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Abstract— Multi-agent formations have many practical ap-
plications. Measurement noises are inevitable in multi-agent
formations, in which, however, the existing results mainly focus
on special types of noises, and the analytical discussion on
the effect of general noises is challenging and remains open.
This motivates us to study the effect of stochastic measurement
noises on displacement-based multi-agent formations, which
are described by a general form of stochastic processes with
finite second-order moments. First, for the case of unbiased
measurement noises, a sufficient and necessary condition is
derived for the existence of solutions in the stochastic dynamics
of multi-agent formations. Then, several statistical features and
convergence of formation errors are analyzed. In particular,
for the case of unbiased measurement noises described by
zero-mean wide-sense stationary processes, an upper bound on
the mean square convergence of formation errors is obtained.
Finally, we demonstrate the effectiveness of our theoretical
results through a simulation example.

I. INTRODUCTION

Recently, formation control has been extensively studied
in the research community of multi-agent systems (MASs)
due to its wide applications [1]. The goal of formation
control is to coordinate the movement of multiple agents,
such as robots and drones [2], to achieve a desired rela-
tive spatial configuration or prescribed geometric shape for
agents’ positions [3]. Various strategies have been proposed
to solve the formation control problem, such as leader-
follower approach [4], virtual structure approach [5], and
behavior-based approach [6], in which as one of behavior-
based control approaches, consensus-based displacement for-
mation control has been widely studied due to its high
flexibility and robustness [7]. In addition, several types of
constraints have been utilized to describe the geometric shape
of multi-agent formations, including displacement constraints
[8], distance constraints [9], bearing constraints [10] and
angle constraints [11], [12]. It is noteworthy that a desired
formation described by displacement constraints can not only
ensure fixed orientation and scale of the formation, but
also easily guarantee global convergence of the formation.
Therefore, due to the above two aspects, it is valuable to
further investigate the formation control problem by using
the displacement-based approach.
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For the existing works on formation control, most of them
consider that the system states or measurements are deter-
ministic signals [9], [12], [13]. However, in engineering prac-
tices, stochastic noises are inevitable which can be caused
by a variety of factors, such as environmental disturbances,
electrical noises, and mechanical vibration [14]. It is worth
noting that the existence of even unbiased stochastic noises
can make a stable deterministic system become unstable, see
the examples in [15, Chapters 11.1 and 11.2]. Therefore,
it is also important to investigate the effect of system or
measurement noises on multi-agent formations. The work
[16] studies the displacement-based multi-agent formation
control problem, in which each agent’s dynamics are con-
sidered as a stochastic differential equation. This study
employs Wiener processes (normally distributed processes)
as stochastic noises in the agents’ dynamics, where these
noises are not strictly differentiable in the mathematical sense
[17]. Distributed formation control of discrete-time MASs
with measurement noises is investigated in [18], in which
each agent can measure inter-agent relative distances subject
to zero-mean measurement noises with fixed variances. By
using an adaptive estimator-based formation control law, the
mean square formation errors have an upper bound in [18],
in which other statistical properties of the formation errors,
such as autocorrelations and autocovariances of formation
errors, are not discussed. In addition, for the consensus
problem of continuous-time MASs, consensus conditions
under the existence of measurement noises are derived in
[19]. It is worth mentioning that the results presented in
[19] assume that the measurement noises in the inter-agent
displacements are independent Gaussian white noises. In
practice, the measurement noises may not be described by
one special type of stochastic noises, but a more general form
whose probability distribution is time-varying. In such case,
due to the time-varying property of the noises’ distribution,
it is challenging to directly derive the relevant statistical
properties and convergence of the formations, which has
not been adequately investigated in the existing literature.
Thus, the displacement-based formation control problem in
the presence of general stochastic noises is worthy of further
investigation.

Motivated by the aforementioned discussions, this paper
aims to investigate multi-agent formation control problem
utilizing inter-agent displacement measurements that are
subjected to stochastic noises represented by a general form
of stochastic processes with finite second-order moments.
Specifically, we consider a class of noises, namely un-
biased (zero-mean) noises. To achieve the desired multi-
agent formation, the consensus-based strategy is employed
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to design a distributed control law by using inter-agent
displacement measurements. The main contributions of this
paper are summarized as two aspects. Firstly, a sufficient
and necessary condition is derived for the existence of a
non-trivial solution in the stochastic dynamics of multi-agent
formations with unbiased measurement noises, in which the
stochastic noises are described by zero-mean stochastic pro-
cesses with finite second-order moments. Secondly, the sta-
tistical features including the mean values, autocorrelations
and autocovariances of the formation errors are derived, and
the convergence of the formation errors is further analyzed.

