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Abstract— We analyze the convergence rate of Local Stochas-
tic Gradient Descent (SGD) for over-parameterized models,
which is at the core of federated learning. In this model,
we allow the server to randomly select a subset of agents
and communicate with them at each communication round to
optimize a global objective function. This captures the realistic
scenarios where the communication link between the server
and the agents may break down due to random link failures or
adversarial attacks. We establish convergence guarantees for
smooth objective functions without the convexity assumption
that is the first for the regime. We also consider an extension
of our results under a different random participation setting
over general network structures (rather than a star network) in
which an agent participates in the local optimization steps of its
neighbors by some edge-dependent probability. We characterize
the convergence rate of the proposed algorithm in terms of
the number of communication rounds, which confirms the
communication efficiency of our methods, and justify our results
through a numerical experiment.

I. INTRODUCTION

Distributed optimization has been an increasing trend in
the past few decades. This is largely due to recent devel-
opments in the control of multi-agent systems or emerging
applications in training large-scale machine learning models.
The traditional algorithms consist of centralized schemes
where the data is accumulated at the server for solving a
global optimization problem. However, in practical appli-
cations, these traditional algorithms have witnessed serious
limitations in handling massive datasets for various reasons,
such as limited centralized computational capabilities or
other privacy-related concerns. In that regard, distributed
optimization provides a powerful framework to handle large-
scale optimization problems while respecting privacy and
data ownership among the participating agents.

A major issue in distributed optimization is related to
communication efficiency between local agents as they col-
lectively optimize a global objective function [1], [2]. One
approach to address this issue is to use the Minibatch
Stochastic Gradient Descent (SGD) algorithm, in which the
model estimates the gradient step at the server by averaging
the stochastic gradient steps evaluated at each agent and
broadcast to each agent. The Minibatch SGD is well-known
and used in various applications [3], [4]. Lately, Local SGD
(Federated Averaging) [5], [6], a variant of Minibatch SGD,
has been trending and is noticed prominently. It reduces
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the communication cost by performing multiple local SGD
updates at clients before sending the information to the
server. During the communication round, the server com-
putes the average of the clients’ updates and broadcasts this
information back to the clients.

While the Local SGD algorithm assume all agents interact
with the server at each communication round to achieve
consensus, this assumption may not hold in many practical
applications. For instance, the communication links between
the agents and the server may fail due to adversarial attacks
or random cyber-physical link failures, hindering the local
agents not to have access to the most updated information
on the server. That imposes a delay between the agents’
updates which can further propagate over the entire system
through repeated interactions with the server. As a result,
the overall optimization performance would degrade due to
communication failures. In this work, we aim to evaluate to
performance of Local SGD under such a partial participation
setting to address this communication bottleneck between the
server and clients at each round.

A. Related Works

Local SGD is a building block for many optimization
algorithms and has been extensively used in applications
such as federated learning [7]. The good performance of
Local SGD in such applications is noticeable in simulations
[8] and prominent in other related problems such as mobile
keyboard prediction [9]. Moreover, the theoretical conver-
gence guarantees of Local SGD have been studied recently
in various settings [10]–[13]. In [14], the convergence rate of
O (1/nT ) was obtained for strongly convex loss functions,
where n is the total number of clients, and T is the total
number of iterations. Also, in [15], the convergence rate of
O(1/

√
nT ) was obtained for convex loss functions. More-

over, in [16], for non-convex loss functions, the convergence
rate of O(1/

√
nT ) is observed. The provided research work

is a considerable development in studying the theoretical
convergence of the Local SGD algorithm. However, these
works do not consider the theoretical performance of the
Local SGD for over-parameterization models that satisfy the
data interpolation assumption.

