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Abstract— It is once said that ’He who wishes to be obeyed
must know how to command.’ Inspired by this saying, the
dynamics of the partially known flexible motion system are
considered in the making process of the desired trajectory
signals it has to follow by exploiting systems and signals
relations. Accordingly, the trajectory generator system activates
the motion of the driven system whose tracking performance
inhibits the generator and forces it to modify its trajectories
while ensuring the desired motion requirements are met.
Using singular perturbation theory, a near optimal trajectory
generator system is designed, and with the aid of a suitable
state observer a cascaded head-to-tail activator-inhibitor system
configuration is realized. Essentially, the closed-loop error is
fed-back to the trajectory generation process rather than using
a limited feedforward controller alone based on the partially
known dynamics. The superiority of the proposed technique
is compared to the Sine-Squared motion trajectory, and its
performance is evaluated through simulation.

I. INTRODUCTION

Typically, precision motion systems follow desired tra-
jectories that are designed offline to fulfill their assigned
tasks [1], [2]. Various techniques can be used to design these
trajectories such as polynomials [3], and input shapers [4]. In
point-to-point positioning, the motion system passes through
a sequence of points where the system first accelerates to a
prescribed constant velocity during one phase, maintaining
that velocity for some time, and then decelerates to reach
the (usually zero) terminal velocity. In general, motion
systems are flexible [5], [6], which may hinder the attainable
precision when their structural modes are excited [7]. When
these modes are known, the effect can be foreseen during
the design of the desired trajectories [8]–[10], otherwise,
they have to be identified first, c.f. [8]. Also, un-modeled
disturbances may affect the positioning process severely, and
therefore, have to be rejected.
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Inversion-based feedforward controllers are essential in
motion systems [11], where the system inverse is used in
a feedforward controller handles the predefined and supplied
trajectory signals [11], [12]. Desiring a priori nature of the
trajectories, c.f. [13], makes them known [14], [15], and
therefore, can be shaped [10], or optimized [13] to suit the
known dynamics of the motion system, including the known
structural modes. In this study, the authors believe that the
nature of these trajectories signals is yet to be determined.
As for disturbance rejection, feedback controllers are also
needed [2] such that acceptable levels of system robustness
and disturbance rejection capabilities are obtained.

As stated earlier, in typical point-to-point motion, the
motion system undergoes transitions through mainly three
phases, i.e., acceleration, constant velocity, and deceleration
phases. For time-critical applications like wafer scanners
used in the production of computer chips, the first and last
phases are considered non-productive [14], and therefore,
have to be optimized [14]. The constant speed phase is
considered the productive phase during which the system-
assigned task takes place. Examples of standard motion
profiles can be found in [13], where some profiles utilize
more than three intervals to include the imposed kinematical
constraints.

To optimize the acceleration and deceleration phases, the
concept of minimum energy can be used with the multi-
interval trajectory-making process [16]. In such a process,
energy is minimized in any given open sub-interval while the
specified motion requirements given in the form of boundary
conditions dominate at the ends of that sub-interval. When
these intervals have finite time, mainly near-optimal trajec-
tories can be obtained. To that end, a system singularly
perturbed version of its known dynamics must appear in the
definition of the trajectory generator system, where the fast
subsystems of the singularly perturbed system have longer
intervals compared with their dynamics, while their boundary
layers appear in the solution of the slow subsystem [16]. This
allows the concept of minimum energy to be valid even after
the operation time of the driven motion system is optimized.
Unfortunately, in many cases, the dynamics of the driven
system are only partially known. Consequently, the near-
optimal trajectories are not only affected by the interval’s
time horizons but also by the available information about
the system dynamics.

According to the system known dynamics, and as ex-
plained in [17], motion requirements in the form of boundary
conditions are imposed on an interval within a multi-interval
motion trajectory profile. Consequently, the trajectory gener-
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ator system will generate (near) optimal desired trajectories
based on a singularly perturbed version of the motion sys-
tem dynamics. To improve the results obtained in [17] by
specifically addressing the unknown dynamics of the driven
motion system and any active disturbances, we propose the
activator-inhibitor configuration that is inspired by pattern
formation [18] and morphogenesis [19] and is viewed as a
cascaded system of the inhibitor, i.e., the motion system, and
the activator, i.e., trajectory generator, such that the activator
adjusts its trajectories on-line based on the inhibitor status in
a way that ensures meeting the desired motion requirements.
The performance of [17] is compared to the Sine-Squared
motion profile when both benefit from the proposed method
under no kinematical constraints. Accordingly, the advantage
of trajectory generation using [17] is highlighted, and the
possibility of using the herein proposed method indepen-
dently of [17] is demonstrated.