The rest of this paper are organized as follows. Section II
introduces some basic mathematical knowledge and problem
formulation. Section III discusses the case of displacement-
based formation control in the presence of unbiased measure-
ment noises. A numerical simulation is provided in Section
IV.

II. PRELIMINARIES

Notations: Let E {·} denote the mathematical expectation
of a stochastic vector or matrix. Let In be the identity matrix
with dimension n, and 0m×n denote the zero matrix of m
rows and n columns. Denote 1n = [1, ..., 1]⊤ ∈ Rn and
0n = [0, ..., 0]⊤ ∈ Rn. Let sup {·} denote the supremum of
the set. Let ∥·∥ represent the Euclidean norm and T denote
time domain described by {t : 0 ≤ t <∞}, respectively. Let
⊗ denote the Kronecker product. For two symmetric matrices
X and Y , X ⪯ Y (resp. X ≺ Y ) represents Y − X is a
positive semidefinite (resp. positive definite) matrix.

A. Graph theory

Consider a multi-agent system consisting of N agents,
which are labeled from 1 to N . An undirected graph G =
(V, E) is used to describe the measurement topology among
the agents, where V = {1, 2, ..., N} is the vertex set with
agent i represented by vertex i, and E ⊆ V × V is the
edge set with the displacement measurement between i and j
represented by (i, j). Denote |E| as the number of edges in G.
Let Ni = {j ∈ V : (i, j) ∈ E , i ̸= j} represent the neighbor

set of agent i. The adjacency matrix A = [aij ] ∈ RN×N of
G is defined as aij = 1 if (j, i) ⊆ E , and aij = 0, otherwise.
The indegree matrix of G is defined as D = [dij ] ∈ RN×N ,
where dii =

∑
j∈Ni

aij and dij = 0 for i ̸= j. The Laplacian
matrix of G is defined as L ≜ D−A. The incidence matrix
H = [hij ] ∈ RN×|E| is related the vertices to the edges,
where the entries with arbitrary edge orientations is given
by hij = 1 if the j-th edge sinks at vertex i, hij = −1 if
the j-th edge leaves vertex i, and hij = 0, otherwise. In this
paper, we consider the measurement graph as an undirected
graph G, in which one has L = HH⊤ [20].

Lemma 1 ( [20]): A connected and undirected graph G
satisfies the following two properties

1) The matrix L = HH⊤ is positive semidefinite with a
single zero eigenvalue.

2) The matrix H⊤H is positive definite if the graph G
has no cycles.

B. Stochastic processes

Definition 1 ( [21]): Consider a stochastic process
{ν(t) ∈ R, t ∈ [a, b], 0 ≤ a < b <∞} which satisfies
E
{
ν2(t)

}
< ∞, and a deterministic function h(z, t) ∈ R,

where z ∈ R is a parameter. The stochastic process is said
to be integrable in mean square sense (m.s. integrable) if
the following equation holds

lim
max∆ti→0

E


∣∣∣∣∣ψ(z)−

n∑
i=1

h(z, t∗i )ν(t
∗
i )∆ti

∣∣∣∣∣
2
 = 0, (1)

where ∆ti = ti+1 − ti for t∗i ∈ [ti, ti+1],
{ti ∈ [a, b] : a ≤ ti ≤ ti+1 ≤ b, 1 ≤ i ≤ n} and ψ(z) is a
function of z. In addition, we denote the stochastic integral
as ψ(z) =

∫ b

a
h(z, τ)ν(τ)dτ .

Definition 2 ( [21]): A stochastic process
{ν(t) ∈ R, t ∈ [a, b], 0 ≤ a < b <∞} is called wide-
sense stationary(W.S.S), if its mean E {ν(t)} is constant,
and its autocorrelation E {ν(t1)ν(t2)} only depends on
∆t = t2 − t1, where t1, t2 ∈ [a, b].