On the other hand, the previous works have shortcomings
in explaining the quick convergence of Local SGD compared
to Minibatch SGD, which was observed significantly in
large-scale deep learning models [8]. Also, in the i.i.d. set-
ting, i.e., when the local clients’ loss functions are identical,
the local SGD performs poorly compared to Minibatch SGD
in [17] in terms of lower bounds of convergence rate. This
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rate is hampered even more when used in heterogeneous
settings, i.e., when the local clients’ loss functions differ.
The slower convergence is observed due to “client drift” in
[14], and the Minibatch SGD oppresses every known Local
SGD analysis [17].

A key observation for using interpolation and over-
parameterized models in modern machine learning architec-
ture is discussed in [18]. The over-parameterized models in
modern machine learning are well used, in which the em-
pirical loss is nearly zero by interpolation of data. For such
models, the convergence rate is provided in [18], [19]. Also,
in [20], it has been discussed that the batch size plays a vital
role in the performance of SGD; if the selected batch size
is more than a certain threshold, the performance guarantee
is not affected. In [21], more local steps are incorporated
along with an overparameterized model to produce the
faster convergence of Local SGD for large-scale optimization
problems compared to the faster convergence of Minibatch
SGD. To the best of our knowledge, the performance of the
Local SGD for overparametrized models with agents’ partial
participation has not been studied in the past literature.

B. Contributions and Organization

In this work, we assume agents’ partial participation
in the Local SGD algorithm, i.e., we allow the server to
randomly select a subset of agents and communicate with
them at each communication round to optimize a global
objective function. This captures the realistic scenarios where
the communication link between the server and the agents
may break down due to random link failures or adversarial
attacks. Under the assumption of over-parameterized models
and partial participation, for nonconvex functions, the error
bound of O (K/T ) = O (1/R) was obtained, where R
is the number of communication rounds. According to our
knowledge, this is the first error bound under this setting.
Importantly, compared to the nonconvex case, the rates are
comparable with local SGD, and no sacrifice is observed
in terms of the magnitude of the rate. Before this work,
[21] provided convergence of O(1/R) for nonconvex loss
functions assuming full worker participation. Moreover, we
extend our results to more general communication networks
but under a slightly different partial participation setting
where each agent can communicate with a random subset
of its neighbors with i.i.d. edge selection probabilities.

In Section II, we describe the problem formulation. In
Section III, we describe the proposed algorithm and the
main theoretical convergence results for the star communi-
cation network with uniform partial participation. In Section
IV, we extend our results to general network architectures
with random edge-dependent partial participation among the
agents. We provide a numerical experiment in Section V,
and conclude the paper in Section VI.

II. PROBLEM FORMULATION

We consider a stochastic distributed optimization problem
in which a set [n] = {1, 2, . . . , n} of agents collaboratively

want to solve an unconstrained optimization problem

min
x∈Rn

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where fi (x) ≜ EDi [fi (x, ξi)] is a local deterministic
objective function and ξi denotes a random sample that agent
i selects from its local data set Ωi with distribution Di.
Moreover, we assume that there exists a global minimum f∗

for the optimization problem (1), and the function fi(x, ξi)
is L-smooth for each i ∈ [n]. In addition, we assume that the
gradient of fi (x, ξi), denoted by ∇fi (x, ξi) is an unbiased
stochastic gradient of fi(x), that is

EDi [∇fi (x, ξi)] = ∇fi(x).

In this work, we focus on an over-parameterized setting,
i.e., when the model can interpolate the data entirely so that
the loss at every data point is minimized simultaneously
(usually means zero empirical loss). Following [19], we
characterize the over-parameterized setting by the following
Strong Growth Condition (SGC).

Assumption 1: (Strong Growth Condition (SGC)). There
exists a constant ρ > 0 such that for any agent i ∈ [n] and
any x ∈ Rd, we have

Eξi∼Di ∥∇fi (x, ξi)∥2 ≤ ρ ∥∇f(x)∥2 . (2)
It is worth noting that in order to satisfy the SGC, at the

global optimum x∗ the local gradients computed at every
data point must be zero. This indicates that the model can
interpolate the data completely such that the loss at every
data point is minimized simultaneously .

