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Abstract— The conventional approach to Bayesian decision-
theoretic experiment design involves searching over possible
experiments to select a design that maximizes the expected
value of a specified utility function. The expectation is over
the joint distribution of all unknown variables implied by the
statistical model that will be used to analyze the collected
data. Utility functions define experiments’ objectives; a common
utility function is information gain. This article introduces an
expanded framework for experimental design, where we go
beyond the traditional Expected Information Gain criteria. We
introduce Expected General Information Gain which measures
robustness to the model discrepancy, and Expected Discrimi-
natory Information to quantify how well an experiment can
detect model discrepancy. The functionality of the framework
is showcased through its application to a scenario involving
a linearized spring mass damper system and an F-16 model
where the model discrepancy is taken into account while doing
Bayesian optimal experiment design.

I. INTRODUCTION

For science and engineering systems there are often many
choices of experiments to run, or data to collect, in order to
infer information. Each of these choices has different costs
in terms of time, money, or other resources. A common
approach to designing the experiment stems from the field
of Bayesian optimal experimental design (BOED). This
approach uses the rigor of the Bayesian paradigm and
information theory to formalize the design of experiments
and treats it as an optimization problem. The aim is to
maximize a utility function that captures the value of a partic-
ular experimental design. This utility function, typically the
Expected Information Gain (EIG), depends on the posterior
distribution sampled over many hypothetical realizations of
plausible datasets from the experiment. However, for real
applications, where there is model discrepancy, EIG is not
the only measure of information we should consider.

In this work, we introduce two additional criteria that
measure notions of robustness of a design. The first criterion,
Expected Generalized Information Gain (EGIG), captures the
expected information gained (or lost) when an experimenter
uses a model with discrepancy. The second criterion, Ex-
pected Discriminatory Information (EDI) reflects whether the
information gained from an experiment would be sufficient
to discriminate between the model and an alternative. The
EGIG-based design seeks to mitigate discrepancy while the
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EDI-based one seeks to only detect it. With these criteria,
we aim to correct pathological issues in BOED and advance
the BOED literature, which has only a few works concerning
the robustness of BOED.

In [1] a Bayesian linear regression example is shown
where the system is analysed without considering model dis-
crepancies. There, not only is the parameter under-estimated
but the posterior credible intervals are not even close to
covering the true parameter value, which is alarming. In
practice, despite the theoretical elegance and optimal perfor-
mance for accurate models, BOED may encounter significant
issues if our model is not properly specified. This means
that there is no value of x⋆ for which p(y|x = x⋆,d)
corresponds to the true distribution for p(y|d), as noted in
references [2] and [3]. Although model misspecification is a
common problem in Bayesian settings, BOED methods are
especially vulnerable because they use the model not only
to fit data, but also to generate new data. The main issue
is that Bayesian approaches only account for uncertainty in
the model parameters, not in the model’s correctness, which
can lead to disastrous outcomes where BOED continuously
queries similar designs and produces low-quality datasets.
Eliminating misspecification entirely is unrealistic, particu-
larly in a general BOED context. However, a lot of work can
be done to improve our comprehension and management of
it. Presently, there is only a limited amount of research that
covers both the theoretical [4],[5],[6], and [7] and empirical
implications of misspecification [8], and very little has been
done to examine the specific mechanisms that can lead to
failures. This is where our EGIG and EDI metrics play an
important role in evaluating the model robustness and identi-
fying modeling failures. Some Bayesian-adjacent approaches
that call out the need for robustness and optimality in design
are [9] and [10]. Most notably, [9] considers robust sensor
placement for linear dynamical systems under asymptotic D-
optimal design.

Outline: Section II introduces the model and key concepts,
Section III presents the BOED criteria, Section IV studies
EGIG and EDI for two examples systems, and Section V
provides discussions.

II. MODELING AND KEY CONCEPTS

A. System Description

We will study BOED in the context of simplified models,
specifically stationary discrete-time linear processes driven
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by Gaussian noise. We define the state vector as xt ∈ Rn,

xt = Axt−1 + ηt, t = 1, 2, ... . (1)

A is an n × n transition matrix and ηt ∼ N (0,Q) is the
process noise where Q ⪰ 0. We assume x0 ∼ N (µ0,Σ0).
For simplicity, unless specified, we will take µ0 = 0.

