literature of routing games and
toll design to incorporate carpooling and travelers with both
heterogeneous value of times and heterogeneous carpool
disutilities. Moreover, our work also contributes to the pre-
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vious studies on the design of HOT lanes that incorporates
travelers’ choice mode [17], and heterogeneous carpool
disutilities [18]. However, the models and analysis of these
works do not incorporate both the congestion effect, and the
strategic behavior of traveler with heterogeneous value of
time and carpool disutilities.

II. MODEL

Consider a model of a single, multi-lane highway segment
consisting of ordinary and high occupancy toll lanes. An
ordinary lane is toll-free and open to all vehicles. A high oc-
cupancy toll lane is accessible without a payment for vehicles
that meet a pre-specified minimum occupancy requirement,
denoted as A ≥ 2, but also allow for other vehicles to use
with a toll payment. A transportation authority determines
the toll price τ > 0, the minimum occupancy requirement
A, and the fraction of road capacity ρ ∈ [0, 1] that is allocated
to the HOT lanes. The remaining (1−ρ)-fraction of the total
capacity is allocated to the ordinary lanes.

We model the set of travelers as a population of non-
atomic agents with total demand of D > 0. Agents have
heterogeneous value of time, denoted as β, and carpool
disutility, denoted as γ, which is a fixed cost incurred when
taking carpool trips. We assume that agents’ preference
parameters (β, γ) are uniformly distributed over the set
P := [0, β]× [0, γ] where β, γ are finite and non-negative
numbers that represent the maximum value of time and the
maximum carpool disutility, respectively.

The action set of each agent includes:
- Rtoll: Use the HOT lane and pay the toll.
- Rpool: Use the HOT lane in a carpool of size A.
- Ro: Use the ordinary lane.
Each agent chooses an action in the set {Rtoll, Rpool, Ro}

based on their preference parameters. Therefore, a strategy
profile of this game is a mapping s : P → {Rtoll, Rpool, Ro}.
Given s, the induced outcome of the game can be represented
as a vector (σtoll, σpool, σo), where σtoll (resp. σpool, σo) is
the fraction of the population that plays Rtoll (resp. Rpool,
Ro). Here, σ must satisfy σtoll, σpool, σo ∈ [0, 1] and σtoll+
σpool + σo = 1. Given σ = (σtoll, σpool, σo), we can write
the aggregate flow of vehicles that take the ordinary lane,
denoted as xo, and the HOT lane, denoted as xh, as follows:

xo = σoD, xh =
(
σtoll +

σpool

A

)
D.

Given the capacity allocation ρ and the aggregate flow x =
(xo, xh), the latency function of the HOT lanes is Ch(xh; ρ),
and the latency function of the ordinary lanes is Co(xo; 1−
ρ), respectively. We make the following assumptions on the
latency functions:
(A1) The latency function Co(xo; 1 − ρ) (resp. Ch(xh; ρ))

is increasing in xo (resp. xh), and decreasing (resp.
increasing) in ρ.

(A2) Co(0, 1− ρ) = Ch(0, ρ) for any ρ ∈ [0, 1].

Assumption (A1) shows that the latency of each lane
increases in the aggregate flow on that lane, and decreases

in the lane capacity. Assumption (A2) shows that both lanes
have identical free-flow travel time, which is defined as the
value of the latency function with zero flow.

Given any σ, we denote the cost of an agent with
preference parameters (β, γ) for playing action Ri ∈
{Rtoll, Rpool, Ro} as cβγ (Ri;σ). Then,

cβγ (Rtoll;σ) = β · Ch

((
σtoll +

σpool

A

)
D; ρ

)
+ τ,

cβγ (Rpool;σ) = β · Ch

((
σtoll +

σpool

A

)
D; ρ

)
+ γ,

cβγ (Ro;σ) = β · Co(σoD; 1− ρ).

