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Abstract— This paper introduces an innovative control solu-
tion to tackle the problem of robust attitude tracking for fully
actuated rigid bodies. The approach resorts to the modified
Rodrigues parameters (MRP), whose configuration manifold
is a double cover of the three-dimensional rotation group, to
design a dynamic hybrid controller that yields uniform global
asymptotic and semi-global exponential tracking results in the
covering space. The controller includes an integral term to
deal with constant disturbances and a smoothing mechanism
to generate a jump-free control signal. By relying on a hybrid
dynamic path-lifting algorithm and novel equivalence of sta-
bility concepts, the authors demonstrate that the MRP-based
dynamic controller globally asymptotically and semi-globally
exponentially stabilizes the tracking dynamics in the base
space SO(3) with robustness to small measurement noise and
unknown fixed disturbances. The simulation results showcase
the performance of the proposed hybrid controller.

I. INTRODUCTION

A. Motivation and Literature Review

Rigid body attitude control is an active area of research
aimed at developing precise and robust control algorithms
to track or stabilize the attitude dynamics of a rigid body,
finding widespread application in diverse fields, such as
robotics systems and aircraft, spacecraft, and underwater
vehicles [1]. However, designing these control strategies is
inherently complex due to the nonlinear dynamics and the
topological obstruction of the rotation group space [2].

The topological obstruction precludes solving the attitude
control problem globally with a smooth feedback law, yield-
ing, at best, an almost global stability result [3]. Furthermore,
the obstruction also prevents the robust global asymptotic
stabilization of the attitude dynamics through discontinuous
feedback [4]. Thus, to bypass these particularities of the
configuration manifold and achieve both robust and global
results, the design within the hybrid systems framework is
frequently adopted ([3], [5], [6], [7], [8], [9]).

The hybrid solutions can be differentiated based on the
attitude representation resorted. Concerning solutions de-
vised directly on the three-dimensional special orthogonal
group SO(3), in [3], [5], [6], the authors propose hybrid
methodologies relying on a family of potential functions.
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The solution reported in [3] includes an integral action and
achieves robust global exponential stability in the presence
of fixed disturbances for the attitude tracking dynamics. In
[5], [6], the solutions encompass distinct smoothing mecha-
nisms to remove the discontinuities from the control signal
and yield, respectively, robust global asymptotic and global
exponential tracking properties. A hybrid strategy using a
single potential function on SO(3) and equipped with a
smoothing mechanism has been proposed in [8], leading
to global asymptotic tracking and semi-global exponential
tracking properties. Another relevant approach consists of
developing a hybrid feedback using local coordinates in
a covering space of SO(3), such as unit quaternions [9],
[10] or MRP ([11], [12], [13]). The hybrid formulation
enables overcoming the unwinding phenomenon, which is
an undesirable behavior susceptible to occur when relying
on a multiple covering of the rotation group [10]. The MRP-
based solution proposed in [12] semi-globally exponentially
stabilizes, with nominal robustness to small perturbations,
the attitude tracking dynamics on a covering manifold of
SO(3). However, to directly translate these controllers and
the respective asymptotic/exponential tracking properties to
SO(3), these methodologies must be paired with a hybrid
dynamic path-lifting system [10], [14].

B. Contributions

This paper proposes a novel approach to the attitude
tracking problem for fully actuated rigid bodies. First, a
dynamic hybrid feedback controller is designed in the MRP
space. This controller extends the semi-global exponential
attitude tracking solution reported in [12] by including an
integral action and a smoothing mechanism. In this way,
while preserving the exponential tracking property, the result-
ing hybrid scheme deals effectively with fixed disturbances
and yields an actuation devoid of discontinuities induced
by the MRP switching. The output of the controller, apart
from a simple feedforward canceling term, only comprises
linear terms and does not have restrictive constraints on
the gains, leaving the achievable performance unaffected.
Then, by resorting to the path-lifting algorithm proposed
in [14] to uniquely and consistently extract the MRP from
the rotation matrix error, the MRP-based hybrid feedback
is applied to the actual rigid body attitude space tracking
dynamics. The main contribution of this work is the global
asymptotic and semi-global exponential tracking results on
SO(3) with robustness to fixed disturbances and any small
perturbations obtained with the resulting closed-loop hybrid
system. Compared to the rotation group SO(3), or even the
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unit quaternion space S3, the MRP configuration manifold
has a less complex structure, requiring fewer parameters
and verifying fewer constraints to describe its elements.
Thus, the approach simplifies the hybrid control design.
Furthermore, the MRP representation has the particularity
of the triplet with the smallest norm always describing the
shortest principal rotation [15]. The methodology exploits
this unique characteristic to circumvent the unwinding phe-
nomenon without relying on additional control states, as
required in quaternion-based strategies ([9], [10]). Compared
to synergistic hybrid approaches ([3], [6]), leveraging these
properties results in a simpler architecture that eliminates the
need for formulating multiple potential functions. Moreover,
compared to the single potential function approach [8], which
relies on a hybrid auxiliary scalar variable, the MRP-based
controller does not have supplementary variables and the
memory states of the path-lifting mechanism are strictly
discrete. To the authors’ best knowledge, the approach of
this paper is the first robust semi-global exponential stability
result in the rigid-body attitude configuration space using a
hybrid controller designed on a covering manifold of SO(3).