The problem formulation, driven motion system dynamics,
system configurations, and various aspects of the proposed
technique are presented in Section II followed by the sim-
ulation results and discussion in Section III. Final remarks
and future work to extend the applicability of the proposed
method are given in Section IV.

II. PROBLEM FORMULATION

A. Mathematical Model

Consider the motion of a generic flexible and friction-
free system (ΣG) depicted in Fig. 1a- without disturbances
(d = 0)- given as [5], [6], [17]

ΣG :=
pa(s)

u(s)
=

1

mt s2
+

1

mt

N∑
i=2

ᾱi

s2 + 2 ζ̄i ω̄i s+ ω̄2
i

(1)

where the total mass is denoted by mt =
∑N

i=1 mi, with
N flexible modes having damping ratios ζ̄i and natural
frequencies ω̄i with ᾱi attainable via modal analysis, and
the system input and actual output denoted by u, pa without
disturbances d = 0, respectively.

The system ΣG can be written as [11], [17]

ΣG :=

{
ẋG(t) = AG xG(t) +BG u(t)

pa(t) = CG xG(t)
(2)

where the system dynamical states are xG ∈ RnG×1, the
system input is u ∈ Rm×1, its output is pa ∈ R, and
the matrices AG,BG and CG are defined with suitable
dimensions. According to Fig. 1a, Σ1 is given as

Σ1 :=

{
ẋ(t) = Ax(t) +B pd(t)

pa(t) = C x(t) = x1

(3)

where the aggregated state vector x =
[
xT
G,x

T
c ,x

T
f

]T
∈

Rw×1, with no disturbance, and the corresponding matrices
are given as [17]

(a)

(b)

Fig. 1: Block diagram representations of the motion system
under feedforward-feedback control scheme with (a) Σ2 →
Σ1 open-loop, and (b) Σ2 ↔ Σ1 head-to-tail closed-loop
interactions.

A =


AG −BG DC CG BG CC BG CF

−BC CG AC 0

0 0 AF



B =


BG (DC +DF )

BC

BF

 , C = [CG,0,0]

(4)

and the subsystems given as ΣG := (AG,BG,CG,0) with
associated states xG, ΣC := (AC ,BC ,CC ,DC) with asso-
ciated states xc ∈ Rc×1, and ΣC := (AF ,BF ,CF ,DF )
with associated states xf ∈ Rf×1. We assume that the
following assumption holds.

Assumption 2.1: The system Σ1 under the available
controllers is input-to-state stable.

According to Fig. 1a, the desired position pd is produced
by the trajectory generator system Σ2 whose dynamics are
given by

q̇i = qi+1, i = 1, 2, · · · , l − 1

q̇l = p
(l)
d

(5)

with q1 ≡ pd, and p
(l)
d denotes the lth time derivative of

pd that is designed to meet the motion requirements [14].
To ensure smoothness of the desired trajectories, usually
l ≥ 3 is used, i.e., finite jerk values. Note that in Fig.
1a, the Σ1 → Σ2 interaction occurs under an open-loop
configuration, which indicates that Σ2, i.e., the trajectory
generator, is not aware of the status of the driven motion
system Σ1. Specifically, the tracking error e1 = pd − pa ≡
q1−x1 does not show up in (5). This motivates us to look into
the Σ1 ↔ Σ2 head-to-tail closed-loop interaction depicted in

8852



Fig. 1b.
Remark 2.1: To enhance readability, matrices dimen-

sions are presented when needed, i.e., assumed conformable.
1) Activator-inhibitor cascaded system: To make Σ2

aware of Σ1 tracking error e1, let the dynamics of the track-
ing error estimate (ê) be given according to the following
state estimator (observer)

˙̂ei = êi+1 + βi (x1 − q1) , i = 1, 2, · · · , n− 1

˙̂en = σ̂ + βn (x1 − q1) + β0 (xn+1 − qn+1)