Definition 1: A strategy profile s∗ : P →
{Rtoll, Rpool, Ro} is a Wardrop equilibrium if

s∗(β, γ) = Ri ⇒ cβγ (Ri;σ
∗) = argmin

j∈{toll,pool,o}
cβγ (Rj ;σ

∗),

where
Dσ∗

i =

∫∫
{(β,γ):s∗(β,γ)=Ri}

1

β̄γ̄
dβdγ. (1)

III. EQUILIBRIUM CHARACTERIZATION

In this section, we characterize the Wardrop equilibrium
of the game. For ease of exposition, for any σ, we define

Cδ(σ; ρ) := Co(σoD; 1− ρ)− Ch((σtoll +
σpool

A
)D; ρ),

abbreviated as Cδ when σ is clear from the context. This is
the difference between the latency of the original lane, and
the latency of the HOT lane given σ.

In the next lemma, we characterize agents’ best response
strategies.

Lemma 1: For a given σ, define Λi(σ) ⊆ P to be the
subset of agents whose best response to σ is Ri, for i ∈
{toll, pool, o}. Then,

Λtoll(σ) = {(β, γ) : βCδ(σ; ρ) ≥ τ, γ ≥ τ}
Λpool(σ) = {(β, γ) : βCδ(σ; ρ) ≥ γ, γ ≤ τ}

Λo(σ) = {(β, γ) : βCδ(σ; ρ) ≤ min{τ, γ}}

Fig. 1: Characterization of best response strategies

Figure 1 illustrates Λtoll(σ),Λpool(σ),Λo(σ) for an out-
come σ. An agent j ∈ Λi(σ) if and only if its type (β, γ) lies
in region Λi in Figure 1. Notice that, if an agent’s value for
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time and carpool disutility are both relatively high, the agent
prefers the HOT lane over the ordinary lane (due to their high
value for time) and prefers paying a toll τ to carpooling (due
to their high carpool disutility) – so their best response is to
play Rtoll. Similarly, if an agent’s value for time is high
but carpool disutility is at most τ , their best response is to
carpool to take the HOT lane (i.e. play Rpool). If an agent’s
value of time is relatively low, they do not have incentive
to pay τ to use the HOT lane; if their carpool disutility is
low, they choose Rpool, otherwise, their choose to take the
ordinary lane (i.e. play Ro). Finally, since agents’ preference
parameters are uniformly distributed, σ∗

toll, σ
∗
pool, and σ∗

o are
equal to the size of Λtoll,Λpool, and Λo, respectively.

Due to assumptions (A1) and (A2) on the latency functions
Co and Ch, both lanes are used in equilibrium, and some (if
not all) HOT-users carpool.

Lemma 2: σ∗
pool > 0, σ∗

o > 0.

Proof: We show that a strategy profile where all
travelers exclusively use a single lane is not an equilibrium.
If all flow is routed exclusively on the ordinary lane, agents
with low carpool disutility (e.g. γ = 0) will have the
incentive to deviate to the HOT lane, as (A1) and (A2) imply
that the latter has strictly smaller latency (as βCo(1; 1−ρ) >
βCo(0; 1− ρ) = βCh(0; ρ)). The case when traffic is routed
exclusively on the HOT lane is symmetric; any agent has an
incentive to deviate as the ordinary lane has strictly smaller
latency (βCh(1; ρ)+γ > Ch(0; ρ) = βCo(0; 1−ρ)). Hence,
an equilibrium necessarily routes flow on both lanes, i.e.,
σ∗
o > 0 and σ∗

toll + σ∗
pool > 0.

It remains to show that σ∗
pool > 0. Suppose, to arrive at

a contradiction, that σ∗
pool = 0. For any agent with carpool

disutility less than τ , Rtoll is strictly dominated by Rpool,
and thus every such agent must play Ro. But for Ro to be
a best response, βC0(σ

∗
o ; 1 − ρ) ≤ βCh(σ

∗
toll; ρ) + γ for

all γ ∈ (0, τ). Consequently, there must exist some γ† such
that for all β ∈ [0, β̄], βC0(σ

∗
o ; 1 − ρ) < βCh(σ

∗
toll; ρ) +

γ† ≤ βCh(σ
∗
toll; ρ) + τ ; that is, any agent playing Rtoll has

incentive to deviate to Ro. Hence, σ∗
toll = 0. This contradicts

the above assertion that σ∗
toll + σ∗

pool > 0.