C. Organization

The paper is organized as follows: section II introduces the
notation and some key concepts on attitude representations
and dynamical hybrid systems; section III presents the under-
lying attitude rigid-body dynamic model and formulates the
control objective; section IV addresses the design of a hybrid
dynamic controller to uniformly globally asymptotically and
semi-globally exponentially stabilize the attitude dynamics
in the covering space; section V explores an equivalence of
stability framework to yield robust global asymptotic and
semi-global exponential tracking results in the base space;
section VI displays and analyzes the simulation responses;
section VII concludes the paper with closing remarks.

II. NOTATION AND PRELIMINARIES

A. Notation

Throughout this work, R, R≥0, R>0, and N express the set
of real, positive real, nonnegative real, and natural numbers,
respectively; Rn represents the n-dimensional Euclidean
space; KBn denotes the closed ball of radius K ∈ R>0

centered at the origin of Rn; Rn×m denotes the set of n×m
matrices; Rn×n

≻0 represents the set of n× n positive definite
matrices; Sn =

{
x ∈ Rn+1 : x⊤x = 1

}
symbolizes the n-

dimensional unit sphere; R̄n = Rn ∪ {∞} denotes the
Alexandroff compactification of Rn [16, p. 246]; In ∈ Rn×n

represents the n-dimensional identity matrix; F : X ⇒ Y
represents the set-valued map F from X to Y and, for
x ∈ X , the relation ẋ ∈ F(x) expresses a differential
inclusion; dom V symbolizes the domain of the function
V : Rm 7→ Rn; ei ∈ R3 denotes a vector of zeros except
for the ith entry which is 1; the operator [·]× : R3 7→
{S ∈ R3×3 : S⊤ = −S} is such that [ω]× s = ω × s
for any s,ω ∈ R3, where × denotes the cross product
[10]; for s ∈ Rn, ∥s∥ is the Euclidean norm. For a given
square matrix A ∈ Rn×n, λmin(A) and λmax(A) denote the

minimum and maximum eigenvalues, respectively; ∥A∥ =
(λmax(A

⊤A))1/2 corresponds to the spectral norm; diag (s)
is such that diag (s) ≜

∑n
i=1(eie

⊤
i )(e

⊤
i s) for s ∈ Rn.

The saturation function here considered is aligned with the
following definition.

Definition 1: The function σ : R 7→ R is smooth, odd,
and verifies: (1) σ (0) = 0; (2) sσ (s) > 0 ∀ s ̸= 0; (3)
lims→±∞ σ (s) = ±M , with M > 0; (4) 0 < σ̇(s) ≤ 1. □

B. Attitude Representation

The three-dimensional special orthogonal group SO(3) :=
{R ∈ R3×3 : R⊤R = I3,det(R) = 1} is the configuration
manifold for the attitude of a rigid body. Consider a body-
fixed frame and an inertial frame, R ∈ SO(3) denotes a
given element of this boundaryless compact manifold and
represents the rotation matrix from the former to the latter
frame. The unit quaternion attitude representation links each
element R ∈ SO(3) with two vectors of S3. Specifically, a
given q := (q0,q1) ∈ S3 denotes the unit quaternion, where
q0 ∈ R and q1 ∈ R3 are the scalar and vector components,
respectively, and is associated with a rotation matrix R of
SO(3) through the map R : S3 7→ SO(3) defined as

R(q) = I3 + 2q0 [q1]× + 2 [q1]
2
× ,

which satisfies R(q) = R(−q) [10, Eq. 5]. The double-
valued inverse map Q : SO(3) ⇒ S3 is described by

Q(R) = {q ∈ S3 : R(q) = R}.
The MRP result from the stereographic projection of the unit
quaternion representation [15], providing an alternative rigid-
body attitude description. Each MRP vector ϑ has a shadow
MRP associated, ϑs ∈ R̄3. A given unit quaternion is related
to ϑ and ϑs through the maps