The observation equation is,

yt = Hxt + vt, (2)

where the measurements are yt ∈ Rs, H is the measurement
matrix and vt ∼ N (0,R) where R ≻ 0. The random vectors
{x0,η1, ...,ηt,v1, ...,vt} are all assumed to be independent.

From this general case, we will study two simplifications.
First, we consider a system without dynamics (or equiva-
lently a single time step of the system), corresponding to
y = Hx+ v. Second, we will study the system after it has
converged to its stationary distribution, assuming that A is
asymptotically stable. In this case, if t is sufficiently large,
we have that xt ∼ N (0,ΣL), where ΣL is the solution to
the discrete Lyapunov equation, ΣL = AΣLA

T +Q.

B. Bayesian Inference

In Bayesian inference, to rigorously update our beliefs
about X with observation data Y , we apply Bayes’ theorem,

p (X | Y ) =
p (Y | X) p (X)

p (Y )
. (3)

The prior p (X) reflects our initial beliefs about X while
p (X | Y ) is our posterior (after observations) belief. The
likelihood, p (Y | X) is the probability of observing Y given
a state X , while p (Y ) is the overall probability of observing
the data given our prior (called the evidence). Often we are
interested in measuring how informative is the data. To do
this we measure our change in belief, i.e., the information
gain, using the Kullback–Leibler (KL) divergence,

DKL

[
p (X | Y ) ||p (X)

]
=

∫
p (X | Y ) log

p (X | Y )

p (X)
dX

(4)
For the Gaussian case where p (X | Y ) ∼ N (µ1,Σ1) and
p (X) ∼ N (µ0,Σ0) the KL divergence is,

1

2

(
Tr
[
Σ−1

0 Σ1

]
− n+ (µ1 − µ0)

T
Σ−1

0 (µ1 − µ0)

+ log
| Σ0 |
| Σ1 |

)
. (5)

The KL divergence can be generalized using a more ex-
pressive, yet still information theoretically valid, measure
of information [11] defined over three distributions, r(X),
p(X), and q(X), given by:

Ir(X)

[
p(X) || q(X)

]
=

∫
r (X) log

p (X)

q (X)
dX. (6)

The interpretation of this form of information is that we want
to measure a change in belief (e.g., information gained or
lost) when updating from q (X) to p (X) in the view of
r (X). The view defines our reference frame for assessing
changes in information. Typically, both r (X) and p (X)
would represent the posterior with q (X) as the prior, thus
recovering the regular KL divergence expression. However,
in the case where there is model discrepancy, r (X) could
be the unknown posterior from the true model, while p (X)
could the inferred posterior from the model with discrepancy.
Therefore, we could measure whether inference with the
model discrepancy is still getting close to the correct result.
We note that unlike KL divergence this measure can be
negative, meaning that q (X) provides more information
about r (X) than p (X) does.

For the case where, r(X), p(X), and q(X) are all
described by multivariate Gaussians,

Ir(X)

[
p(X) || q(X)

]
=

1

2

(
Tr
[
(Σ−1

q −Σ−1
p )Σr

]
− (µr − µp)

T
Σ−1

p (µr − µp)

+ (µr − µq)
T
Σ−1

q (µr − µq) + log
| Σq |
| Σp |

)
. (7)

This uses the fact that eq. 6 can be expressed as the difference
of two KL divergences and employ eq. 5.

C. Bayesian Filtering

For a Markov process where the state xt only depends on
xt−1 and the observation yt only depends on xt we can
simplify the inference problem for the state xt given a time
series of observations Yt = {y0 . . .yt} as

p (xt | Yt) =
p (yt | xt) p (xt | Yt−1)

p (Y | Yt−1)
. (8)

Using this, the Bayesian filter for the system described by
eq.1-2, is the Kalman filter,

µt|t−1 = Aµt−1|t−1 (9)

Σt|t−1 = AΣt−1|t−1A
T +Q (10)