Lemma 2: [21, Theorem 9A-3] The stochastic process
{ν(t) ∈ R, t ∈ [a, b], 0 ≤ a < b <∞} is m.s. integrable, if
and only if ∫ b

a

∫ b

a

E {ν(t1)ν(t2)}dt1dt2 <∞. (2)

C. Problem formulation

For an N -agent formation, we consider that its measure-
ment graph G is connected and undirected without cycles.
The agents’ dynamics are described by a single integrator
model

ṗi(t) = ui(t), i = 1, ..., N (3)

where pi(t) ∈ R2 is the position of agent i in a 2-D plane,
and ui(t) ∈ R2 is the control input of agent i.

Assume that agent i can only measure inter-agent displace-
ments subject to measurement noises, i.e.,

yji(t) ≜ pji(t) + ξji(t), (4)

where yji(t) ∈ R2 is the measured displacement of agent
j with respect to (w.r.t.) agent i, pji(t) = pi(t) − pj(t)
denotes the real displacement of agent j w.r.t. agent i, and
ξji(t) = [ξxji(t), ξ

y
ji(t)]

⊤ ∈ R2 is the measurement noise
associated with the edge (j, i). In this paper, we consider that
the measurement noises in x and y directions are mutually
independent, and the second-order moments of ξxji(t) and
ξyji(t) exist for any (j, i) ∈ E and t ∈ T, i.e., E

{
(ξxji(t))

2
}
<

∞ and E
{
(ξyji(t))

2
}
<∞.

According to the displacement-based formation control
algorithm [22, Eq. (4.23)], the displacement-based formation
controller under the measured noisy displacements (4) can
be described as

ui(t) = −α
∑
j∈Ni

(yji(t)− δji), (5)

where α ∈ R+ is a control gain, and δji ∈ R2 is the desired
constant displacement of agent i w.r.t. agent j. Based on
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[23, Theorem 3], if the undirected graph G is connected,
there exists δi ∈ R2 and δj ∈ R2 such that δji = δi − δj
for all (i, j) ∈ E . Define the formation error of agent i as
p̃i(t) ≜ pi(t)− δi. Then the formation errors’ dynamics can
be written as

˙̃pi(t) = α
∑
j∈Ni

(p̃j(t)− p̃i(t) + ξji(t)). (6)

The aim of this paper is to investigate how the multi-
agent formation governed by (6) evolves under two types
of stochastic measurement noises, namely unbiased noise
with E {ξji(t)} = 02 for any t ∈ T and biased noise with
E {ξji(t1)} ̸= 02, ∃t1 ∈ T. We will discuss these two cases
respectively in the following two sections. Particularly, the
statistical features and convergence of the formation errors
will be our interests.

III. FORMATION CONTROL WITH UNBIASED
MEASUREMENT NOISES

First, we denote edge (i, j) ∈ E as the k-th edge in the
measurement graph G, where k = 1, 2, ..., |E|. Then, the
displacement measurement yk(t) can be rewritten as

yk(t) = pk(t) + ξk(t), k = 1, 2, ..., |E| . (7)

The statistical features of ξk(t) are selected as

µξk(t) ≜ E {ξk(t)} , t ∈ T
Rξk(t1, t2) ≜ E

{
ξk(t1)ξ

⊤
k (t2)

}
, t1, t2 ∈ T

Qξk(t1, t2) ≜ E
{
(ξk(t1)− µξk(t1)) (ξk(t2)− µξk(t2))

⊤
}
,

(8)

where µξk(t) ∈ R2 is the mean value of ξk(t), and
Rξk(t1, t2) ∈ R2×2 and Qξk(t1, t2) ∈ R2×2 are the autocor-
relation and autocovariance matrices of ξk(t) between time
instants t1 and t2, respectively.

A. Statistical properties of formation error dynamics (6)

We consider that the measurement noise ξk(t) satisfies the
following assumption.

Assumption 1: For any k = 1, 2, ..., |E|, each element
of the measurement noise {ξk(t), t ∈ T} with finite second-
order moment satisfies the following conditions

1) µξk(t) ≡ 02, ∀t ∈ T,
2) Rξk(t1, t2) ̸= 02×2, ∃t1, t2 ∈ T.
3) E

{
ξm(t)ξ⊤n (t)