ϑ=φ(q)=

{
q1(1 + q0)

−1 , for q ∈ S3 \ {s}
∞ , for q = s

, (1a)

ϑs=φ(−q)=

{
−q1(1−q0)−1 , for q ∈ S3 \ {n}

∞ , for q = n
, (1b)

where s = (−1, 0, 0, 0) and n = (1, 0, 0, 0). The stereo-
graphic projection φ : S3 7→ R̄3 and its inverse mapping
φ−1 : R̄3 7→ S3 are smooth [14]. Since the MRP sets
are singular for different rotations, judiciously alternating
between them gives rise to a minimal non-singular attitude
representation [15]. The map Υ : R̄3 7→ R̄3, given by

ϑs = Υ(ϑ) =

 −ϑ∥ϑ∥−2 , for ϑ ∈ R3 \ {0}
∞ , for ϑ ∈ {0}
0 , for ϑ ∈ {∞}

,

enables obtaining the shadow MRP from the original MRP.
Both MRP triplets satisfy the differential equation [15]

ϑ̇=T(ϑ)ω=

{
(1−∥ϑ∥2)I3+2[ϑ]×+2ϑϑ⊤

4 ω, for ϑ∈R3

∞ , for ϑ∈{∞}
. (2)

The mapping Rϑ(ϑ) : R̄3 7→ SO(3)

Rϑ(ϑ) :=

{
I3 +

8[ϑ]2×−4(1−∥ϑ∥2)[ϑ]×
(1+∥ϑ∥2)2 , for ϑ ∈ R3

I3 , for ϑ ∈ {∞}
(3)

maps a given ϑ to the equivalent R and verifies Rϑ(ϑ) =
Rϑ(ϑ

s). For more insights on MRP, please see [15].
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C. Hybrid Systems

The quadruplet H = (C, F, D, G) encapsulates the
fundamental elements of a hybrid system with the form

H
{

ẋ ∈ F (x) , x ∈ C
x+ ∈ G (x) , x+ ∈ D

. (4)

The set-valued map F : Rn ⇒ Rn governs the continuous
evolution of H while in the flow set C ⊂ Rn, whereas the
set-valued map G : Rn ⇒ Rn dictates the discontinuous
changes while in the jump set D ⊂ Rn. A solution x(t, j)
to H, with t and j denoting, respectively, ordinary and jump
times, is a function x : dom x 7→ Rn, where dom x ⊂ R≥0×
N is a hybrid time domain. A comprehensive perspective on
hybrid systems can be found in [17].

III. PROBLEM STATEMENT

The underlying kinematic and dynamic equations for the
rotation of a rigid body are, respectively,

Ṙ = R [ω]× , (5a)
Jω̇ = [Jω]× ω + τ + d, (5b)

where ω ∈ R3 symbolizes the angular velocity expressed
in the body-fixed frame, τ ∈ R3 denotes the torque input,
J ∈ R3×3

≻0 models the diagonal tensor of inertia of the rigid
body, and d ∈ R3 is an unknown fixed disturbance.

Let the map r(t) : R≥0 7→ Ω, given by r(t) :=
(Rd,ωd)(t), define the reference trajectory encompassing
the desired rotation matrix, Rd ∈ SO(3), and the desired
angular velocity ωd ∈ R3. The subset Ω ⊂ SO(3) × R3 is
compact and the trajectory r(t) is governed by

ṙ ∈ Fr(r) := (Rd[ωd]×,KωB3) for r ∈ Ω, (6)
with Kω ∈ R>0. Every maximal solution r(t) to (6) is
complete and, for any given r(t), ωd is Lipschitz continuous
with Kω as Lipschitz constant [5]. With this definition in
place, Problem 1 formulates the objective of this work.

Problem 1: Design a controller to render the compact set

A = {(r,x) ∈ Ω× χ : R = Rd,ω = ωd},
with x := (R,ω) ∈ χ := SO(3) × R3, robustly globally
asymptotically and semi-globally exponentially stable for the
attitude dynamic system (5). □

IV. MRP-BASED GLOBAL EXPONENTIAL CONTROL

Let R̃ ∈ SO (3) represent the rotation matrix error
resulting from R̃ = R⊤

dR and satisfying Rϑ(ϑ̃) = R̃. To
uniquely and consistently lift the MRP error representation ϑ̃
from the attitude error rigid body space, the approach relies
on the hybrid dynamic path-lifting algorithm formulated in
[14]. In this direction, consider the stereographic projection
(1a) and let m ∈ {−1, 1} and δ ∈ R>0 be a discrete state
and a hysteretic parameter, respectively. Consider also the
vector xl = (q̂,m, R̃) ∈ χl := S3 × {−1, 1} × SO(3) to
define the following flow and jump sets

