
Linear Model Predictive Control under Continuous Path Constraints via
Parallelized Primal-Dual Hybrid Gradient Algorithm

Zishuo Li1, Bo Yang1, Jiayun Li1, Jiaqi Yan2, Yilin Mo1

Abstract— In this paper, we consider a Model Predictive
Control (MPC) problem of a continuous-time linear time-
invariant system subject to continuous-time path constraints
on the states and the inputs. By leveraging the concept of
differential flatness, we can replace the differential equations
governing the system with linear mapping between the states,
inputs, and flat outputs (including their derivatives). The flat
outputs are then parameterized by piecewise polynomials, and
the model predictive control problem can be equivalently trans-
formed into a Semi-Definite Programming (SDP) problem via
Sum-of-Squares (SOS), ensuring constraint satisfaction at every
continuous-time interval. We further note that the SDP problem
contains a large number of small-size semi-definite matrices as
optimization variables. To address this, we develop a Primal-
Dual Hybrid Gradient (PDHG) algorithm that can be efficiently
parallelized to speed up the optimization procedure. Simulation
results on a quadruple-tank process demonstrate that our
formulation can guarantee strict constraint satisfaction, while
the standard MPC controller based on the discretized system
may violate the constraint inside a sampling period. Moreover,
the computational speed superiority of our proposed algorithm
is collaborated by numerical simulation.

I. INTRODUCTION

The optimal control theory aims to find control laws for
a dynamical system in order to optimize a given objective
function, which finds numerous applications in fields of
engineering [1], [2] and economics [3], [4] etc. Closed-form
optimal control law can be found for certain unconstrained
problems, such as linear-quadratic control problem [5], or
brachistochrone problem [6]. However, analytically solving
the optimal control problem of continuous-time systems
remains a challenging task. Furthermore, a vast majority
of real-world dynamical systems operate under various con-
straints, such as input saturation or safety constraint on the
state. For constrained optimal control problem, Pontryagin’s
maximum principle [7] can be used to derive necessary
condition for optimality. However, in practice, only a small
number of problems can be solved analytically. Therefore,
algorithms, such as model predictive control, discretize the
system and thus reducing the search space of the control
input from the infinite dimensional function space into a
finite dimensional space, where numerical optimization can
be used.

This work is supported by National Natural Science Foundation of China
under grant no. 62192752.

1Zishuo Li, Bo Yang, Jiayun Li, and Yilin Mo are with the Department of
Automation, Tsinghua University, Beijing, 100084, China. ({lizs19,yang-
b21,lijiayun22}@mails.tsinghua.edu.cn, ylmo@tsinghua.edu.cn)

2Jiaqi Yan is with the Automatic Control Laboratory, ETH Zurich,
Switzerland. (jiayan@ethz.ch)

Dynamic Matrix Control (DMC) [8] and Model Algo-
rithmic Control (MAC) [9] are two formulations of MPC
algorithm for discretized optimal control problems with con-
straints [10]. Both formulations employ a zero-order hold for
the control inputs, which implies that the control inputs are
step functions and hence reside in a finite dimensional space.
However, the discretization of a continuous time system
means that one can only guarantee constraint satisfaction at
all discrete-time instant, where constraint violation can occur
in between.

For control applications with high safety requirements,
constraints violations can be intolerable. In order to meet the
constraints at all time, Semi-Infinite Programming (SIP) [11]
has been used to deal with infinite number of constraints.
Several approaches for solving SIP have been proposed,
and a common framework is to check constraint viola-
tions in intervals, and adaptively add additional discrete-
time points until the tolerance level is guaranteed or no
constraint violations occur. Chen et al [12] introduce ϵ-
tolerance on inequality constraints, which means that the
constraints may still be violated up to ϵ. Fu et al. [13]
tighten the inequality constraints at discrete-time instant,
hence guarantee the satisfactory of constraints over the whole
interval. However, tighter constraints may lead to relatively
conservative solution.