}
≡ 02×2, m ̸= n, m,n =

1, 2, ..., |E|.
Since ξxk (t) and ξyk(t) are independent, we have

Rξk(t1, t2) =

[
Rx

ξk
(t1, t2) 0

0 Ry
ξk
(t1, t2)

]
, and Qξk(t1, t2) =[

Qx
ξk
(t1, t2) 0

0 Qy
ξk
(t1, t2)

]
. When t = t1 = t2, Qx

ξk
(t, t) and

Qy
ξk
(t, t) are variances of the measurement noises in x and y

directions, respectively. In addition, if µξk(t) ≡ 02, we have

Qξk(t1, t2) = Rξk(t1, t2). (9)

Remark 1: It is worth mentioning that Assumption 1 is
more general than those assumptions in most existing works

where the stochastic noises are independent or uncorrelated
between two time instants, such as Gaussian white noises.
□

Define p̃(t) ≜ [p̃1(t)
⊤, ..., p̃N (t)⊤]⊤, ξ(t) ≜

[ξ1(t)
⊤, ..., ξ|E|(t)

⊤]⊤, L ≜ L ⊗ I2, and H ≜ H ⊗ I2. We
can obtain the overall formation error dynamics

˙̃p = −αLp̃(t)− αHξ(t). (10)

According to Assumption 1, the measurement noise ξ(t)
satisfies the following statistical properties

µξ(t) ≜ E {ξ(t)} = 02|E|,

Rξ(t1, t2) ≜ E
{
ξ(t1)ξ

⊤(t2)
}

=

Rξ1(t1, t2) · · · 0
...

. . .
...

0 · · · Rξ|E|(t1, t2)

 . (11)

Now we present the following conclusion.
Lemma 3: Consider that the multi-agent system (3) is

controlled by (5), Assumption 1 holds, and the graph G is
connected and undirected. The overall formation error dy-
namics (10) exists a non-trivial solution in mean square sense
if and only if all the 2-by-2 block diagonal submatrices of
the matrix lim

t→∞

∫ t

0

∫ t

0
e−αL(t−s)HRξ(s, l)H⊤e−αL(t−l)dsdl

exist, in which each block submatrix belongs to R2×2.
Moreover, if there is a solution, then this non-trivial solution
can be written as

p̃(t) = e−αLtp̃(0)− α

∫ t

0

e−αL(t−τ)Hξ(τ)dτ. (12)

Proof: Note that if ξ(t) is a deterministic signal, it is
straightforward that the solution of (10) can be written as
(12). However, this is not the case for the stochastic process
{ξ(t), t ∈ T}. To ensure the existence of solutions in mean
square sense for (10), it must hold that the stochastic integral∫ t

0
e−αL(t−τ)Hξ(τ)dτ exists in mean square sense on T, i.e.,

the stochastic function e−αL(t−τ)Hξ(τ) is m.s. integrable on
T.

For simplicity, we define

Φ(t, τ) ≜ e−αL(t−τ)H,

η(t) ≜
∫ t

0

Φ(t, τ)ξ(τ)dτ.
(13)

Then the stochastic integral η(t) can be further derived as

η(t) =

∫ t

0

Φ11(t, τ) · · · Φ1|E|(t, τ)
...

. . .
...

ΦN1(t, τ) · · · ΦN |E|(t, τ)


 ξ1(τ)...
ξ|E|(τ)

dτ

=



∫ t

0

(
|E|∑
j=1

Φ1j(t, τ)ξj(τ)

)
dτ

...∫ t

0

(
|E|∑
j=1

ΦNj(t, τ)ξj(τ)

)
dτ


,

(14)
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where Φij(t, τ) ∈ R2×2 represents the i-th row, j-th
column, and 2-by-2 submatrix of Φ(t, τ), 1 ≤ i ≤ N
and 1 ≤ j ≤ |E|. To show that the i-th subvector∫ t

0

(∑|E|
j=1 Φij(t, τ)ξj(τ)

)
dτ of η(t) exists in mean square

sense for any i = 1, ..., N , according to Lemma 2 and
Assumption 1, we can obtain that

E


∫ t

0

∫ t

0

 |E|∑
j=1

Φij(t, s)ξj(s)

 |E|∑
j=1

Φij(t, l)ξj(l)

⊤

dsdl


=

∫ t

0

∫ t

0

 |E|∑
j=1

Φij(t, s)E
{
ξj(s)ξ

⊤
j (l)

}
Φ⊤

ij(t, l)

 dsdl

=

∫ t

0

∫ t

0

 |E|∑
j=1

Φij(t, s)Rξj (s, l)Φ
⊤
ij(t, l)

 dsdl.