µt|t = µt|t−1 +Kt(yt −Hµt|t−1) (11)
Σt|t = (I −KtH)Σt|t−1, (12)

where Kt = Σt|t−1H
TS−1

t is the Kalman gain matrix,
St = HΣt|t−1H

T + R is the predictive uncertainty, and
I is the identity matrix. Considering a single time step, the
a-priori estimator of xt is µt|t−1 with covariance Σt|t−1.
The a-posteriori estimator of xt is µt|t with covariance Σt|t.
Therefore, the prior, posterior, and evidence are:

p(xt) ∼ N (µt|t−1,Σt|t−1), (13)
p(xt | yt,d) ∼ N (µt|t,Σt|t), (14)

p(yt | d) ∼ N (Hµt|t−1,St). (15)
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As we can see from eq. 9-12, only the means µ depend on
the observations y. Thus, when A is asymptotically stable
we can find the stationary distribution of Σt|t. We define
Σt|t−1 → Γ and Σt|t → ΣD as t → ∞. We first use the
discrete time algebraic Riccati equation (DARE) to give,

Γ = AΓAT +Q−AΓHT (HΓHT +R)−1HΓAT , (16)

and then solve for ΣD via:

ΣD = Γ− ΓHT (HΓHT +R)−1HΓ. (17)

D. Bayesian Optimal Experimental Design

In BOED, the first step to modeling the problem is
to define a utility function U(d) that gives the value of
performing an experiment at d ∈ D. The set D spans the
space of possible designs. In Bayesian design, the utility is a
function of the posterior distribution p(X | d,Y ). The utility
function is maximized to find the optimal design d∗, i.e.
d∗ = argmaxd∈D U(d). The choice of the utility function
U(d) is crucial, as different functions will usually lead to
different optimal designs [12]. A principled choice often
used in BOED is mutual information. This is the information
gained about X by taking measurements, Y , according to
design d. This is just the KL divergence from prior to
posterior, DKL

[
p(X | Y ,d)||p(X)

]
, eq. 4.

However at the point of choosing d, we do not have mea-
surements. So to assess the effectiveness of design d, we take
the expected KL divergence over plausible datasets p(Y |d).
This utility function is known as Expected Information Gain
(EIG) and is defined as,

EIG(d) = Ep(Y |d)

[
DKL(p(X | Y ,d)||p(X))

]
=

∫
p(X,Y | d) log p(X | Y ,d)

p(X)
dXdY . (18)

III. DESIGN CRITERIA

A. Expected Information Gain

For the linear Gaussian model given by eq.1-2, we can
derive expressions for the EIG.
Single Step Update: First, for the case of a single update step
(or equivalently, no dynamics) we begin by substituting the
values from eq. 9 - 12 into the Gaussian KL divergence ex-
pression, eq. 5. Rearranging terms with the matrix inversion
lemma and cyclic property of the trace, the information gain
from prior to posterior is

DKL

[
p(xt | yt,d)||p(xt)

]
=

1

2

[
log|I +HTR−1HΣt|t−1| − Tr[S−1

t HΣt|t−1H
T ]

+ (yt −Hµt|t−1)
TS−1

t HΣt|t−1H
TS−1

t (yt −Hµt|t−1)
]

(19)

Only the last term depends on yt, so for EIG we just need

to find the expectation of the quadratic term, which is,

Ep(yt|d)

[
(yt −Hµt|t−1)

TS−1
t HΣt|t−1H

TS−1
t

(yt −Hµt|t−1)
]

= Tr
[
S−1
t HΣt|t−1H

TS−1
t Cov(yt −Hµt|t−1)

]
= Tr

[
S−1
t HΣt|t−1H

T
]
. (20)

Here we recall eq. 15 so (yt − Hµt|t−1) has mean 0 and
covariance St. Therefore, noting cancellation of trace terms,
EIG of the single step of the Kalman filter is

EIG(d) = Ep(yt | d)

[
DKL(p(xt | yt,d)||p(xt))

]
=

1

2

[
log|I +HTR−1HΣt|t−1|

]
. (21)

Infinite Horizon: We may also be interested in assessing
the EIG about a state xt when the system and filters have
converged to their stationary distributions. For this, we define
our prior knowledge about xt as the solution to the Lyapunov
equation, e.g., p(xt|d) = N (0,ΣL), when t is sufficiently
large to be in the asymptotic regime. Similarly, when we
have a sufficiently large set of observations, Yt, we know the
posterior belief about xt will have the form p(xt|Yt,d) =
N (µt(Yt),ΣD). Here we express µt as a function of Yt

to emphasize that µt is a random variable defined by Yt.
Therefore, information gain from observing Yt is

DKL

[
p(xt|Yt,d)||p(xt)

]
=

1

2

(
Tr
[
Σ−1

L ΣD

]
− n+ µt(Yt)

TΣ−1
L µt(Yt) + log

| ΣL |
| ΣD |

)
.