Cm :={xl ∈ χl : ∥φ(mΦ(q̂, R̃))∥ ≤ 1 + δ},
Dm :={xl ∈ χl : ∥φ(mΦ(q̂, R̃))∥ ≥ 1 + δ},

where, as in [10], Φ : S3 × SO(3) ⇒ S3 represents the map
Φ(q̂, R̃) := argmax q̂⊤p

p ∈ Q(R̃)
, (7)

and q̂ := (q̂0, q̂1) ∈ S3 defines a memory state, whose
update depends on the following flow and jump sets

Cq := {xl ∈ χl : dist(q̂,Q(R̃))≤α},
Dq := {xl ∈ χl : dist(q̂,Q(R̃))≥α},

with dist(q̂,Q(R̃)) = inf
{
1−q̂⊤p : p∈Q(R̃)

}
and α ∈

(0, 1). Then, the autonomous hybrid system Hl :=
(Cl, Fl, Dl, Gl), with the state xl ∈ χl, the data

Cl := Cq ∩Cm

Fl :=


˙̂q = 0
ṁ = 0

R̃ ∈ R̃
[
K∗

ωB3
]

Dl := Dq ∪Dm

Gl :=

{̂
q+∈Φ(q̂, R̃), m+=m, for xl ∈ Dq

q̂+ = q̂, m+=−m , for xl ∈ Dm
, (8a)

where R̃ ∈ R̃
[
K∗

ωB3
]

describes the dynamics of trajectories
R̃ : R≥0 7→ SO(3) for some K∗

ω ∈ R>0, and the output

ϑ̃ :=

{
φ(mΦ(q̂, R̃)) , xl∈Cm ∩Cq

∅ , xl /∈ Cm ∩Cq
,

describes the path-lifting mechanism for the MRP error
extraction. As demonstrated in [14, Lemma 1], the output
verifies the bound ∥ϑ̃∥ ≤ (1+δ), i.e., its values are restricted
to a three-dimensional unit sphere enveloped by a hysteresis
layer whose thickness is defined by the parameter δ. This
external region is instrumental in averting noise-induced
chattering when switching between the MRP triplets [13].
Similar to δ, selecting α must ensure that no measurement
disturbance results in an ambiguous choice of the quaternion.
Bearing in mind (2) and the definition of R̃, the kinematic
equation for the MRP error representation has the form

˙̃ϑ = T(ϑ̃)ω̃ = T(ϑ̃)(ω − R̃⊤ωd),

where ω̃ ∈ R3 denotes the angular velocity error. Let the
control input τ ∈R3 be defined as follows:

τ = −kϑϑ̃f − kωω̃ + τ c − ζ,

with kϑ, kω ∈ R>0 and where τ c ∈ R3 is given by
τ c := − [Jω]×ω + J(R̃⊤ω̇d − [ω̃]× R̃⊤ωd),

and ζ ∈ R3 is an integral term, included to estimate the
disturbance d, satisfying

ζ̇ := 2−1kζ(Λϑϑ̃+Λωω̃),

with kζ ∈ R>0 and Λϑ,Λϑ ∈ R3×3
≻0 verifying

Λϑ := diag(σ̇(Jω̃))− kϑE, Λω := 2cI3 − kωE,

where c ∈ R>0, σ is a saturation function conforming to
Definition 1, and E ∈ R3×3 is a negative-definite matrix:

E := −kωk−1
ζ (λmax(J)J)

−1/2.

In addition, ϑ̃f ∈ R3 is a continuous dynamical state that is
the output of the first-order linear filter

˙̃ϑf := −kf (ϑ̃f − ϑ̃), (9)
with kf ∈ R>0, that has ϑ̃ as a bounded discontinuous
input. The inclusion of this first-order system in the control
architecture enables transferring the discrete jumps of ϑ̃ one
integrator away from the control action [6]. Consequently,
the torque input becomes continuous due to this relocation
of the MRP discontinuities. Define the state-space χϑ=Ω×
(1+δ)B3×R3×R3×R3 and the state xϑ :=(r, ϑ̃, ω̃, ζ, ϑ̃f ) ∈
χϑ. Then, the closed-loop hybrid attitude tracking system in
the covering space Hϑ = (Cϑ,Fϑ,Dϑ,Gϑ) is defined by

Cϑ(xϑ) := {xϑ ∈ χϑ : ∥ϑ̃∥ ≤ 1 + δ}
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Fϑ(xϑ) :=


Fr(r)

T(ϑ̃)ω̃

J−1(−kϑϑ̃f − kωω̃ + d− ζ)