(15)

Note that the i-th 2-by-2 block diagonal submatrix of
Φ(t, s)Rξ(s, l)Φ

⊤(t, l) is
∑|E|

j=1 Φij(t, s)Rξj (s, l)Φ
⊤
ij(t, l).

Therefore, according to Lemma 2, the subvectors of stochas-
tic integral η(t) exist in mean square if and only if (15)
exists for any 1 ≤ i ≤ N when t → ∞. This condition is
equivalent to that all the 2-by-2 block diagonal submatrices
of the matrix lim

t→∞

∫ t

0

∫ t

0
Φ(t, s)Rξ(s, l)Φ

⊤(t, l)dsdl exist. □
Based on Lemma 3 and result in Fubini’s Theorem [24],

the mean value and autocorrelation of η(t) can be derived as

µη(t) ≜ E {η(t)} =

∫ t

0

Φ(t, τ)µξ(τ)dτ ≡ 02N , (16)

Rη(t1, t2) ≜ E
{
η(t1)η

⊤(t2)
}

=

∫ t1

0

∫ t2

0

Φ(t1, s)Rξ(s, l)Φ
⊤(t2, l)dsdl.

(17)

Before further discussing statistical properties of the non-
trivial solution p̃(t), we give the following assumption.

Assumption 2: The initial formation error p̃(0) ∈ R2N is
a multivariate stochastic variable, where each element of p̃(0)
is uncorrelated with every element of ξ(t) for any t ∈ T.

Based on Lemma 3, we can obtain the following theorem
on statistical properties of the non-trivial solutions p̃(t).

Theorem 1: Consider that the multi-agent system (3) is
controlled by (5) and the graph G is connected and undi-
rected. If Assumptions 1, 2 and the condition stated in
Lemma 3 hold, the mean value, autocorrelation and auto-
covariance of p̃(t) can be described as

µp̃(t) ≜ E {p̃(t)} = e−αLtp̃0, (18)

Rp̃(t1, t2) ≜ E
{
p̃(t1)p̃

⊤(t2)
}

= e−αLt1Rp̃0e
−αLt2 + α2Rη(t1, t2),

(19)

Qp̃(t1, t2) ≜ E
{
(p̃(t1)− µp̃(t1)) (p̃(t2)− µp̃(t2))

⊤
}

= e−αLt1Qp̃0e
−αLt2 + α2Rη(t1, t2),

(20)

where p̃0 = E {p̃(0)}, Rp̃0 = E
{
p̃(0)p̃⊤(0)

}
, and Qp̃0 =

E
{
(p̃(0)− p̃0) (p̃(0)− p̃0)

⊤
}

.

Proof: Combining (12) and (16), one has that the mean
value of p̃(t) can be rewritten as µp̃(t) = E

{
e−αLtp̃(0)

}
−

αµη(t) = e−αLtp̃0. Since each element of p̃(0) and every
element of ξ(t) are uncorrelated, p̃(0) and η(t) are uncorre-
lated for any t ∈ T. Then we have

E
{
p̃(0)η⊤(t)

}
= p̃0µ

⊤
η (t) ≡ 02N×2N . (21)

Next, the autocorrelation of p̃(t) between t1 and t2 can be
derived as

Rp̃(t1, t2) = e−αLt1E
{
p̃(0)p̃⊤(0)

}
e−αLt2

− αe−αLt1E {p̃(0)}µ⊤
η (t2)

− αµη(t1)E
{
p̃⊤(0)

}
e−αLt2

+ α2E
{
η(t1)η

⊤(t2)
}
.

(22)

By substituting (16) and (18) into (22), the autocorrelation
Rp̃(t1, t2) can be derived as (19). Furthermore, similar to the
above calculations, the autocovariance of Qp̃(t1, t2) can be
obtained as (20). □

Based on the above theorem, we now further discuss the
convergence of p̃(t).

Corollary 1: Consider that the multi-agent system (3)
is controlled by (5) and the graph G is connected and
undirected. If Assumptions 1, 2 and the condition stated in
Lemma 3 hold, one has the following conclusions

1) For all p̃0, the mean values of the agents’ formation
errors reach consensus, i.e., lim

t→∞

∥∥µp̃i(t)− µp̃j (t)
∥∥ =

0, where j, i ∈ V . Furthermore, the desired
formation is achieved in mean sense, i.e.,
lim
t→∞

∥E {pji(t)− δji}∥ = 0.
2) If limt→∞Rη(t, t) exists, the variances of the forma-

tion errors in x and y directions converge to constant
values when t→ ∞.