(22)

Again, only the quadratic term depends on observations.
Therefore, to compute EIG we first derive the expectation,

Ep(Yt|d)

[
µt(Yt)

TΣ−1
L µt(Yt)

]
= Tr

[
Σ−1

L Cov(µt(Yt)µt(Yt)
T )
]
= Tr

[
Σ−1

L (ΣL −ΣD)
]

= n− Tr
[
Σ−1

L ΣD

]
. (23)

We use Ep(Yt|d)[µt(Yt)] = 0 and E[µt(Yt)µt(Yt)
T ] =

(ΣL −ΣD). This is shown as eq. 57 in Appendix VI-A.
Therefore, taking the expectation of eq. 22 over Yt and

substituting in the result of eq. 23 which cancels the trace
terms, we find similarly to eq. 21 that,

EIG(d) = Ep(Yt | d)

[
DKL(p(xt | Yt,d)||p(xt))

]
→ 1

2
log

|ΣL|
|ΣD|

, as t → ∞. (24)
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B. Expected Generalized Information Gain

Using the generalized measure of information in eq. 6, we
can assess how much information is expected to be gained or
lost by an experiment d when there is model discrepancy. We
define the true model as M∗ and the model with discrepancy
as M, both of which have the same unknown states, X ,
which we seek to infer. This expectation is taken over data
that is generated according to p(Y |d,M∗). This leads to the
Expected Generalized Information Gain (EGIG) given by,

EGIG(d,M,M∗) =

Ep(Y |d,M∗)

[
Ip∗

[
p(X | Y ,d,M)||p(X | M)

]]
=

∫
p(X,Y | d,M∗) log

p(X | Y ,d,M)

p(X | M)
dXdY (25)

=

∫
p(X,Y | d,M∗) log

p(Y | X,d,M)

p(Y | M)
dXdY (26)

For notation we have p∗ := p(X | Y ,d,M∗). Note that eq.
26 is a simple rearrangement using Bayes’ theorem, which
can be easier to compute for some problems.

In the following analysis we use M∗ as a theoretical
quantity to derive our metric. Typically we do not know
M∗, so in practice we should either define a set of plausible
models we want to be robust to or we can assess the
sensitivity to perturbations away from M by computing
derivatives of the EGIG using either automatic differentiation
or numerical derivatives. However, for some applications like
surrogate modeling we do know M∗.

In the context of inferring xt with a system defined by
eq. 1-2 we define the true model M∗ = {A∗,H∗,Q∗,R∗}
and the model we use for inference as M = {A,H,Q,R}.

Single Step Update: We start with the EGIG of eq. 26.
We defined µt|t−1 = A, µ∗

t|t−1 = A∗, Σt|t−1 =

AΣt−1|t−1A
T +Q, and Σ∗

t|t−1 = A∗Σ∗
t−1|t−1A

∗T +Q∗.
We then note the distributions,

p(xt,yt | d,M∗) =

N

((
µ∗

t|t−1

H∗µ∗
t|t−1

)
,

(
Σ∗

t|t−1 Σ∗
t|t−1H

∗T

H∗Σ∗
t|t−1 S∗

t

))
(27)

p(yt | xtd,M) = N (Hxt,R) (28)

p(yt | d,M) = N
(
Hµt|t−1,St

)
. (29)

Recall that St = HΣt|t−1H
T + R and S∗

t =
H∗Σ∗

t|t−1H
∗T + R∗. Substituting these distributions into

eq. 26, we arrive at

EGIG(d,M,M∗) =

Ep(xt,yt|M∗)

[
log

p(xt | yt, d,M)

p(xt | d,M)

]
=
1

2

(
log

| St |
| R |

− E
[
(yt −Hxt)

TR−1(yt −Hxt)
]

+ E
[
(yt −Hµt|t−1)

TS−1
t (yt −Hµt|t−1)

])
.