To address these issues, we parameterize the flat output of
the continuous-time linear system by piecewise polynomials.
The differential equation of the dynamic system is eliminated
and replaced by flatness map between flat output y and
system state x, input u [14]. In this way, the decision
variables become finite-dimensional polynomial coefficients.
On the other hand, the inequality constraints become polyno-
mial non-negative constraints over intervals, which are still
infinite-dimensional. Fortunately, we can leverage Markov-
Lukács theorem [15] to transcribe a polynomial inequality
constraint on an interval into an equivalent matrix Positive
Semi-Definite (PSD) constraint, thus ensures the path con-
straints hold at every time interval. With this procedure,
the continuous-time MPC problem can be transcribed into
a Semi-Definite Programming (SDP) problem.

It is worth noticing that the SDP problem we formulate
contains a large amount of small symmetric matrices. As a
result, we propose to use parallel computing to speed up the
calculation. To this end, we use a customized Primal-Dual
Hybrid Gradient (PDHG) algorithm to solve the SDP prob-
lem. PDHG, also known as Chambolle-Pock [16], is a well-
known first-order algorithm dealing with convex optimization
problems with equality constraints. For large scale problems,

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 159

it has been one of the preferred first-order algorithm [17] due
to the fact that it can be easily parallelized.

The main contributions of this article are as follows.
• An equivalent formulation of continuous inequality con-

strained linear MPC problem is derived, in which the
system dynamics are eliminated by using differential
flatness. The problem is then converted into a polyno-
mial optimization problem by parameterizing the flat
output with piece-wise polynomials.

• Path constraints are rigorously guaranteed by using
sum of squares theory to transcribe the non-negative
constraints of polynomials into the equivalent positive
semi-definite constraints of matrices, and an equivalent
SDP programming problem is formulated.

• The SDP problem is solved by using the customized
primal-dual splitting-based iterations and accelerated by
parallel computing.

It is worth noting that, although the derivations in this
paper are carried out for linear MPC problems, it can also
be extended to nonlinear MPC problems if the constraints
remain linear and the objective remains quadratic after the
differentially flat transformation.

The paper is organized as follows. Differential flatness
theory is stated and the form of flatness map for linear
systems is described in Section II. The transformation of
linear MPC problem with continuous-time path constraints
into SDP problem is discussed in Section III. In Section
IV, we present the PDHG algorithm for SDP solving and
explain that it can be accelerated by parallel computing.
The simulation validation of our proposed MPC solver on
quadruple-tank process is provided in Section V. Finally,
concluding remarks are made in Section VI

II. PRELIMINARY: DIFFERENTIAL FLATNESS OF LINEAR
SYSTEM

Differential flatness is an important concept for a class of
linear and nonlinear systems [14]. A system is differentially
flat if and only if there exists a flat output, such that all states
and inputs subject to system dynamical constraints can be
explicitly expressed as functions of the flat output (which
is free of dynamical constraints) and a finite number of its
derivatives.

In this paper, we restrict our discussion to linear system.
Consider an LTI system governed by the following ordinary
differential equation:

ẋ(t) = Ax(t) +Bu(t), (1)

where x ∈ Rn, u ∈ Rm. Without loss of generality, we
assume that (A,B) is controllable. Otherwise, we can always
perform a Kalman decomposition and only consider the
controllable part of the system.

For such a system, Filess et al. [14] proved the following
theorem:

Theorem 1 (Linear flatness [14]). A linear system is differ-
entially flat, if and only if, it is controllable.