Proof: From (18) in Theorem 1, the mean value µp̃(t) can
be regarded as a solution of one deterministic consensus sys-
tem described by µ̇p̃(t) = −Lµp̃(t), in which its initial state
µp̃(0) equals p̃0. According to the result in [25, Lemma 1], it
is straightforward to obtain that lim

t→∞

∥∥µp̃i
(t)− µp̃j

(t)
∥∥ = 0,

where j, i ∈ V . Furthermore, we can get

lim
t→∞

∥∥µp̃i(t)− µp̃j (t)
∥∥

= lim
t→∞

∥E {pi(t)} − E {pj(t)} − δji∥

= lim
t→∞

∥E {pji(t)− δji}∥ = 0.

(23)

Since the autocorrelation Rη(t1, t2) is a positive semidef-
inite matrix, if limt→∞Rη(t, t) exists, we can obtain that
lim
t→∞

Rη(t, t) ⪯ R̄ηI2N , where 0 ≤ R̄η < ∞. From (20), it
can be further derived that

lim
t→∞

Qp̃(t, t) ⪯ lim
t→∞

(
e−αLtQp̃0e

−αLt
)
+ α2R̄ηI2N

=
1

N2
12N1⊤

2NQp̃0
12N1⊤

2N + α2R̄ηI2N .

(24)

We can see that all the 2-by-2 diagonal submatrices
of Qp̃(t, t) converge to constant matrices when t → ∞.
Therefore, we can conclude that the variances of formation
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errors in x and y directions converge to bounded constants
as t→ ∞. □

B. A special class of unbiased measurement noises

In some situations, the statistical properties of displace-
ment measurements remain invariant over time, and keep
uncorrelated with the measuring time instants. Thus, we
consider that the unbiased measurement noise ξ(t) satisfies
the following assumption.

Assumption 3: For any k = 1, 2, ..., |E|, the measurement
noise {ξk(t), t ∈ T} is W.S.S, and satisfies the following
conditions

1) µξk(t) ≡ 02, ∀t ∈ T,
2) Rξk(∆t) ≜ E

{
ξk(t+∆t)ξ⊤k (t)

}
⪯ Rξk(0)I2, where

0 < Rξk(0) <∞,
3) E

{
ξm(t)ξ⊤n (t)

}
≡ 02×2, m ̸= n, m,n =

1, 2, ..., |E|.
For this scenario, we present the following theorem.
Theorem 2: Consider that the multi-agent system (3) is

controlled by (5) and the graph G is connected and undirected
without cycles. If Assumption 3 holds, the overall formation
error dynamics (10) exists a non-trivial solution in mean
square sense, whose form is the same as (12).
Proof: Firstly, the autocorrelation Rη(t, t) can be obtained
as ∫ t

0

∫ t

0

e−αL(t−s)HRξ(s, l)H⊤e−αL(t−l)dsdl

= e−αLt

(∫ t

0

∫ t

0

eαLsHRξ(s, l)H⊤eαLldsdl

)
e−αLt

⪯ R̄ξ(0)e
−αLt

(∫ t

0

∫ t

0

eαLsHH⊤eαLldsdl

)
e−αLt

(25)

where R̄ξ(0) ≜ sup1≤k≤|E|Rξk(0). According to Lemma 1,
since matrix H⊤H is positive definite, we can get∫ t

0

∫ t

0

eαLsHH⊤eαLldsdl

=

∫ t

0

∫ t

0

eαLsHH⊤H
(
H⊤H

)−2 H⊤HH⊤eαLldsdl

=
1

α2

(
eαLt − I2N

)
W
(
eαLt − I2N

)
,

(26)

where W ≜ H
(
H⊤H

)−2 H⊤ ∈ R2N×2N . Then substituting
(26) into (25), when t→ ∞, we can obtain that

lim
t→∞

∫ t

0

∫ t

0

e−αL(t−s)HRξ(s, l)H⊤e−αL(t−l)dsdl

⪯ R̄ξ(0)

α2

(
I2N − e−αLt

)
W
(
I2N − e−αLt

)
=
R̄ξ(0)

α2

(
I2N − 1

N
12N1⊤

2N

)
W
(
I2N − 1

N
12N1⊤

2N

)
.