˙̂σ = βn+1 (x1 − q1)

(6)

with n ≤ min(nG, l) to be determined, q1, qn+1 are given
by (5), and the constants βi > 0 ∈ R, i = 0, 1, · · · , n+1 are
chosen such that (6) is stable, where β0 is chosen to reflect
the dependency on the available measurements x(n) ≡ xn+1.
The choice of n depends on the available measurements
(or estimates) of Σ1; for example when acceleration mea-
surements are available, 1 ≤ n ≤ 2 can be used in (6)
under which Σ2 will activate Σ1 using the modified desired
input (p̂d), and Σ1 will inhibit Σ2 using ê1 in a head-to-
tail activator-inhibitor interaction. Ultimately, it is desired to
reduce the tracking error e1 = pd − x1 by re-adjusting pd
such that x meets the motion requirements.

Let p̂d be given as

p̂d(t) ≡ q̂1 = q1(t)− ê1(t) (7)

with other modified kinematical quantities given as

q̂i = qi(t)− êi(t), i = 2, · · · , n (8)

therefore, in the frequency domain and using Laplace oper-
ator (s) with zero initial conditions, (6) is given as

ê1 =
(β0 s

n+1 + β1 s
n + β2 s

n−1 + · · ·+ βn+1) (x1 − q̂1)

(1 + β0) sn+1 + β1 sn + β2 sn−1 + · · ·+ βn+1

= Ge(s) (x1 − q̂1)
(9)

Using (7) in (9), yields

x1 = q1 +

{
1−Ge(s)

Ge(s)

}
ê1 (10)

Consequently, the constants βi > 0 should be chosen such
that (6) is stable, and ||Ge(j ω)||∞ is ideally close to unity
∀ω in the frequency domain of interest. Doing so results in
x1 = q1 as required. Interestingly, when βi in (6) is taken as
βi = γi/ϵ

(i) with 1 ≫ ϵ > 0, γi > 0 ∈ R and ϵ(i) denotes
ϵ to the ith power, then the link with high-gain observers
[20] is established where an estimate of the tracking error
e1 = pd − pa under open-loop configuration can be used
to adjust the desired input as given by (7) under activator-
inhibitor configuration.

2) Stability of the activator-inhibitor system: According
to lemma 4.7 in [21] and recalling Assumption 2.1, since
Σ1 is input-to-state stable, and the origin of Σ2, i.e., (6),

is globally uniformly asymptotically stable, then the origin
of the cascaded system Σ1 and Σ2 is globally uniformly
asymptotically stable.

B. Near-Optimal trajectory generator

Recalling Fig. 1a, to utilize the available information about
Σ1, and instead of using (5) with input shaping techniques
for example, let the desired trajectories q(t) be the output of
the singularly perturbed version of the trajectory generator
system Σ2 given as [17]

Σ2 :=

{
ϵ ζ̇(t̃) = AT ζ(t̃) +BT ũ(t̃)

q(t̃) = CT ζ(t̃)
(11)

where ϵ → 0 ∈ R, and t̃ is a scaled version of the time t
used in (3). Using (11), the herein proposed approach can
be generalized to other systems where the matrix AT needs
to reflect the available information about Σ1. More details
about (11) can be found in [17].

Fig. 2: An example of possible states evolution of position
x1, velocity x2, and acceleration x3 within three intervals,
where design requirements are imposed at the boundary
layers.

According to Fig. 2, a typical desired motion trajectory
comprises three main intervals, i.e. acceleration, constant
speed, and deceleration intervals. These trajectories capture
the evolution of (11) associated with the dynamical trajectory
generation system Σ2, which makes them stand out from
other reference trajectories usually obtained using signal
processing techniques, c.f. [3], [10], [14], [22], [23].