2−1kζ(Λϑϑ̃+Λωω̃)

−kf (ϑ̃f − ϑ̃)


Dϑ(xϑ) := {xϑ ∈ χϑ : ∥ϑ̃∥ = 1 + δ}

Gϑ(xϑ) := (r,Υ(ϑ̃), ω̃, ζ, ϑ̃f )

Let x̃ϑ := (ϑ̃, ω̃, d̃, eϑ) ∈ (1 + δ)B3 ×R3 ×R3 ×R3, with
d̃ := d− ζ and eϑ := ϑ̃f − ϑ̃. Theorem 1 demonstrates the
stability results of the set Aϑ :={xϑ∈χϑ : x̃ϑ = 0} for the
hybrid system Hϑ.

Theorem 1: Let c and kf verify the conditions:

c>max

{
λmax(J)

(2(1+α2
ϑ))

−1kω
+

k2ω
kζλmin(J)

,
αδ

kϑ
+

k2ω
4kζλmax(J)

}
(11a)

c > max

{ √
αϑλmax(J)√

3kϑ ln(1 + α2
ϑ)λmin(J)

, 2
kω
kϑ

}
(11b)

kf >max

{
3kϑ
4f

,
3kωk

2
ϑ

8fkζ

(
λmin(J)

−1

λmax(J)

)1
2

,
3(4ckϑ+f(1+α

2
ϑ)

2)

2cfkω

}
(11c)

with αϑ = 1 + δ, f ∈ R>0, and

αδ =
δ+ 1

α2
ϑ

(
(α2

ϑ−1)αϑ

√
3M + f(1 + 2αfαϑ(1 + α2

ϑ))
)

ln(αϑ)
,

where αf = ∥ϑ̃f (0, 0)∥+αϑ. Then, Aϑ is uniformly globally
asymptotically stable for Hϑ and the number of jumps is
bounded. Furthermore, for every compact set Ωϑ⊂χϑ and
every xϑ(0, 0) ∈ Ωϑ, Aϑ is exponentially stable for Hϑ.

Proof: Define the Lyapunov function V(xϑ) :χϑ 7→R≥0

V (xϑ) = 2a ln(1 + ∥ϑ̃∥2) + ϑ̃
⊤
σ(Jω̃) + cω̃⊤Jω̃

+ 1
kζ
∥d̃∥2 + d̃⊤EJω̃ + f∥eϑ∥2,

where a∈R>0 satisfies a=2ckϑ − k2ωkϑ(2kζλmax(J))
−1>

0. The function V is radially unbounded and continuously
differentiable on χϑ. Hence, for any given xϑ(0, 0), the set
U = {xϑ ∈ χϑ : V (xϑ) ≤ V (xϑ(0, 0))} is compact. Since
xϑ ∈ Cϑ implies ∥ϑ̃∥ ≤ αϑ, the inequality ln(1 + ∥ϑ̃∥2) ≥
ln(1+α2

ϑ)α
−2
ϑ ∥ϑ̃∥2 holds during flows. In this direction, for

xϑ ∈ Cϑ, V obeys the lower-bound
V (xϑ)≥2a ln(1+α2

ϑ)α
−2
ϑ ∥ϑ̃∥2−λmax(J)∥ϑ̃∥∥ω̃∥+f∥eϑ∥2

+ k−1
ζ ∥d̃∥2 − kωk

−1
ζ ∥d̃∥∥ω̃∥+ cλmin(J)∥ω̃∥2,

which leads to V (x̃ϑ) ≥ λmin(A1)∥xϑ∥ with

A1=
1

2


4a ln(1+α2

ϑ)α
−2
ϑ −λmax(J) 0 0

−λmax(J) 2cλmin(J) −kωk−1
ζ 0

0 −kωk−1
ζ 2k−1

ζ 0

0 0 0 2f

.
Given (11a) and (11b), A1 is positive definite and, conse-
quently, the function V is positive definite with respect to
Aϑ. In addition, V also verifies the upper-bound V (xϑ) ≤
λmax(A2)∥x̃ϑ∥ with A2 ∈ R4×4

≻0 given by

A2 =
1

2


4a λmax(J) 0 0

λmax(J) 2cλmax(J) kωk
−1
ζ 0

0 kωkζ−1 2k−1
ζ 0

0 0 0 2f

 .
By virtue of (11a) and given 4ϑ̃⊤T(ϑ̃) = (1+∥ϑ̃∥2)ϑ̃⊤ for all
ϑ̃ ∈ R3, the bound ∥ϑ̃∥ ≤ αϑ and the equality [15, p. 123]