In general, the choice of the flat output may not be unique.
In this paper, we adopt the procedure proposed by Yong et
al. [18] to derive the flat output as well as the flatness map:

Theorem 2. If (A,B) is controllable, then there exists a
matrix T ∈ Rm×n, such that the following y is the flat
output of the system:

y =
[
y1 · · · ym

]⊤
≜ T x ∈ Rm. (2)

Moreover, there exists matrices S ∈ Rn×(n+m), and H ∈
Rm×(n+m), such that the state and the input of the system
can be represented by the following flatness map:

x = Sy, u = Hy,

where y is the extended flat output vector consisting of yis
and their derivatives, i.e.,1

y ≜
[
y1 · · · y

(κ1+1)
1 · · · ym · · · y

(κm+1)
m

]⊤
∈ Rn+m.

(3)

The procedure to construct the T , S, H matrices and ex-
tended flat output y (including the calculation of κi) is
omitted due to space limit and the readers can refer to [18]
for more details.

III. SDP FORMULATION OF CONTINUOUS MPC

Problem 1

Problem 2

Differential
flatness

Problem 3

Problem 4

Polynomial
parametrization

Markov-Lukács
Theorem

Fig. 1: The relationships between optimization problems in this
paper. Double tail arrow represents that the two problems are
equivalent. Single tail arrow means that Problem 3 is obtained by
parameterizing Problem 2 using polynomials.

This section is devoted to transcribing the MPC problem
of a continuous-time path constrained linear system (1) to an
SDP problem, the procedure of which is depicted in Fig 1. In
the next subsection, we first remove the differential equality
constraints in the MPC problem by differential flatness and
then convert the problem into a polynomial optimization
problem by parameterizing the flat output with piece-wise
polynomials. The polynomial optimization problem is then
transformed into an equivalent SDP problem via Markov-
Lukács Theorem [15] and Sum-of-Squares (SOS) in Sub-
section III-B.

A. Polynomial Optimization Formulation of MPC

We consider an optimal control problem of the continuous-
time linear system (1) under state and input constraints,
which can be formulated in a receding horizon fashion as
follows:

1κi, i ∈ {1, · · · ,m} is determined by A,B and satisfies
∑m

i=1 κi = n.

160

Problem 1 (Continuous-time Linear MPC Problem).

min
x(t),u(t)

∫ T

0

x(t)⊤Qx(t) + u(t)⊤Ru(t)dt

s.t. ẋ(t) = Ax(t) +Bu(t), ∀t ∈ [0, T]

Ξx(t) + Υu(t) ≤ b, ∀t ∈ [0, T]

x(0) = x0,

where T is the horizon length and Ξ ∈ Rp×n, Υ ∈ Rp×m

are matrices and b ∈ Rp is a vector of proper dimensions.

Adopting the flatness map in Section II, we can express
the state x(t) and control input u(t) using the extended flat
output y(t) and hence removing the differential equation
constraint in Problem 1, which results in the following
problem:

Problem 2 (MPC using Flat Output).

min
y(t)

∫ T

0

y(t)⊤(S⊤QS +H⊤RH)y(t) dt

s.t. (ΞS +ΥH)y(t) ≤ b, ∀t ∈ [0, T]

Sy(0) = x0.

Notice that Problem 1 and Problem 2 are equivalent, in
the sense that we can use the definition of the flat output
y = T x and the flatness map x = Sy, u = Hy to map the
solution of one problem to the other.

Further notice that the path constraint Ξx(t) + Υu(t) ≤
b (or (ΞS + ΥH)y(t) ≤ b), which consists of p linear
inequalities, requires that the state and the control input
(or the flat output) to be inside a polytope at all time
interval [0, T]. Aside from very special cases, Problem 1
(or Problem 2) cannot be solved in the infinite dimensional
function space, due to the difficulty to determine when the
path constraints are active [10].