When ϵ → 0 then, the trajectory becomes closer to being
optimal, which clearly requires T getting larger. However, in
time-critical applications, nonproductive motion [14] usually
associated with acceleration and deceleration phases of mo-
tion has to be minimized to increase the application through-
put. This trade-off between trajectories optimality and ap-
plication throughput with enhanced tracking performance is
suitably handled using optimization [14]. As discussed in
[17], and ∀t ∈ [Ti−1, Ti], we have [24]

t̃ =
t− Ti−1

Ti − Ti−1
, ϵi =

1

Ti − Ti−1
(12)

Using t̃ ∈ [0, 1] instead of t ∈ [Ti−1, Ti], the index
function associated with (11) is given as
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J {i}
1 (t̃) =

1

2ϵi

∫ 1

0

{
ζT(t̃)Qi ζ(t̃) + ũT(t̃)Ri ũ(t̃)

}
dt̃

(13)

where the needed assumption given as in [16]. The boundary
value problem associated with (13) is given as

ϵi

 ζ̇(t̃)

λ̇(t̃)

 =

 AT −S

−Qi −AT
T

  ζ(t̃)

λ(t̃)

 (14)

where S = BTR
−1
i BT

T , and λ(t̃) denotes the available co-
states. According to [17], the near optimal solution of the
trajectory generator (11) ∀t̃ ∈ [0, 1] is given as

ζ(t̃) = e(AT−S P ) t̃/ϵi l
{i}
0 + e(AT−SN) (t̃−1)/ϵi r

{i}
1 (15)

with P ≥ 0 and N ≤ 0 with P − N > 0 as the roots of
the algebraic Riccati equation [16] given as

0 = AT
T P + P AT − P BT R−1

i BT
T P +Qi

0 = −AT
T N −N AT −N BT R−1

i BT
T N +Qi

(16)

which can be solved numerically using suitable algorithms
like Schur decomposition, c.f. [25].

Knowing ζ(0) and ζ(1) in the ith interval based on the
given design requirements, the needed values of l{i}0 and r

{i}
1

in (15) are given as

 l
{i}
0

r
{i}
1

 =

 I e−(AT−SN)/ϵi

e(AT−S P )/ϵi I

−1  ζ(0)

ζ(1)


(17)

Fig. 3: A multi-mass-spring-damper model of ΣG.

III. SIMULATION

Recalling ΣG depicted in Fig. 3 which corresponds to
one known rigid body mode and one known flexible mode.
According to (1), Its known dynamics model- with nG = 4-
is given as [8]

ΣG :=
pa(s)

u(s)
=

c2 s+ k2
a4 s4 + a3 s3 + a2 s2 + a1 s+ a0

(18)

where a4 = m1m2, a3 = (m1+m2)c2+m2c1, a2 = (m1+
m2)k2 + m2k1 + c2c1, a1 = (k1 + k2)c1 and a0 = k1k2.
Other un-modeled flexible modes are given in Table I.

Also, let Σc shown in Fig. 1a be a proportional-integral-
derivative (PID) controller given as

TABLE I: The coefficients of the simulated un-modeled and
supposedly unknown flexible modes according to (1).

i ᾱi/mt ζ̄i ω̄i

3 0.00019 0.05 49.00105

4 5e× 10−5 0.04973 82.88705

5 5e× 10−5 0.00494 340.12382

TABLE II: ΣG The desired motion requirements are defined
at the boundary layers of the motion profile [17].

States

Time Intervals

Interval 1 Interval 2 Interval 3

x
{1}
G0

x
{1}
GT

x
{1}
G0

x
{1}
GT

x
{1}
G0

x
{1}
GT

xG1
0 0.0152 0.0697 0.0849

xG2
0 0.25 0.25 0

xG3
0 0 0 0

xG4 0 0 0 0

ΣC := kp + ki
1

s
+ kd

s

τc s+ 1
(19)

with kp, ki and kd as the proportional, the integral, and the
derivative gains, respectively, and τc as the derivative-term
filter time constant. Moreover, let ΣF shown in Fig. 1a be
given as a series connection consisting of ΣG inverse, and
the filter given as

F (s) =

(
1

τf s+ 1

)nf

(20)

where τf > 0 ∈ R, and nf ≥ 3 ∈ Z is chosen to make ΣF

at least proper. According to [8], the following values are
used nf = 3, m1 = 42.5 kg,m2 = 8kg, k1 = 10N/m, k2 =
7N/m, c1 = 10N s/m, c2 = 80N s/m, and kp = 468, ki =
3.92× 105, kd = 1.4× 105, τc = 1× 10−4 and τf = 7.18×
10−5. More details about Σ1 depicted in Fig. 1 can be found
in [8].