T(ϑ̃)⊤T(ϑ̃) = 4−2(1 + ∥ϑ̃∥2)2I3, (12)
which leads to ∥T(ϑ̃)∥ ≤ 4−1(1 + α2

ϑ), one has

V̇ (xϑ) ≤− kϑϑ̃
⊤
Θϑ̃− ϑ̃

⊤
kωΘ

∗ω̃ + d̃⊤Ed̃

− ckω

2 ∥ω̃∥2 − 2fkf∥eϑ∥2 − kϑd̃
⊤Eeϑ

− kϑϑ̃
⊤
Θeϑ + 1

2 (4ckϑ + f(1 + α2
ϑ))∥eϑ∥∥ω̃∥,

where Θ = diag(σ̇ϑ(Jω̃)) and
Θ∗ = Θ− (2

√
λmax(J))

−1ΘJ
1
2 ⪯ Θ.

Note that the function V̇ is negative definite if the matrices

C1=

[
kϑΘ kωΘ

kωΘ
ckω

2 I3

]
,C2=

[
kϑΘ kϑΘ

kϑΘ
4fkf

3 I3

]
,C3=

[
−2E kϑE

kϑE
8fkf

3 I3

]
,

and C4 =

[
ckω 4ckϑ + (1 + α2

ϑ)

4ckϑ + (1 + α2
ϑ)

8fkf

3

]
are positive definite. Considering Definition 1, (11b), and
(11c), for each one of the previous matrices, the upper-left
submatrix and its respective Schur complement are positive
definite. Thus, it follows that V̇ ≤ −Wf (xϑ), with Wf (xϑ) :
χϑ 7→ R≥0 being a positive definite function with respect to
Aϑ. Between jumps, V verifies
V (Gϑ(xϑ))− V (xϑ)=−4aln(∥ϑ̃∥) + ∥ϑ̃∥−2−∥ϑ̃∥2

+ f(1 + ∥ϑ̃∥−2)(2ϑ̃
⊤
f ϑ̃− bϑ̃

⊤
σϑ(Jω̃)).

Since ϑ̃f results from a first-order linear filter with ϑ̃ as
input, ∥ϑ̃f (t, j)∥ ≤ αf ∀ (t, j) ∈ dom xϑ. Combining
(11a) with the bound ∥ϑ̃∥ ≤ αϑ ∀ xϑ ∈ χϑ leads to
V (Gϑ(xϑ))− V (xϑ) ≤ −δ. Thus, there exists a continuous
function Wj(xϑ) : χϑ 7→ R≥0 that is positive definite with
respect to Aϑ such that V (Gϑ(xϑ)) − V (xϑ) ≤ −Wj(xϑ).
Hence, V strictly decreases during both jumps and flows.
Consequently, any solution xϑ(t, j) to Hϑ remains in U
for all (t, j) ∈ dom xϑ and, since Gϑ(Dϑ) ⊂ Cϑ, does
not jump out of C∪D. Thus, any maximal solution to Hϑ

[17,Definition 2.7] is bounded and complete [17,Proposition
6.10]. Furthermore, the number of jumps is bounded by

j ≤ J = δ−1V (xϑ(0, 0))

and, based on [17, Theorem 3.18], Aϑ is uniformly globally
asymptotically stable for Hϑ. Since any solution xϑ(t, j)
to Hϑ remains in U for all (t, j) ∈ dom xϑ, V satisfies
V̇ ≤ −αV̇ ∥x̃ϑ∥2 ∀ xϑ ∈ Cϑ with

αV̇ = inf
xϑ∈U

λmin(B(xϑ))

B=
1

4


4kϑΘ 2kωΘ

∗ 0 2kϑΘ
2kωΘ

∗ 2ckωI3 0 4ckϑ+f+fα
2
ϑ

0 0 −E 2kϑE
2kϑΘ 4ckϑ+f+fα

2
ϑ 2kϑE 8fkfI3

,
and

V (Gϑ(xϑ)) ≤ e−αδV (xϑ) ∀ xϑ ∈ Dϑ, (13)
with αδ = − ln(1− δ/max{V (0, 0), 2δ}). Note that B is
positive definite for any ω̃ ∈ R3, yielding αV̇ ∈ R>0. In
this way, one has

V̇ ≤ −λϑV ∀ xϑ ∈ Cϑ (14a)
V (Gϑ(xϑ)) ≤ e−λϑV (xϑ) ∀ xϑ ∈ Dϑ, (14b)

with λϑ=min{α−1

V̇
λmax(A2), αδ}. Therefore, based on [18,

Theorem 1], for every compact set Ωϑ ⊂ χϑ and every
xϑ(0, 0) ∈ Ωϑ, Aϑ is robustly globally asymptotically stable
and robustly semi-globally exponentially stable for Hϑ.
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Remark 1: Since λϑ depends on xϑ(0,0)∈Ωϑ, with Ωϑ

denoting an arbitrarily large compact set, the exponential
stability result in Theorem 1 holds semi-globally. □