(30)

Using eq. 27-29, it is straight forward to compute the means
and covariances of (yt −Hxt) and (yt −Hµt|t−1),

(yt −Hxt) ∼ N ((H∗ −H)µ∗
t|t−1,

(H∗ −H)TΣ∗
t|t−1(H

∗ −H) +R∗) (31)

(yt −Hµt|t−1) ∼ N (H∗µ∗
t|t−1 −Hµt|t−1,S

∗
t ). (32)

Given these distributions, it is useful to define the fol-
lowing variables ∆H = H∗ −H and ∆y = (H∗µ∗

t|t−1 −
Hµt|t−1). Therefore, we can define the EGIG as:

EGIG(d,M,M∗) =

1

2

(
log

| St |
| R |

− Tr[R−1∆HΣ∗
t|t−1∆

T
H ]− Tr[R−1R∗]

+ Tr[S−1
t S∗

t ]− µ∗T
t|t−1∆

T
HR−1∆Hµ∗

t|t−1

+∆T
y S

−1
t ∆y

)
. (33)

Infinite Horizon: For the infinite horizon case for inferring xt

we know that our prior and posterior are Gaussian. Therefore,
when computing the EGIG we can use the expression in
eq. 7 and then compute the expectation over observations
Yt ∼ p(Yt|M∗). Here, r(X) is p(xt | Yt, d,M∗), p(X) is
p(xt | Yt, d,M), and q(X) is p(xt | M). By inspection,
we see again that the only terms that depend on Yt are the
quadratic terms. Therefore, we begin with those terms.

First, we note the asymptotic results: Σt|t → ΣD, Σ∗
t|t →

Σ∗
D, Σt|0 → ΣL, µt|0 = 0, and µ∗

t|t
t→∞∼ N (0,Σ∗

L−Σ∗
D).

This gives us:

Ep(Yt|M∗)

[(
µ∗

t|t − µt|0

)T
Σ−1

L

(
µ∗

t|t − µt|0

)]
= Tr

[
Σ−1

L (Σ∗
L −Σ∗

D)
]
. (34)

For the second expectation, we again rely on results pre-
sented in detail in Appendix VI-A. First, Ep(Yt|M∗)[µ

∗
t|t −

µt|t] = 0. Second, therefore,

Ep(Yt|M∗)

[(
µ∗

t|t − µt|t

)T
Σ−1

D

(
µ∗

t|t − µt|t

)]
= Tr[Σ−1

D M∆]. (35)

M∆ = Cov(µ∗
t|t − µt|t) = [−I I]M [−I I]T (36)

where M , the asymptotic covariance matrix of [µt|t µ
∗
t|t]

T ,
is the solution to the Lyapunov equation given by:

M = AMAT +Q (37)
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A =

(
(I −KH)A KH∗A∗

0 A∗

)
(38)

Q =

(
KS∗KT KS∗K∗T

K∗S∗KT K∗S∗K∗T

)
(39)

Therefore, using these two equations we arrive at the EGIG
for the infinite horizon system,

EGIG(d,M,M∗) = Ep(Yt|M∗)

[
Ip(xt|Yt,d,M∗)[p(xt | Yt, d,M) || p(xt | M)]

]
→

1

2

(
Tr[Σ−1

L Σ∗
L]− Tr

[
Σ−1

D (Σ∗
D +M∆)

]
+ log

| ΣL |
| ΣD |

)
as t → ∞. (40)

C. Expected Discriminatory Information

While EIG measures efficiency and EGIG measures ro-
bustness, we introduce the Expected Discriminatory Infor-
mation (EDI) criteria to quantify how well an experiment
can identify modeling failures. As such, unlike EGIG which
is focused on comparing the Bayesian inference solution in
the domain of the states x, EDI compares them in the data
domain, y. Therefore, we can compare models that have
different states and forms, e.g., different number of states.
The EDI takes inspiration from the use of Bayes factors
to compare models. Therefore we define the EDI as the
expected Bayes factor given data from a true model M∗:

EDI(d,M,M∗) = DKL

[
p (Y | d,M∗) ||p (Y | d,M)

]
=

∫
p (Y | d,M∗) log

p (Y | d,M∗)

p (Y | d,M)
dY. (41)

For filtering where Yt = {y0 . . . yt}, we can express the
EDI using an iterative update leveraging a similar strategy
for computing model evidence using a Bayesian filter,