To facilitate optimization-based method to solve Prob-
lem 2, we propose to parameterize the flat output y(t) by
piecewise polynomials, which effectively reduce the domain
of the optimization problem from infinite dimensional func-
tion space to a finite dimensional space. To this end, first
define the polynomial basis of degree d as

γ(t) =
[
td · · · t 1

]⊤
. (4)

Suppose each entry of flat output y is represented by N
segments of polynomials in the horizon [0, T]. Denote row
vector cl,i ∈ R(d+1)×1 as the coefficient of segment l of flat
output yi, i.e.,2

yi(t) =

c⊤1,iγ

(
tN
T

)
, 0 ≤ t < T

N

c⊤2,iγ
(
tN
T − 1

)
, T
N ≤ t < 2T

N
...

c⊤N,iγ
(
tN
T − (N − 1)

)
, (N−1)T

N ≤ t < T

.

2Since we need smoothness constraints on the conjecture points of
segments, cl,i, · · · , cl+1,i are not fully free and coupled by equality
constraints.

Each segment of polynomial c⊤l,iγ (·) , l ∈ {1, · · · , N} has
been normalized such that the time variable is on interval
[0, 1].

By stacking the coefficients of the l-th segment cl,i verti-
cally, we have the overall coefficient vector

cl ≜

 cl,1
...

cl,m

 ∈ Rm(d+1)×1, c ≜

 c1
...
cN

 ∈ Rm(d+1)N×1.

(5)

As a result, instead of optimizing y in the infinite-
dimensional function space, we can restrict ourselves to the
following polynomial optimization problem:

Problem 3 (Polynomial Optimization).

min
c

J(c) = c⊤Pc

s.t. (Ljcl − gj)
⊤γ(t) ≥ 0,∀t ∈ [0, 1],

j ∈ {1, · · · , p}, l ∈ {1, · · · , N}
h⊤
j c = rj , j ∈ {1, · · · , 2mN}

The calculation of parameters P,Lj , gj , hj , rj in Problem
3 is shown in our full version [19] and omitted here because
of space limit.

Remark 1. Piecewise polynomials are chosen to represent
the flat output for the following reasons:

• The set of polynomials are closed under derivative
operation and is dense in the function space, as is
shown by the Stone-Weierstrass theorem. Hence, we
can approximate any continuous functions to arbitrary
precision. In fact, one can also use polynomials to
approximate the derivatives and high order derivatives
of a smooth enough function [20].

• The continuous-time path constraints are transformed
into non-negativity of a univariate polynomial inside an
interval, which can be transformed exactly into Positive
Semi-Definite (PSD) cone constraint using Markov-
Lukács theorem and SOS [15]. The detailed discussion
is reported in the subsequent subsection.

B. SDP Formulation via SOS

This subsection is devoted to the exact SDP formulation
of the polynomial optimization Problem 3. To this end, the
following theorem is needed:

Theorem 3 (Markov-Lukács theorem [15]). Let a < b. Then,
a polynomial p(t) is non-negative for t ∈ [a, b], if and only
if it can be written as

p(t) =

{
f(t) + (t− a)(b− t)g(t), if deg(p) is even
(t− a)f(t) + (b− t)g(t), if deg(p) is odd

,

where f(t), g(t) are SOS polynomials, with degree deg(f) ≤
deg(p), deg(g) ≤ deg(p) − 2 when deg(p) is even, or
deg(f) ≤ deg(p)− 1, deg(g) ≤ deg(p)− 1 when deg(p) is
odd.

161

For simplicity, we shall only consider the case where the
flat output y is an odd degree polynomial, i.e., d is an odd
number. The case where d is even can be treated similarly.
Let us denote δ ≜ d−1

2 . Notice that a degree d − 1 SOS
polynomial f can be represented as

f(t) = σ(t)⊤Xσ(t),

with σ(t) ≜
[
tδ · · · t 1

]⊤
and positive semi-definite

matrix X ∈ R(δ+1)×(δ+1).
As a result, each inequality constraint (Ljcl−gj)

⊤γ(t) ≥
0 in Problem 3 can be equivalently represented as

(Ljcl − gj)
⊤γ(t) =

tσ(t)⊤Xf
j,lσ(t) + (1− t)σ(t)⊤Xg

j,lσ(t), (6)

with positive semi-define matrices Xf
j , X

g
j ∈ R(δ+1)×(δ+1).