Lemma 2 ensures that in equilibrium both lanes are used,
and either (A) all HOT-users meet the minimum occupancy
requirement, or (B) some (but not all) users of the HOT-lane
pay the toll τ . This suggests the following two qualitatively
distinct equilibrium regimes.

1) Regime A: The toll price τ is relatively high. All agents
who take HOT lane carpool.{
(ρ, τ) : τ > min

{
γ, βCδ

(
0,

τ

2γ̄
, 1− τ

2γ̄
, ρ

)}}
.

2) Regime B: The toll price τ is relatively low. Some
agents pay τ to use the HOT lane.{
(ρ, τ) : τ < min

{
γ, βCδ

(
0,

τ

2γ̄
, 1− τ

2γ̄
, ρ

)}}
.

Theorem 1: The Wardrop equilibrium is unique in each
regime and can be written as follows:

Regime A: σ∗
toll = 0.

1) If γ > βCδ(0,
τ
2γ , 1−

τ
2γ ; ρ), then σ∗

pool is solved by

1

2

β

γ
Cδ(0, σ

∗
pool, 1− σ∗

pool; ρ) = σ∗
pool, (2)

and σ∗
o = 1− σ∗

pool.
2) If γ < βCδ(0,

τ
2γ , 1−

τ
2γ ; ρ), then σ∗

o is solved by

1

2

γ

β

1

Cδ(0, 1− σ∗
o , σ

∗
o ; ρ)

= σ∗
o , (3)

and σ∗
pool = 1− σ∗

o .
Regime B: σ∗

toll is solved by1− τ

βCδ

(
σ∗
toll, σ

∗
pool, σ

∗
o ; ρ

)
 · (γ − τ

γ
) = σ∗

toll, (4)

and

σ∗
pool =

τ

2
(

1

γ − τ
σ∗
toll +

1

γ
), σ∗

o = 1− (σ∗
toll + σ∗

pool).

(a) τ > βCδ

(
0, τ

2γ̄
, 1− τ

2γ̄
, ρ

)
(b) τ > γ

Fig. 2: Equilibrium outcome in regime A

In regime A, there are no single-occupancy vehicles on
the HOT lane, that is, all agents choose Rpool or Ro. In this
regime, either β is small enough such that for any agent the
cost of carpooling is smaller than the cost of paying the HOT
price (case A1 as in Figure 2a), or γ is small enough such
that for any agent the cost of the ordinary lane is smaller
than the cost of paying the HOT price (case A2 as in Figure
2b).

In case A1, σ∗
pool is solved by(2) since σ∗

pool must equal
to fraction of the size of the shaded triangle in Figure 2a
that represents the set of agents who choose carpool over
the entire set, which is represented by the dotted rectangle.
The remaining agents choose the ordinary lane. Similarly, in
case A2, σ∗

o is solved by (3) since σ∗
o must equal to fraction

of the size of the shaded triangle in Figure 2b that represents
the set of agents who choose ordinary over the entire dotted
rectangle. The remaining agents choose to take carpool.

In Regime B, all three actions are chosen by players.
As illustrated in Figure 3, the entire set (dotted red region)
overlaps with all three best response regions. Equation (4)
represents that the ratio between the size of the shaded
rectangular area and the entire set is the fraction of agents
who pay tolls to take the HOT lanes, i.e. the value of σtoll.
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Fig. 3: Equilibrium outcome in regime B

The shaded square has base β − τ/Cδ (σ
∗; ρ) and height

γ − τ .
Next, we analyze how the Wardrop equilibrium and the

size of each regime change with the fraction of capacities
allocated to the HOT lane ρ.

Theorem 2: Consider a Wardrop equilibrium with design
parameters (ρ, τ). Let (σ∗

toll, σ
∗
pool, σ

∗
o) be the corresponding

demands for each strategy at equilibrium. For any fix τ , as
we increase ρ,

1) The difference in latency between the ordinary lane
and the HOT lane Cδ(σ

∗, ρ) increases.
2) The size of regime A is non-increasing and the size of

regime B is non-decreasing.
3) σ∗

toll is non-decreasing, σ∗
pool is decreasing, and σ∗

o is
increasing.