In fact, Assumption 1 has been well explored in the
past literature. For instance, [19] provides some underlying
functions satisfying SGC, including the squared-hinge loss
function under additional assumptions on the data. More-
over, the SGC condition is often met in modern machine
learning applications such as deep neural networks and
kernel machines [18], [19]. In the next section, we will
proceed to introduce Local SGD with partial participation
for solving the optimization problem (1), and establish our
main convergence rate results under the SGC Assumption 1.

III. CONVERGENCE OF DECENTRALIZED SGD
A powerful method for solving the distributed optimization

problem (1) is the Local SGD algorithm, in which each
agent performs local gradient steps and sends the latest
model to the central server after every K steps. The server
then computes the average of all the agents’ parameters
and broadcasts the averaged model to all agents. However,
in many practical situations, not all agents are available at
every communication round for various reasons, such as
communication link failures, system delays, or adversarial
attacks. In such scenarios, one can consider a variant of the
Local SGD with agents’ partial participation that we shall
consider in this section.

More precisely, in Local SGD with partial participation,
the server performs R communication rounds before termi-
nating. During each communication round r ∈ {1, 2, . . . , R},
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Algorithm 1 Local SGD with Partial Participation
1: Input: x0, stepsizes ηl, ηg .
2: for r = 0, . . . , R− 1 do
3: The server samples agents Sr with |Sr| = S.
4: for each agent i ∈ Sr in parallel do
5: xi

r,0 = xr

6: for k = 0, . . . ,K − 1 do
7: Sample ξir,k, compute ∇fi(x

i
r,k, ξ

i
r,k).

8: xi
r,k+1 = xi

r,k − ηl∇fi(x
i
r,k, ξ

i
r,k)

9: end for
10: Let ∆i

r = xi
r,K − xi

r,0 and send ∆i
r to server.

11: end for
12: Server compute ∆r = 1

S

∑
i∈Sr

∆i
r.

13: xr+1 = xr + ηg∆r

14: end for

the server randomly selects a subset of agents Sr ⊆ [n] sat-
isfying |Sr| = S. Sr is randomly and independently selected
without replacement such that for each member in Sr, we
pick an agent from the entire set [n] uniformly at random
with equal probability. The selected agents independently
execute local gradient steps for K iterations in the form of

xi
r,k+1 = xi

r,k − ηl∇fi(x
i
r,k, ξ

i
r,k), k = 0, . . . ,K − 1.

At the end of each communication round, the server collects
the updated information from the participating agents and
performs a global update with the aggregation of local
updates in the form of

xr+1 = xr + ηg
∑
i∈Sr

(xi
r,K − xr).

The pseudo-code for the Local SGD algorithm with partial
participation is provided in Algorithm 1.

A. Convergence Rate Analysis

We now state our main results on the convergence rate
of decentralized SGD under over-parameterized settings. To
that end, let us first introduce some useful notations. Let
∆̄r be the average of agents’ updates during communication
round r as if all agents are performing local updates, i.e.,

∆̄r =
1

n

n∑
i=1

K−1∑
k=0

ηl∇fi(x
i
r,k, ξ

i
r,k).

Then, we have

Er[∆̄r] = Er[
1

n

n∑
i=1

K−1∑
k=0

ηl∇fi(x
i
r,k)].

Moreover, we define the following parameters

er = E[f(xr)]− f(x∗),

hr = E∥∇f(xr)∥2,

Vr =
1

n
E

n∑
i=1

K∑
k=1

∥xi
r,k − xr∥2,

which represent the expected optimality gap, the expected
gradient norm of xr, and the expected cumulative consensus
error among agents during communication round r, respec-
tively. It is worth noting that the randomness for agents’
partial participation contains two parts: the random sampling
and the stochastic gradient. However, in the following, we
shall use Er[·] to represent the expectation with respect to
both types of randomness, i.e., expectation conditioned on
the filtration adapted to the history of random variables {xr}
up till the start of communication round r.