Remark 2: The constant f , featured in conditions (11a)
and (11c), can be arbitrarily defined with a positive value.
Its incorporation offers some flexibility in selecting kf and
c by increasing the preponderance of ∥eϑ∥2 in V (xϑ). □

V. ROBUST GLOBAL EXPONENTIAL TRACKING ON SO(3)

This section resorts to the equivalence of stability concepts
developed in [14] to obtain a robust tracking result in the base
space SO(3) with the dynamic feedback controller designed
in the covering space. Let HR := (CR,FR,DR,GR)
represent the closed-loop hybrid system encapsulating the
reference trajectory and the interconnection between the at-
titude tracking dynamics described in the base space SO(3),
the dynamic path lifting algorithm Hl, and the dynamics
and output of the MRP-based feedback controller previously
designed. Define the state-space χR = Ω×χl×R3×R3×R3

and state-vector xR := (r,xl, ω̃, ζ, ϑ̃f ). The quadruplet
CR(xR) :={xR∈χR : xl ∈ Cl ∩Cm}

FR(xR) :=



Fr(r)
0
0

R̃ [ω̃]×
J−1(−kϑϑ̃f − kωω̃ + d− ζ)

2−1kζ(Λϑφ(mΦ(q̂, R̃)) +Λωω̃)

−kf (ϑ̃f −φ(mΦ(q̂, R̃)))


DR(xR) :={xR ∈ χR : xl ∈ Dm ∪Dl}

GR(xR) :=

{
(r,Φ(q̂, R̃),m, R̃, ω̃, ζ, ϑ̃f ),xl ∈ Dl

(r, q̂,−m, R̃, ω̃, ζ, ϑ̃f) ,xl ∈ Dm

characterizes HR. Theorem 2 presents the main result of
this paper: the MRP-based dynamic hybrid feedback yields
equivalent stability properties for HR. Additionally, the next
theorem also demonstrates the robustness of this result.

Theorem 2: The hybrid system HR is well-posed. Fur-
thermore, the set AR := {xR ∈ χR : R̃ = I3, ω̃ = 0, d̃ =
0, eϑ = 0} is robustly globally asymptotically stable and
semi-globally exponentially stable for HR.

Proof: The autonomous hybrid system Hl is well-posed
[14]. The sets CR and DR are closed subsets of χR. The
flow map FR(xR) comprises a convex and bounded map
and continuous differential equations. Therefore, FR(xR) is
locally bounded relative to CR(xR) ⊂ dom FR and outer
semicontinuous, and FR(xR) is convex for every xR ∈ CR.
Moreover, since r, R̃, ω̃, ζ, and ϑ̃f remain constant during
jumps, the respective difference equations are continuous.
Thus, since Hl is well-posed, GR(xR) is outer semicontin-
uous and locally bounded relative to DR(xR) ⊂ dom GR.
Consequently, HR verifies the hybrid basic conditions [17,
Assumption 6.5] and is well-posed [17, Theorem 6.30].

Based on Theorem 1, for all xϑ(0, 0) ∈ Bϑ = χϑ, the set
Aϑ is asymptotically stable for Hϑ. Then, it follows from
[14, Theorem 1 and Lemma 2] and (3), that AR is asymptotic
stable for HR with {xR ∈ χR : dist(q̂,Q(R̃)) < 1} as basin
of attraction. Theorem 1 also proves that, for any arbitrarily

large compact set Ωϑ and any xϑ(0, 0) ∈ Bϑ = Ωϑ ⊂
χϑ, Aϑ is exponentially stable for Hϑ. Hence, in light of
[14, Theorem 2], AR is exponentially stable for HR for all
xR(0, 0) ∈ B = {xϑ ∈ χϑ : (φ(mΦ(q̂,R)) ,ω, ζ, ϑ̃f ) ∈
Ωϑ,dist(q̂,Q(R))<1}. Furthermore, by virtue of HR being
well-posed, the stability results of AR for HR are robust
to small perturbations including measurement disturbances
[17, Theorem 7.21.]. The robustness margin to perturbations
can be quantified through KL bounds [17, Definition 7.18.].
Hence, AR is robustly globally asymptotically stable and
semi-globally exponentially stable for HR.