By comparing the coefficients of the polynomials on the LHS
and RHS of (6), we know that (6) is equivalent to:

Ljcl − gj =M(Xf
j,l, X

g
j,l) (7)

where M(·, ·) is a linear function whose definition is seen
in full version paper [19].

Now we handle the second order objective function
J(c) = c⊤Pc by linear matrix inequality techniques. No-
tice that P is a positive semi-definite matrix, define P̃ ∈
Rrank(P)×size(P), such that P̃⊤P̃ = P . Notice that the
following three optimization problems are equivalent where
s is a scalar:

min
c∈C

c⊤Pc⇔ min
c∈C,s

s, s.t. ∥P̃c∥2 ≤ s

⇔ min
c∈C,s≥0

s, s.t.
[
P̃c
s

]
∈ second order cone.

We arrive at the following SDP problem which is equivalent
to Problem 3 and computationally tractable.The definition
correspondence between L,M ,X, g,h, r and the original
notations is shown in [19].

Problem 4 (SDP Problem).
Compact form

min
s,c,X

s

s.t. Lc−M(X) = g, hc = r (8a)

X ∈ S+, s ≥ 0,

[
P̃c
s

]
∈ SOC (8b)

where SOC denotes the second order cone and S+ is the
positive semi-definite cone.

Since there are p inequality constraints in the original
Problem 1, X is a block diagonal matrix with 2pN positive
semi-definite matrices of size δ + 1. As a result, in the
following section, we introduce a customized algorithm that
solves Problem 4 by primal-dual hybrid gradient methods
which can handle X in a parallel fashion. However, before
continuing on, we would like to give a comparison between
the conventional quadratic programming-based linear MPC
and our approach.

IV. ACCELERATED SDP SOLVING WITH PARALLEL
COMPUTING

A. Primal dual hybrid gradient algorithm for SDP solving

In this subsection, we present the primal-dual hybrid
gradient algorithm that solves Problem 4. Using primal-
dual operator splitting [21], the iterations can be derived as
the following where α is the primal step-size and β is the
dual step-size. D∗

X(·) is the conjugate operator of the linear
mapping M(X), and D∗

c(·) is the conjugate operator of the
linear mapping

[
L⊤ h⊤ P̃⊤]⊤ c.

1. Primal step:

Xk+1 ← projS+(X
k − αD∗

X(λk
1)) (9)

ck+1 ← ck − αD∗
c(λ

k
1 , λ

k
2 , λ

k
3) (10)[

c̃k+1

sk+1

]
← projSOC

[
c̃k − α(−λk

3)
(sk − α)+

]
(11)

where (sk − α)+ = max(sk − α, 0).
2. Calculating difference:

∆Xk+1 ← 2Xk+1 −Xk (12)

∆ck+1 ← 2ck+1 − ck (13)

∆c̃k+1 ← 2c̃k+1 − c̃k (14)

3. Dual step:

λk+1
1 ← λk

1 + βL∆ck+1 − βM(∆Xk+1)− βg (15)

λk+1
2 ← λk

2 + βh∆ck+1 − βr (16)

λk+1
3 ← λk

3 + βP̃∆ck+1 − β∆c̃k+1 (17)

The calculation of D∗
X(λ1) and D∗

c(λ1, λ2, λ3) are seen
in [19]. The projection to the semi-definite cone is

projS+(X) =

size(X)∑
i=1

max {0, νi}µiµ
⊤
i (18)

where νi, µi are the eigenvalue and the corresponding eigen-
vector of X . The projection to the second order cone is

projSOC

[
c
s

]
=

s+∥c∥2

2∥c∥2

[
c

∥c∥2

]
if ∥c∥2 > s.[

c

s

]
if ∥c∥2 ≤ s.