Consider the main motion requirements specified in Table
II where at the end of interval 1, a displacement of 0.0152m
is to be achieved, a constant velocity of V = 0.25m/s is to
be maintained for a time interval of D = T2−T1 = 0.218 s,
which requires zero higher order time derivatives. Moreover,
we have T0 = t0 = 0, T = T1 − T0 = 0.1218 s. With
no kinematical constraints imposed, (13) is solved for each
interval with uniform values of Qi = 104 diag([1, 1, 10, 10]),
and Ri = 10, i = 1, 2, 3 that are manually tuned. Therefore,
Σ2 that generates a sub-optimal two-boundary (TB) motion
profile is obtained.

Recalling (5) and Fig. 1a, consider the desired jerk signal,
i.e., l = 3, p(3)d := q4 given as
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q4 =



γ sin2 (ω t), 0 ≤ t ≤ 1
2 T

−γ sin2 (ω (t− 1
2 T )),

1
2 T ≤ t ≤ T

0, T ≤ t ≤ T +D

−γ sin2 (ω (t− T −D)), T +D ≤ t ≤ 3
2 T +D

γ sin2 (ω (t− 3
2 T −D)), 3

2 T +D ≤ t ≤ 2T +D
(21)

where the desired motion requirements given in Table II are
satisfied under (21) using γ = 134.8141. Therefore, another
variant of Σ2 that generates a Sine-Squared (SS)- also known
as harmonic jerk model [13]- motion profile is obtained.

Fig. 4: The Bode plot of Ge in (22) using β1 ∈ {1000, 5000}.

Fig. 5: The tracking error of Σ1 under the open-loop con-
figuration using the SS, and the TB motion profiles in Σ2,
with no external disturbance, i.e., d = 0.

Interestingly, despite the fact that both studied trajectories
satisfy the desired motion requirements, and during their
making, the SS profile given by (21) is totally unaware of
the driven motion system dynamics, while the TB profile
given by (15) gives voice to the known driven system
dynamics. In real-time and under the open-loop configuration
depicted in Fig. 1a, both trajectories are unaware of any
deviation of the driven system taking place as a result of
un-modeled ΣG dynamics, or due to disturbances. To the
contrary, under the activator-inhibitor configuration depicted
in Fig. 1b, both trajectories get modified to adopt for these
deviations. Taking n = 2 ≤ min(4, 3), i.e., using the
acceleration measurements, yields

ê1 =
(β0 s

3 + β1 s
2 + β2 s+ β3) (x1 − q̂1)

(1 + β0) s3 + β1 s2 + β2 s+ β3
(22)

where β0 = 0.001, β1 ∈ {1000, 5000}, β2 = 1, and β3 =
0.2 are manually obtained such that the tracking error is
minimized by including extending the frequency range of
interest to include the supposedly un-modeled and unknown
flexible modes. Under the herein proposed approach, dedi-
cated algorithms utilizing the acceleration measurements [8],
will be investigated separately. The Bode plots of (22) are
depicted in Fig. 4.

Fig. 6: The tracking error of Σ1 under the activator-inhibitor
configuration using the SS, and the TB motion profiles in
Σ2, with no external disturbance, i.e., d = 0, and β0 =
0.001, β2 = 1, β3 = 0.2, β1 ∈ {1000, 5000}.

Fig. 7: The tracking error of Σ1 under the activator-inhibitor
configuration using the SS, and the TB motion profiles in
Σ2, with β0 = 0.001, β2 = 1, β3 = 0.2, β1 ∈ {1000, 5000},
and d = 0.0001 sin (100 t).

Utilizing the motion requirements given in Table II and
with d = 0, the tracking error e = q1 − x1 under SS and
TB motion profiles utilizing the open-loop configuration-
see Fig. 1a- is depicted in Fig. 5, while the tracking error
utilizing the head-to-tail configuration- see Fig. 1b- is de-
picted in Fig. 6. Comparing these results, it is clear that
the tracking performance is enhanced under the head-to-
tail configuration, especially when the available information
of the ΣG dynamics is utilized in creating the TB motion
profile. Moreover, Fig. 6 shows that the tracking performance
enhances as β1 is increased while fixing the other coefficients
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of Ge. This can be justified by the increased bandwidth of
Ge, i.e., the observer (6), that is depicted in Fig. 4 such
that the frequencies of the flexible modes are included in the
frequency of interest, and their effects can be captured by
both (7) and (8).