Theorem 2 is intuitive – as we increase the capacity of HOT
lane, more people are incentivized to use the HOT lane, and
fewer are incentivized to use the original lane. As a result, the
difference between the latencies of the two lanes decrease.

IV. OPTIMAL DESIGN OF HOT ON CALIFORNIA I-880

We calibrate our equilibrium analysis using the data col-
lected from the Northbound of Interstate 880 Highway (I-
880) (Fig. 4) between Dixon Landing Road and Lewelling
Blvd. A fraction of the segment has minimum occupancy
requirement of 2 and the remaining segment has minimum
occupancy requirement of 3. In this case study, we take
A = 2.5.

We adopt the Bureau of Public Roads (BPR) function to
characterize the average travel cost per driver (free flow travel
time plus congestion time) [19]. Given the HOV capacity ρ
and an outcome σ = (σtoll, σpool, σo), the latency function
is given by the BPR function as follows:

Co(σo, ρ) = Tf ·

[
1 +

(
a · D · σo

V · (1− ρ)

)b
]

Ch(σtoll, σpool, ρ) = Tf ·

[
1 +

(
a · D · (σtoll + σpool/A)

V · ρ

)b
]

where a and b are the BPR coefficients, Tf is the free flow
travel time, and V is the capacity. We set a = 0.15 and b =
4.0 following [20], [21]. From the traffic flow data collected

by the California Department of Transportation 1, the avergae
traffic demand is D = 115 vehicles per minute. Since the
highway segment has four lanes, we estimate the capacity
as V = 140 vehicles per minute following [19]. We use
Google Maps to estimate the free-flow travel time as Tf = 22
minutes.

We set the maximum carpool disutility as γ = $8. This is
estimated by taking the difference between the average trip
price of Uber with single customer and the average price of
a carpool trip. We estimate the maximum value of time as
β = $1.5/min following the analysis of income-based Bay
area value of time calibration in [22].

Fig. 4: Interstate 880 (I-880) Highway (Encircled in Red)

We measure the total congestion by the average travel time
of all travelers:

T (τ, ρ) := (σtoll+σpool)·Ch(σtoll, σpool, ρ)+σo ·Co(σo, ρ).

Additionally, we can compute the total toll revenue as

R(τ, ρ) := D · σtoll · τ.

We discretize the feasible region of toll price τ and the
capacity fraction ρ. In particular, we choose the set ρ ∈
{ 1
4 ,

2
4 ,

3
4} since the highway has four lanes. Additionally,

we set the toll price within the range of 0.5 and 10 dollars
discretized by $0.5.

For each pair of (τ, ρ), we compute the equilibrium
strategies, the average driving time T (τ, ρ) and the total toll
revenue R(τ, ρ). In Figure 5, we plot the Pareto front of the
tuple of (T,R) (marked as the black dashed line), which
demonstrates the tradeoff between congestion minimization
and toll revenue faced by the authority. Additionally, we
plot the Pareto front of (T,R) for each feasible capacity
allocation ρ. We can see that as we increase the number of
HOV lanes, we effectively increase the toll revenue with cost
of increasing the average travel time of all drivers.

V. CONCLUDING REMARKS

In this article, we examine a game-theoretic model that
analyzes the lane choice oftravelers with heterogeneous

1https://pems.dot.ca.gov/
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Fig. 5: Pareto Front of T (τ, ρ) and R(τ, ρ).

values of time and carpool disutilites on highways equipped
with HOT lanes. We characterize the equilibrium strategies,
and identify two qualitatively distinct equilibrium regimes
that depends on the HOT lane capacity and toll price. We
calibrate our model using the data of California Interstate
highway 880 and determined the optimal capacity allocation
and toll design. As a future direction of research, we will
extend our analysis to non-uniform distribution of preference
parameters, and to incorporate traffic flows with multiple
origins and destinations.
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