. (19)

Define λ =
[
λ⊤
1 λ⊤

2 λ⊤
3

]⊤
. The convergence of algorithm

(9)-(17) is provided in the following.

Theorem 4 ([22]). Assume the solution to KKT conditions
of Problem 4 exists (denoted by c⋆,X∗, s∗, λ∗), and strong
duality holds. If the linear projection defined by

L(c,X) =

[
Lc−M(X)

hc

]
and step sizes α, β satisfy 0 < αβ < 1/ ∥L(c,X)∥2, then
the primal dual hybrid gradient descent algorithm (9)-(17)
converges to the solution to KKT conditions, i.e., ck →
c⋆,Xk →X⋆, sk → s⋆, λk → λ⋆.

162

B. GPU parallel computing and warm start

It is worth noticing that for our proposed iterations, a
significant proportion of the time will be spent on the
projection projS+(·). However, since X is a block diagonal
matrix with 2pN matrices of size δ + 1 on its diagonal, the
projection of X can be parallelized by projecting each small
matrices onto the PSD cone. Furthermore, the calculation of
D∗

X ,D∗
c , and the difference calculation in (12) are essentially

tensor operations and hence can be accelerated by parallel
computation. One can easily implement the computation of
the proposed PDHG solver in a parallelized manner on the
GPU and the computational would be significantly sped up
so that real-time implementation is feasible (see Section V).

Moreover, we can also adopt a warm-start mechanism
to reduce the number of iterations. One can design the
control apply time to match the time interval length of
each polynomial segment. Thus, after applying control for a
segment, the used segment is discarded and a new segment
is added at the end of the original horizon. By a “shifting"
warm start mechanism, only the last segment is need to be
updated by the PDHG iterations. The computational time
after implementing GPU parallel and warm start is shown
later in Fig. 5.

V. SIMULATION

The performance of the proposed MPC solver is vali-
dated on the quadruple-tank process [23]. The system has
4 states, which represent the liquid levels (in centimeter)
of 4 tanks. There are two control inputs in the system: the
voltage (in volt) of two pumps. The simulation employs
the same linearized system equations and system parameters
as [23], which are omitted due to space limitations. We first
demonstrate control performance of our proposed algorithm
in subsection V-A and then computation time in V-B. Our
code is available on https://github.com/zs-li/MPC_PDHG.

A. Control Performance

The MPC is assigned a tracking task subject to box
constraints on states and inputs, that is, the liquid levels in
all tanks remain between 0 to 20 cm and the control inputs
stay in between 0 to 8 V. For comparison, we employ the
Quadratic Programming (QP) formulation where the MPC
problem is discretized with a sampling interval of Ts = 1s
and horizon length Td = 20. On the other hand, for the
proposed method, we set the degree of polynomial d = 3
and the segments of polynomials N = 20, horizon length
T = 20. Thus, the two methods are comparable in terms of
horizon length and update frequency.

As shown in Fig. 4, at the first glance, the state trajectories
obtained from both solvers are nearly identical. However,
upon close inspection, it can be seen that even though the
QP-based controller satisfies the constraints at discrete-time
instants, the constraints are violated in between sampling in-
stants. In contrast, the proposed algorithm ensures constraint
satisfaction on the whole time interval.

0 25 50 75 100

5

10

15

20

Time (s)

Li
qu

id
le
ve

l(
cm

)

x1
x2
x3
x4

Reference

30 32 34 36 38 40

20.0000

20.0002

20.0004

20.0006

Time (s)

Zoomed plot
xmax
x1

Fig. 2: The states of discrete time linear MPC using the
QP solver. The gray area in the figures denotes the feasible
region of states. The states between sampling times violate
the constraints.