We now state our main result on the convergence rate
of Local SGD under over-parameterized settings and partial
participation for non-convex functions.

Theorem 1: Let Assumption 1 hold. If we follow Algo-
rithm 1 with stepsize satisfying ηgηl ≤ 1

6LKρ and ηl ≤
1

4KLρ , we will have

min
0≤r≤R−1

E∥∇f(xr)∥2 ≤ 6(f(x0)− f∗)

KηgηlR
. (3)

Specifically, if we choose ηgηl =
1

6LKρ , we will have

min
0≤r≤R−1

E∥∇f(xr)∥2 ≤ 36Lρ(f(x0)− f∗)

R
.

Essentially, Theorem 1 establishes an O( 1
R ) convergence

rate of Local SGD for over-parameterized models under
the partial participation setting. This improves the previ-
ous results of O( 1√

R
) convergence rate of Local SGD

under the partial participation setting but without the over-
parameterizerd assumption [14], [22]. To prove Theorem 1,
we first establish the following useful lemma.

Lemma 1: Let Assumption 1 hold. If we follow Algorithm
1 with stepsize satisfying ηgηl ≤ 1

6LKρ , we have

er+1 ≤ er −
1

3
Kηgηlhr + L2ηgηlVr (4)

Proof: For simplicity of notation, we adopt the con-
vention that summations are always over k ∈ [K] or i ∈ [n]
unless stated otherwise. From the L-smoothness property we
have:

Er[f(xr+1)] = Er[f(xr + ηg∆r)]

≤ f(xr)− ⟨∇f(xr),Er[ηg∆r]⟩+
L

2
Er[∥ηg∆r∥2].

Using the fact that

Er[∆r] = Er[
1

S

∑
i∈Sr

∆i
r] = Er[∆

s1
r ] = Er[∆̄r],

we can write,

Er[f(xr+1)]

≤ f(xr)− ⟨∇f(xr),Er[ηg∆̄r]⟩+
L

2
Er[∥ηg∆r∥2]

= f(xr)−Kηgηl∥∇f(xr)∥2

+ ηg⟨∇f(xr),Kηl∇f(xr)− Er[∆̄r]⟩︸ ︷︷ ︸
A1

+
L

2
Er[∥ηg∆r∥2]︸ ︷︷ ︸

A2

. (5)
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We can bound the first term A1 as

A1 = ηg⟨∇f(xr),Kηl∇f(xr)− ηl
1

n

∑
i,k

∇fi(x
i
r,k)⟩

= ⟨
√
Kηgηl∇f(xr),

√
ηgηl
K

(
1

n

∑
i,k

(∇fi(x
i
r,k)−∇fi(xr)))⟩

≤ 1

2
Kηgηl∥∇f(xr)∥2

+
ηgηl
2K

∥ 1
n

∑
i,k

(∇fi(x
i
r,k)−∇fi(xr))∥2

≤ 1

2
Kηgηl∥∇f(xr)∥2

+
ηgηl
2n

∑
i,k

∥∇fi(x
i
r,k)−∇fi(xr)∥2

≤ 1

2
Kηgηl∥∇f(xr)∥2+

L2ηgηl
2n

∑
i,k

∥xi
r,k − xr∥2.

Moreover, we can bound the second term A2 as

A2 ≤ LK

2S
η2gη

2
l Er[

∑
k,i∈Sr

∥∇fi(x
i
r,k, ξ

i
r,k)∥2]

=
LK

2S
η2gη

2
l

S

n
Er[

∑
k,i

∥∇fi(x
i
r,k, ξ

i
r,k)∥2]

(2)
≤ LKρ

2n
η2gη

2
l Er[

∑
k,i

∥∇f(xi
r,k)∥2]

≤ LKρ

n
η2gη

2
l Er[

∑
k,i

(∥∇f(xr)∥2+∥∇f(xi
r,k)−∇f(xr)∥2)]