To test the effect of disturbances on the tracking per-
formance specifically under activator-inhibitor configuration,
consider the disturbance d = 0.0001 sin (100 t) acting on
Σ1 as shown in Fig. 1. As expected, this configuration
still exhibits outstanding performance- compared to the
performance of the open-loop configuration (not shown)-,
especially when the former utilizes β1 = 5000, and therefore
complements the role played by ΣC in rejecting disturbances.
The results are depicted in Fig. 7.

(a)

(b)

Fig. 8: The (a) position, and the (b) velocity states of
Σ2 under the activator-inhibitor configuration using the TB
motion profiles with β0 = 0.001, β2 = 1, β3 = 0.2, β1 =
5000, and d = 0.0001 sin (100 (t− 0.1)), t ≥ 0.1, obtained
using (7) and (8), when n = 2 is used.

The activator-inhibitor configuration enhances the tracking
performance by utilizing (7) and (8) to modify the desired
motion profile such that the effects of observed disturbances,
and un-modeled dynamics are considered. Such observations
can be obtained through sensory feedback measurements, or
state estimators, in general. To establish this, consider the
disturbance d = 0.0001 sin (100 (t− 0.1)), t ≥ 0.1 acting
on Σ1 under the activator-inhibitor configuration utilizing
the TB motion profile. The modified profiles q̂1 and q̂2 are
depicted in Fig. 8, where the modifications of q1 and q2
are clear after t ≥ 0.1 s. The associated kinematics of the

(a)

(b)

Fig. 9: The (a) position, and the (b) velocity tracking errors
of Σ1 under the open-loop configuration, and the activator-
inhibitor configuration using the TB motion profiles with
β0 = 0.001, β2 = 1, β3 = 0.2, β1 = 5000, and d =
0.0001 sin (100 (t− 0.1)), t ≥ 0.1, obtained using (7) and
(8), when n = 2 is used.

Fig. 10: Block diagram showing the LQI-like controller used.

Fig. 11: The tracking error of Σ1 under SS and TB motion
profiles when the LQI-like controller is used with d = 0.

tracking error, i.e., e, ė, are depicted in Fig. 9, where in Fig.
9b the constant velocity deviation during the period D is
minimum and given as 0.25 ± 0.005m/s, which is crucial
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to many applications including wafer scanners [1], [2].
Recalling the enhanced tracking performance of the SS,

and the TB motion profiles under the proposed activator-
inhibitor configuration shown for example in Fig. 6, it is
maybe tempting to consider its effect in isolation, i.e., by
having β0 = β2 = β3 = 0. This will result in a linear-
quadratic-integral (LQI) like the configuration shown in Fig.
10. Using β1 = 5000, the tracking error under the LQI-like
configuration with d = 0 is depicted in Fig. 11. Comparing
it with the tracking performance of the activator-inhibitor
configuration shown in Fig. 6 reveals the latter’s superiority
at least for the given set of βi, i = 0, 1, 2, 3.

IV. CONCLUSION

The partially known dynamics of the driven motion system
were used to design near-optimal motion trajectories in the
time domain using a given set of desired motion require-
ments. These requirements are specified at the boundaries
of well-identified intervals of the motion profile. The track-
ing performances under the proposed cascaded activator-
inhibitor configuration and a typical open-loop configuration
were investigated, where the performances of the resulting
near-optimal motion profile were compared to the perfor-
mance under the Sine-Squared- also known as harmonic
jerk model- motion profile. In the frequency domain, the
activator-inhibitor configuration was realized as a transfer
function whose coefficients were manually chosen to extend
its bandwidth such that the distorting effects of un-modeled
flexible modes, and active disturbances can be minimized
while keeping the original control loops intact. Also, the link
with linear quadratic regulators was highlighted.

Currently, we are developing a robust version of the pro-
posed technique to handle existing system uncertainties and
position-dependent behavior, and considering the adaptation
of an input-output perspective to equip the method with data-
driven machine-learning capabilities. Moreover, the use of
state estimators to facilitate increasing the order of Ge, the
comparison with specifically adaptive high-gain controllers,
along with hardware implementation issues, and the proper
choice of Ge coefficients will be handled in future work.
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