Remark 3: Note that R̃ = I3 and ω̃ = 0 imply, respec-
tively, R = Rd and ω = ωd. Based on these equalities, it
follows from Theorem 2 that the solution designed, encom-
passing the dynamic MRP-based feedback controller, with
output τ (r, x̃ϑ), and the path-lifting algorithm Hl, robustly
globally asymptotically and semi-globally exponentially sta-
bilizes the set A for the attitude dynamics expressed in (5).
Thus, the proposed solution effectively tackles Problem 1. □

VI. SIMULATION RESULTS

To illustrate the robust global property of the proposed
control architecture and the underlying hybrid jump logic,
the authors conducted a challenging attitude tracking test
in simulation. Having the attitude dynamics and kinematics
detailed in (5) at its core, the simulation model considers
measurement noise and fixed disturbances, and restricts the
torque authority within practical reasonable values. In more
detail, the model has a sampling time of 0.01 seconds, de-
fines J = diag(2.24, 2.9, 5.3)×10−3[kgm2] as the inertia ma-
trix, considers the external disturbance d = (0.2,−0.1, 0.05)
[Nm], and constraints the torque actuation with the bounds
|e⊤1τ |, |e⊤2τ | ≤ 0.45[Nm] and |e⊤3τ | ≤ 0.15 [Nm]. The
simulation evaluated the capacity of the solution to accurately
track an aggressive trajectory, comprising demanding flip
maneuvers and a downward-facing initial condition. The
saturation function used was σ(s) = M tanh(s/M), with
M = 1. For the sake of simplicity, the trajectory definition
resorts to Euler angles (roll φ, pitch θ, and yaw ψ):
φ(t)=−π(σ(1.5π(t−2))−σ(1.5π(t−6))+σ(9π(t−10))+1),

θ(t) = 0, ψ(t) = −π(σ(π(t− 4))− σ(π(t− 10))) [rad].
The initial attitude was (φ, θ, ψ)(0)=(−179, 0, 260)[◦], and
the control parameters were kϑ=3, kω=0.15, kζ=0.1, kf =
160, c=850, f=(20λmax(J))

−1, α=0.25, and δ=0.02.
The simulation results are depicted in Fig. 1, where the

attitude response is also presented in Euler angles to ease
its interpretation. The rigid body successfully overcame the
initial downward-facing orientation and accurately tracked
the reference trajectory, illustrating the global nature of
the solution. Focusing on Fig. 1a, for the third side flip
command, provided slightly before the instant t = 10s,
the rigid body initiated the desired maneuver, but did not
complete it. This third command required a more extreme
maneuver, which, due to the limited control authority, led to
the increase of the MRP error until the jump set condition
was eventually triggered, causing the rigid body to rotate
in the opposite direction. As a result, one can observe in
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Fig. 1d that the state m jumped from 1 to −1 and the MRP
error presented a coherent discrete evolution. The rigid body
followed the reference as long as it represented the shortest
available rotation; once an equivalent orientation emerged
as the new closest target, the direction of rotation changed
accordingly. This behavior evidences that the methodology
effectively handles tumbling situations and the unwinding
phenomenon. Moreover, focusing on Fig. 1c, the solution
handled the initial tumbling circumstance by performing the
shortest available rotation, corroborating this latter claim.
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Fig. 1: Attitude responses obtained in simulation.

As shown in Figure 1e, the initial condition led to an MRP
error norm just below 1, indicating that the rigid body dealt
with the significant initial attitude error by completing the
shortest rotation possible. After each side flip, the error norm
converged to values smaller than 0.001. Furthermore, the
control strategy tracked the first two side flip maneuvers with
a maximum MRP error norm of roughly 0.003, highlighting
the effectiveness of the global tracking capacity of the hybrid
controller. The responses depicted in Figure 1f indicate that
the disturbance estimation error d̃ converged to approxi-
mately zero in less than one second. This occurred while the
system dealt with the initial downward-facing orientation and
after the subsequent flips, contributing to the robust tracking
capacity in the presence of a significant fixed disturbance.

VII. CONCLUSION

The authors designed an MRP-based hybrid dynamic
controller with integral action and a smoothing mechanism
that outputs a jump-free torque input. The solution renders

the attitude dynamics globally asymptotically and semi-
globally exponentially stable in the covering space. Fur-
thermore, as the main result, pairing this controller with
a hybrid dynamic path-lifting algorithm yields semi-global
exponential and global asymptotic tracking results in the
attitude configuration manifold SO(3) with robustness to
unknown constant disturbances and small perturbations. The
simulation results validate the underlying jump logic and
illustrate the global result and capacity to perform aggressive
maneuvers accurately in the presence of significant constant
disturbances and measurement noise.
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