(27)

If Assumption 3 holds, we have R̄ξ(0)
α2 < ∞. There-

fore, based on Lemma 3, the condition that the matrix

lim
t→∞

Rη(t, t) exists is a sufficient condition for the existence
of p̃(t) in mean square sense. □

Substituting (27) into (24), we can straightforwardly obtain
a deterministic upper bound of Qp̃(t, t) when t→ ∞, which
is omitted here. Furthermore, according to Corollary 1 and
Theorem 2, we can conclude that the mean square formation
errors exist deterministic upper bounds.

IV. NUMERICAL SIMULATION

In this section, we will give a numerical simulation for
multi-agent formation control with measurement noises. We
consider an MAS consisting of 4 agents, and denote edges
{(1, 2), (1, 3), (1, 4)} as E1, E2, E3, respectively. The corre-
sponding measurement topology G is shown as Fig. 1.

Fig. 1: Four agents’ measurement topology G

We consider the unbiased measurement noise ξk(t) =[
ξxk (t)
ξyk(t)

]
as
[
Ax

k cos (ω
x
k t+ ψx

k)
Ay

k cos (ω
y
kt+ ψy

k)

]
, where Ak = [Ax

k, A
y
k]

⊤ ∈

R2 and ωk = [ωx
k , ω

y
k ]

⊤ ∈ R2 are constant vectors for
1 ≤ k ≤ 3. In addition, ψk = [ψx

k , ψ
y
k ]

⊤ ∈ R2 is
the 2-variate stochastic variable, where ψx

k and ψy
k are

mutually independent, and both of them obey the uniform
distribution, i.e., ψx

k ∼ U (−π, π) and ψy
k ∼ U (−π, π).

Then, the mean value and autocorrelation of ξk(t) can
be derived as µξk(t) = 02 and Rξk(t, t + ∆t) =[

(Ax
k)

2

2 cos (ωx
k∆t) 0

0
(Ay

k)
2

2 cos (ωy
k∆t)

]
. From the above re-

sults, the measurement noise ξk(t) is W.S.S for any k, which
satisfies Assumption 3.

We set A1 = [16, 16]⊤, A2 = [18, 18]⊤, A3 = [20, 20]⊤,
and ω1 = ω2 = ω3 = [2.5π, 2π]⊤. The desired forma-
tion is described by δ12 = [5,−5]⊤, δ13 = [−5,−5]⊤,
δ14 = [0,−10]⊤,. The initial positions are given by p(0) =
[0, 25β1, 25β2, 25β3, 0, 0, 25β4, 0]

⊤, where βi denotes the
stochastic variable, in which they are mutually independent
and obeyed the Gaussian distribution for i = 1, 2, 3, 4, i.e.,
βi ∼ N (1, 0.01). The control gain is given by α = 0.05.
This simulation is performed independently 500 times with
the same parameters.

The four agents’ probabilistic trajectories are shown as
Fig. 2a. In addition, the corresponding expected trajectories
of the agents and expected formation errors in terms of inter-
agent displacements over these 500 experiments are shown
as Fig. 2b and Fig. 3a, respectively. The norm values of
autocovariances of p̃k(t) are shown as Fig. 3b. In addition,
we can see that the variances of all agents’ formation errors
converge to a bounded domain, which is consistent with
Theorem 2.
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(a) Probabilistic formation (b) Expected formation

Fig. 2: Trajectories of four agents under the existence of unbiased
measurement noises over 500 experiments, in which the black
dotted lines represent the desired formation

(a) Mean values

(b) Autocovariances

Fig. 3: Statistical features of formation errors under the existence
of unbiased measurement noises over 500 experiments

V. CONCLUSIONS

This paper has studied the multi-agent formation control
problem by using displacement measurements subject to the
stochastic noises. A sufficient and necessary condition has
been derived for the existence of non-trivial solutions in
the stochastic dynamics of multi-agent formations, in which
the stochastic noises have finite second-order moments. The
corresponding statistical properties and the corresponding
convergence of formation errors have been analyzed in mean
square sense. Specifically, for the case of the stochastic
noises described by zero-mean wide-sense stationary pro-
cesses, the existence of non-trivial solution in the stochastic
dynamics with these noises has been analyzed, and the
upper bound has been derived for the autocorrelation of
these noises’ stochastic integrals. In the future, formation
control of MASs subjected to biased measurement noises is
an interesting problem we want to study.
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