EDI(d,M,M∗, t)

= Ep(yt,Yt−1|d,M∗)

[
log

p (yt | Yt−1, d,M∗)

p (yt | Yt−1, d,M)

]
+ Ep(Yt−1|d,M∗)

[
log

p (Yt−1 | d,M∗)

p (Yt−1 | d,M)

]
= Ep(Yt-1|d,M∗)[DKL (p(yt |Yt-1, d,M∗) ||p(yt |Yt-1, d,M))]

+ EDI(d,M,M∗, t− 1). (42)

Since the EDI is just a KL divergence, for the linear
systems we have been studying in this paper, it is fairly
straight forward to express it with the various quantities
we have already derived. Therefore, we will state the main
results without tenuous algebraic manipulation.

Single Step Update: For a single time step where data is
generated by true process model p(yt | d,M∗), (see yt

marginal of eq. 27), but we are evaluating M according to

p(yt | d,M) (see eq. 29), we can compute the KL divergence
for these Guassian distributions using eq. 5. Giving us:

EDI(d,M,M∗) =

1

2

(
Tr[S−1

t S∗
t ] + log

| St |
| S∗ |

+∆T
y S

−1∆y − s
)
.

(43)

s is the number of observations, e.g., sensors. Here we
recall that ∆y = (H∗µ∗

t|t−1 − Hµt|t−1) and emphasize
that µ∗

t|t−1 and µt|t−1 need not be the same dimension since
the comparison is happening in the data space.

For the special case were H∗ = [H,∆], the state of
the model M∗ is x∗

t = [xt, δt]
T , µδ,t|t−1 = E[δt|t−1], and

Cov(x∗
t ) = Diag[Σt|t−1,Γt|t−1], e.g., the augmented states

are independent of other states. Then,

EDI(d,M,M∗) =
1

2

(
Tr[S−1

t ∆Γt|t−1∆
T ]

− log |I+ S−1
t ∆Γt|t−1∆

T |+ µT
δ,t|t−1∆

TS−1
t ∆µδ,t|t−1

)
(44)

Infinite Horizon: For the asymptotic case, we may choose
to ask a slightly different question when assessing the EDI.
Instead of asking about a single yt we can ask about the
full trajectory Yt = {y0 . . . yt}. Therefore to compute the
EDI, we look to eq. 42. Under the previous assumptions
of asymptotic stability, since we know that the predictives
converge and are independent of the observations Yt, we can
expect the first term in eq. 42 to converge to a constant which
we call ∆EDI. Therefore we expect EDI(d,M,M∗, t) →
t∆EDI as t → ∞ unless ∆EDI = 0, meaning that there is
only a finite amount of information to discriminate between
the models based on the experiment even in the infinite
horizon case. Therefore, ∆EDI is the critical quantity for
understanding the asymptotic EDI. Using the expression for
the Guassian KL divergence, eq. 5 and taking the expectation
using the asymptotic results found in Appendix VI-A, we
find

∆EDI = lim
t→∞

Ep(Yt-1|d,M∗)[
DKL (p(yt |Yt-1, d,M∗) ||p(yt |Yt-1, d,M))

]
=

1

2

(
Tr[S−1S∗] + log

| S |
| S∗ |

+ Tr
[
S−1MS

]
− s
)
.

(45)

We recall that S and S∗ are the stationary predictive
covariances for an observation using design d for the models
M and M∗ respectively. The matrix MS is given by,

MS = Cov(H∗µ∗
t|t−1 −Hµt|t−1)
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=
[
−HA H∗A∗

]
M
[
−HA H∗A∗

]T
(46)

where M is the joint asymptotic covariance matrix of µt|t
and µ∗

t|t and is the solution to the previously specified
Lyapnuov equation, eq. 37.

IV. EXAMPLES

A. Spring Mass Damper System

m1 m2

k1 k2 ka

c1 c2 ca

x1 x2

Fig. 1. Spring-Mass-Damper System with unknown second mass.