≤ LK2ρη2gη
2
l ∥∇f(xr)∥2

+ L3Kρη2gη
2
l

1

n
Er[

∑
i,k

∥xi
r,k − xr∥2],

where in the second inequality we have used the SGC
Assumption 1. By substituting the bounds obtained for A1

and A2 into (5) and taking expectation from both sides, we
can write

E[f(xr+1)] ≤ E[f(xr)]

−Kηgηl(
1

2
− LKρηgηl)E[∥∇f(xr)∥2]

+
L2ηgηl

n
(
1

2
+ LKρηgηl)E[

∑
i,k

∥xi
r,k−xr∥2]

≤ E[f(xr)]−
1

3
KηgηlE[∥∇f(xr)∥2]

+
L2ηgηl

n
E[
∑
i,k

∥xi
r,k−xr∥2],

where the last inequality is due to the stepsize condition
ηgηl ≤ 1

6LKρ . This completes the proof.

Next, we need the following lemma to bound the cumu-
lative consensus error Vr.

Lemma 2: Let Assumptions 1 hold. If we follow Algo-
rithm 1 with stepsize ηl ≤ 1

4KLρ , then,

Vr ≤ 20K3ρη2l hr. (6)

Proof: For any i ∈ [n] and k ∈ [K], we have

Er[∥xi
r,k − xr∥2]

= Er[∥xi
r,k−1 − xr − ηl∇fi(x

i
r,k−1, ξ

i
r,k−1)∥2]

≤ (
2K

2K − 1
)Er[∥xi

r,k−1 − xr∥2]

+ 2Kη2l Er[∥∇fi(x
i
r,k−1, ξ

i
r,k−1)∥2]

(2)
≤ (

2K

2K − 1
)Er[∥xi

r,k−1− xr∥2]

+ 4Kρη2l ∥∇f(xr)∥2

+ 4KL2ρη2l Er[∥xi
r,k−1 − xr∥2]

≤ K

K − 1
Er[∥xi

r,k−1 − xr∥2]

+ 4Kρη2l ∥∇f(xr)∥2,

where the second inequality holds by the SGC Assumption
1 and the last inequality uses the fact that ηl ≤ 1

4KLρ .
Unrolling the above inequality recursively, we get

Er[∥xi
r,k − xr∥2] ≤ 4Kρη2l ∥∇f(xr)∥2 ·

k−1∑
p=0

(1 +
1

K − 1
)p

≤ 4Kρη2l ∥∇f(xr)∥2K((1+
1

K−1
)K−1)

≤ 20K2ρη2l ∥∇f(xr)∥2.

Therefore, we can write

1

n

∑
i,k

Er[∥xi
r,k−xr∥2] ≤ 20K3ρη2l ∥∇f(xr)∥2.

Taking unconditional expectations from both sides and using
the definition of hr completes the proof.

Using the above lemmas, we are now ready to prove
Theorem 1.

Proof of Theorem 1: By summing inequality (4) over
r = 0, . . . , R− 1, we obtain

1

3
Kηgηl

R−1∑
r=0

hr ≤ e0 − eR + L2ηgηl

R−1∑
r=0

Vr

(6)
≤ e0 + L2ηgηl

R−1∑
r=0

20K3ρη2l hr

≤ e0 +
1

6
Kηgηl

R−1∑
r=0

hr,

where the second inequality uses Lemma 2 and the last
inequality is due to the fact that ηl ≤ 1

11KLρ . Therefore,
we have

1

6
Kηgηl

R−1∑
r=0

hr ≤ e0,

which also implies

min
0≤r≤R−1

hr ≤ 6e0
KηgηlR

.