0 25 50 75 100

5

10

15

20

Time (s)

Li
qu

id
le
ve

l(
cm

)

x1
x2
x3
x4

Reference

30 32 34 36 38 40
19.99997

19.99998

19.99999

20.00000

20.00001

Time (s)

Zoomed plot
x1
xmax

Fig. 3: The states of continuous time linear MPC using our
proposed solver. The gray area in the figures denotes the
feasible region of states. The states using our proposed MPC
input stays in the feasible region for whole time interval.

B. Computational Speed Performance

In the following, we compare the computational speed
performance of our proposed algorithm and several off-
the-shelf solvers (on Problem 4) under different numbers
of polynomial degrees d and polynomial segments N . The
block number for GPU acceleration is set as 128. The number
of threads on every block is ⌈ pN128⌉. The computational time
in Figure 5 is the average solving time of the first 100
apply steps. The computation platform is a desktop computer
equipped with an AMD Ryzen Threadripper 3970X 32-Core
Processor and an NVIDIA GeForce RTX 3080 GPU. The real
number calculations on GPU are floating point number with
hybrid precision 32-bit and 16-bit, which is computationally
efficient and accurate enough for control applications. As for
comparison, the other solvers are of default precision 64-bit.
Thus, the time comparison may not be equal but represents
our computation speed superiority to some extent.

As shown in Fig. 5, our proposed algorithm has better
scalability for large problems (especially lagre N), and
has low computational time promising for real-time control
applications. The warm-start technique introduced in Sub-
section IV-B can effectively reduce the computation time by
reducing iterations. For off-the-shelf solvers, COSMO and
COPT perform well on large-scale problems compared to
other solvers. However, their computation is still slow and
incompatible with real-time control scenarios.

163

0 25 50 75 100

2

4

6

8

Time (s)

Vo
lta

ge
of

Pu
m
p
(V

)

u1
u2

(a) Control input using the QP
solver.

0 25 50 75 100

2

4

6

8

Time (s)

u1
u2

(b) Control input using the
proposed solver.

Fig. 4: Comparison on the input trajectory using the QP and
the proposed SDP strategy respectively. The gray area in the
figures denotes the feasible regions of control input.

0 100 200 300 400 500

10−1

100

101

102

103

number of blocks in matrix X

co
m

pu
ta

tio
n

tim
e

(s
ec

)

size of each matrix block d = 3

Mosek SCS CSDP
SDPA COSMO COPT
Ours (cold start) Ours (warm start)

0 100 200 300 400 500

10−1

100

101

102

103

number of blocks in matrix X

co
m

pu
ta

tio
n

tim
e

(s
ec

)

size of each matrix block d = 5

Fig. 5: The states of discrete time linear MPC using the QP
solver.

VI. CONCLUSION

In this paper, we aim to address continuous-time path-
constrained linear MPC problems while ensuring that path
constraints are satisfied at every time interval. To achieve
this, we propose an algorithm that utilizes differential flatness
to eliminate dynamic constraints. Furthermore, by param-
eterizing the flat output with piece-wise polynomials and
utilizing the Markov-Lukács theorem from SOS theory, we
transform the problem into an SDP problem that is compu-
tationally tractable. To accelerate the solving process of the
SDP problem, we use a customized PDHG algorithm, which
exploits the block-diagonal structure of the PSD matrix
to perform paralleled computation. The numerical simula-
tion validates the continuous-time constraint satisfaction and

computational efficiency our proposed algorithm.

REFERENCES

[1] J. Z. Ben-Asher, Optimal control theory with aerospace applications.
American institute of aeronautics and astronautics, 2010.

[2] A. C. Satici, H. Poonawala, and M. W. Spong, “Robust optimal control
of quadrotor uavs,” IEEE Access, vol. 1, pp. 79–93, 2013.

[3] T. A. Weber, Optimal control theory with applications in economics.
MIT press, 2011.

[4] S. M. Aseev, K. O. Besov, and A. V. Kryazhimskii, “Infinite-horizon
optimal control problems in economics,” Russian Mathematical Sur-
veys, vol. 67, no. 2, p. 195, 2012.