Fig. 1 shows a damped spring-mass system. The equations
of motion for this system are,1 0 0 0

0 1 0 0
0 0 m1 0
0 0 0 m20

 d

dt


x1

x2

v1
v2

 =

 0 0 1 0
0 0 0 1

−(k1 + k2) k2 −(b1 + b2) b2
k2 −(k2 + k3) b2 −(b2 + b3)



x1

x2

v1
v2


(47)

where x1, x2 denote the positions of the masses from their
rest location. The variables v1, v2 denote their linear ve-
locities respectively. The spring constants are k1, k2, k3 and
the damping coefficients are b1, b2, b3. This continuous time
linear system (CTLS) is then discretized for our analysis.

By analyzing the system we can see that under the
conditions of high k3 stiffness, low m2 mass, or high b3
damping, that the two-mass system should behave close to
a single-mass system. Therefore, under these conditions, we
would expect the ∆EDI criteria to become small when M
is the one-mass system and M∗ is the two-mass system. We
see in panel A of Fig. 2 that ∆EDI indeed decreases as we
increase the stiffness k3.

We now consider choosing an observer design d ∈ [0, π/2]
to observe the position and velocity of the known mass, m1,
while balancing ∆EDI and EIG. Our, admittedly arbitrary,
observer measures the position and velocity of m1 with
weights cos(d) and sin(d) respectively. The asymptotic EIG
objective seeks to maximize information about the position
and velocity of m1 according to M. The ∆EDI objec-
tive seeks to maximize our ability to asymptotically detect
whether M is plausible versus M∗. Of course we don’t
know M∗ during the design phase so instead we average
∆EDI over a prior range of stiffnesses from panel A of Fig.
2. We see how EIG varies over the designs as the navy-
blue curve in Fig. 2, panel B, while the mean ∆EDI is

Fig. 2. Observer design and analysis for the spring mass system. Here, the
true model M∗ is a two mass system while the inference model M is the
single mass system. Panel A shows how increasing the stiffness decreases
our ability to distinguish between the models. Panels B and C show the
trade off between EIG and ∆EDI over our design variable.

shown as the orange curve. The trade off between these
quantities is show in panel C. Depending on the importance
of discrimination vs performance, we may choose either to
only observe the velocity (maximizing EIG) or to sacrifice
some EIG to gain better discrimination power by choosing
mixed sensor design.

B. F-16 Model
We use an F-16 aircraft model from [13] and [14]. This

system originally has 12 states of which we pull out the

Fig. 3. F-16 model aircraft with specified states.

longitudinal dynamics with states (see Fig. 3): θ (pitch
angle), V (velocity), α (attack angle), θ̇ and controls: T
(thurst), δele (elevator angle). We form a reduced-order CTLS
using the closed loop system, which is then discretized.
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For this model, we seek to add an additional output
to the observer. This new output has the arbitrary form
ynew = d1θ + d2α + d3θ̇, where d21 + d22 + d23 = 1. When
considering these designs, we seek to balance maximizing
asymptotic EIG while minimizing asymptotic EGIG. The
inference model, M, is the F-16 model with dynamics A,
but the true model, M∗, has dynamics A∗ = A +∆ ⊙A.
So, A∗ has perturbations scaled relative to A. Because ∆ is
unknown, we minimize the sensitivity of EGIG to changes of
∆. Therefore, our metric is the norm, ||∇∆EGIG(d1, d2)||.
The result is summarized in Fig. 4. Panel A shows the
trade off of different designs between EIG(d1, d2) and
||∇∆EGIG(d1, d2)|| and the Pareto front of optimal designs
(purple). We see that the EGIG is much more sensitive to
the design than the EIG, i.e., EGIG varies by about a factor
of 4. Therefore, for a robust design we may sacrifice a little
asymptotic EIG for meaningful improvement in robustness.
Panels B and C show the EIG and the EGIG projected on
the design space along with the corresponding Pareto set.

We have made the codes to these examples available on
GitHub[15].

Fig. 4. Observer design for simplified F-16 model. The true model M∗

is a small perturbation, ∆, in the dynamics from the inference model M.
We explore the addition of a new output, ynew = d1θ+d2α+d3θ̇ where
d3 is constrained by d1 and d2. We measure the improved performance
using EIG(d1, d2) and robustness using the sensitivity of EGIG e.g.,
||∇∆EGIG(d1, d2)||. Panel A shows the trade off between these two
criteria for different designs. Panels B and C show the projection of these
criteria on to the design space.