[5] D. Bertsekas, Dynamic programming and optimal control: Volume I.
Athena scientific, 2012, vol. 1.

[6] F. Clarke, Functional analysis, calculus of variations and optimal
control. Springer, 2013, vol. 264.

[7] R. F. Hartl, S. P. Sethi, and R. G. Vickson, “A survey of the maximum
principles for optimal control problems with state constraints,” SIAM
review, vol. 37, no. 2, pp. 181–218, 1995.

[8] P. Lundström, J. Lee, M. Morari, and S. Skogestad, “Limitations of
dynamic matrix control,” Computers & Chemical Engineering, vol. 19,
no. 4, pp. 409–421, 1995.

[9] R. Rouhani and R. K. Mehra, “Model algorithmic control (MAC);
basic theoretical properties,” Automatica, vol. 18, no. 4, pp. 401–414,
1982.

[10] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–
348, 1989.

[11] H. Djelassi, A. Mitsos, and O. Stein, “Recent advances in noncon-
vex semi-infinite programming: Applications and algorithms,” EURO
Journal on Computational Optimization, vol. 9, p. 100006, 2021.

[12] T. W. Chen and V. S. Vassiliadis, “Inequality path constraints in
optimal control: a finite iteration ε-convergent scheme based on
pointwise discretization,” Journal of Process Control, vol. 15, no. 3,
pp. 353–362, 2005.

[13] J. Fu, J. M. Faust, B. Chachuat, and A. Mitsos, “Local optimization
of dynamic programs with guaranteed satisfaction of path constraints,”
Automatica, vol. 62, pp. 184–192, 2015.

[14] M. Fliess, J. Levine, P. Martin, and P. Rouchon, “A lie-backlund
approach to equivalence and flatness of nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 44, no. 5, pp. 922–937, 1999.

[15] T. Roh and L. Vandenberghe, “Discrete transforms, semidefinite pro-
gramming, and sum-of-squares representations of nonnegative poly-
nomials,” SIAM Journal on Optimization, vol. 16, no. 4, pp. 939–964,
2006.

[16] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathemat-
ical Imaging and Vision, vol. 40, no. 1, pp. 120–145, May 2011.

[17] D. Applegate, M. Diaz, O. Hinder, H. Lu, M. Lubin, B. Osin-
gle Donoghue, and W. Schudy, “Practical large-scale linear program-
ming using primal-dual hybrid gradient,” in Advances in Neural Infor-
mation Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc.,
2021, pp. 20 243–20 257.

[18] S. Z. Yong, B. Paden, and E. Frazzoli, “Computational methods for
mimo flat linear systems: Flat output characterization, test and tracking
control,” in 2015 American Control Conference (ACC), 2015, pp.
3898–3904.

[19] Z. Li, B. Yang, J. Li, J. Yan, and Y. Mo, “Linear model predictive
control under continuous path constraints via parallelized primal-dual
hybrid gradient algorithm,” 2023.

[20] M. M. Peet, “Exponentially stable nonlinear systems have polynomial
lyapunov functions on bounded regions,” IEEE Transactions on Auto-
matic Control, vol. 54, no. 5, pp. 979–987, 2009.

[21] M. Souto, J. D. Garcia, and Álvaro Veiga, “Exploiting low-rank struc-
ture in semidefinite programming by approximate operator splitting,”
Optimization, vol. 71, no. 1, pp. 117–144, 2022.

[22] E. K. Ryu and W. Yin, Large-Scale Convex Optimization: Algorithms
& Analyses via Monotone Operators. Cambridge University Press,
2022.

[23] K. H. Johansson, “The quadruple-tank process: A multivariable labo-
ratory process with an adjustable zero,” IEEE Transactions on control
systems technology, vol. 8, no. 3, pp. 456–465, 2000.

164