V. CONCLUSION

Maximizing the value of data for inference and predic-
tion requires the careful selection of experimental condi-
tions by modeling the experiment. These models are prone
to misspecifications. We propose an information theoretic
framework that extends the notion of Expected Information

Gain (EIG), typically used in Bayesian experiment design, to
address the model mismatch issue. The proposed Expected
Generalized Information Gain (EGIG) captures the informa-
tion gain or loss with respect to a true model, when the
experiment’s design is based on a model with discrepancy.
On the other hand the proposed Expected Discriminatory
Information (EDI) discriminates between models based upon
the data generated, which further aids in model refinement.
These three metrics are complementary as the EIG em-
phasizes data efficient experiments, the EGIG emphasizes
experiments that lead to results that are robust to model
discrepancy, and the EDI emphasizes experiments that would
detect modeling failures.

For our future work we aim to develop a computational
solver for assessing metrics within nonlinear systems and
investigating the feasibility of its computational expense.
Our objective is to establish correlations with alternative
robustness measures like H∞, widely employed in control
filter and observer design. Additionally, we aim to integrate
the identification of worst-case scenarios, a departure from
our current sensitivity metrics approach.
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VI. APPENDIX

A. Asymptotic Distribution of Inferred Means
Suppose we have a true model of a discrete time, asymp-

totically stable, linear dynamical system whose variables
are denoted with a superscript ∗, while the model used
for inference has variables without any superscript. Using
a Kalman filter, the inferred mean is then given by,

µt = Aµt−1 +K (Yt −HAµt−1)

= (I −KH)Aµt−1 +KH∗A∗µ∗
t−1 +Kζ∗. (48)

Here Yt ∼ N
(
H∗A∗µ∗

t−1, S
∗), so ζ∗ ∼ N (0, S∗).

Similarly, we can define the evolution of mean of the true

dynamical system under Kalman filtering as:

µ∗
t = A∗µ∗

t−1 +K∗ (Yt −H∗A∗µ∗
t−1

)
= A∗µ∗

t−1 +K∗ζ∗ (49)

First, we note that E[µt] = E[µ∗
t ] = 0, where the ex-

pectation is taken over asymptotically long sample trajec-
tories of the true dynamical system. Second, we note that
E[µt−1ζ

∗T ] = E[µ∗
t−1ζ

∗T ] = 0, i.e., they are independent.
This comes from the fact that only µt−1 and µ∗

t−1 are
functions of the trajectory and not ζ∗, or in other words,
all the information about the trajectory is captured in the
mean estimates. Finally, we note that K and K∗ are known
for the asymptotic case by solving the respective DAREs,
eq. 16-17. With that we can express the second moments of
µt and µ∗

t as:

Mt =

(
E[µtµ

T
t ] E[µtµ

∗T
t ]

E[µ∗
tµ

T
t ] E[µ∗

tµ
∗T
t ]

)
. (50)

In order to solve for the second moments, we define:

A =

(
(I −KH)A KH∗A∗

0 A∗

)
, (51)

Q =

(
KS∗KT KS∗K∗T

K∗S∗KT K∗S∗K∗T

)
. (52)

Then we can solve for the moments as:

Mt = AMt−1AT +Q. (53)

Therefore, for the asymptotic case, we can solve the follow-
ing Lyapunov equation to find the asymptotic second-order
moments,

M = AMAT +Q, (54)

giving us the result that asymptotically:(
µt

µ∗
t

)
∼ N (0,M) . (55)

Special case A = A∗: For the simpler case when we only
have one model, the true model, we have the simplified
equation given by:

M∗ =A∗M∗A∗T +K∗S∗K∗T

=A∗M∗A∗T +A∗P ∗
DA∗T +Q− P ∗

D

=⇒ M∗ + P ∗
D = A∗(M∗ + P ∗

D)A∗T +Q, (56)

the substitution K∗S∗K∗T = A∗P ∗
DA∗T +Q − P ∗

D can
be found using the matrix inversion lemma and knowing
that P ∗

D is the solution to eq. 12 for the asymptotic case.
We observe that eq. 56 is a Lyapunov equation. Thus since
we know that P ∗

L is the solution to the Lyapunov equation
for this system. Therefore,

M∗ = E[µ∗
tµ

∗T
t ] = P ∗

L − P ∗
D. (57)
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