This completes the proof of Theorem 1.
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IV. EXTENTION TO NETWORK SETTING

The analysis of the previous section can be viewed as
a decentralized SGD over a star network with one center
node (server) and n leaf nodes (agents). Therefore, a natural
question is on how to extend our convergence rate results
to general network structures with over-parameterized mod-
els. Unfortunately, extending the uniformly sampled partial
participation setting to general network structures seems
quite challenging due to the high correlations that may
occur between the neighboring agents. For that reason, and
motivated by applications such as random link failures in
communication networks, in the section, we focus on Local
SGD with a different partial participation setting and provide
a theoretical convergence guarantee for general network
structures.

More precisely, we consider the case where an agent can
only exchange information (through gossip averaging) with
its neighboring agents in a fixed communication network.
However, due to random link failures or adversarial attacks,
each link in this communication network has a probability
p of failure at any given timestep. We assume that the
probability of each link failing is independent of the others.
Suppose the fixed underlying communication network is
encoded by a symmetric doubly stochastic mixing matrix
W = (wij), where wij corresponds to the weight that agent
i is influenced by agent j at each communication. Then,
at every iteration t = 1, 2, . . ., Decentralized SGD can be
summarized as the following:

• i) the current communication network is observed and
encoded into a mixing matrix denoted by W t.

• ii) each agent performs stochastic gradient updates
locally based on ∇fi(x, ξi).

• each agent performs consensus operations, where agents
average their values with their neighbors.

The weight matrix W t at time t is constructed in the
following way:

∀i ̸= j,W t
i,j =

{
Wi,j if link (i, j) does not fail,
0 otherwise.

∀i,W t
i,i = 1−

∑
j ̸=i

W t
i,j

The pseudo-code for the decentralized SGD algorithm is
provided in Algorithm 2. In order to analyze the conver-
gence rate of Decentralized SGD, we need the following
mild assumption on the connectivity of the underlying fixed
network.

Assumption 2: The mixing matrix W is symmetric and
doubly stochastic, i.e., wij ≥ 0, wij = wji,W1n = 1.
Moreover, there exists a constant q ∈ [0, 1) such that for
all vector x ∈ Rn satisfying 1T

nx = 0, we have1

∥Wx∥2 ≤ q∥x∥2. (7)

1Here, q is related to the spectrum of W .

Algorithm 2 Decentralized SGD
1: Input: x0

i = x0 for i ∈ [n], total number of iterations T ,
step-size η and the mixing matrix W .

2: for t = 0, . . . , T − 1 do
3: Observe current network and encode W t

4: for i = 1, . . . , n do
5: Sample ξti , compute gt

i := ∇fi(x
t
i, ξ

t
i)

6: x
t+ 1

2
i = xt

i − ηgt
i

7: xt+1
i =

∑n
j∈N t

i
wt

jix
t+ 1

2
i

8: end for
9: end for

We can then derive the following proposition based on
Assumption 2.

Proposition 1: Let W̃ = E[Wt]. Then, W̃ is a symmetric
and doubly stochastic matrix. Moreover, let q̃ = (1− p)q +
p ∈ [0, 1). Then, for all vectors x ∈ Rn satisfying 1T

nx = 0,
we have

∥Wx∥2 ≤ q̃∥x∥2.
Proof: The expected matrix W̃ can be computed as

W̃i,j = (1− p)Wi,j if i ̸= j,

W̃i,i = Wi,i + p(1−Wi,i).

From the above expressions, it is easy to verify that W̃ is a
symmetric and doubly stochastic matrix. Moreover, ∀x ∈ Rn

satisfying 1T
nx = 0, we have

(W̃x)i =
∑
j

W̃i,jxj

=
∑
j ̸=i

(1− p)Wi,jxj + (p+ (1− p)Wi,i)xi

= (1− p)(Wx)i + pxi.

Using Jensen’s inequality, we can write

(W̃x)2i ≤ (1− p)(Wx)2i + px2
i .

Finally, using the above relation together with Assumption
2, we can write

∥W̃x∥2 ≤ (1−p)∥Wx∥2 + p∥x∥2
(7)
≤ ((1−p)q + p)∥x∥2,

which completes the proof.
Theorem 2: Let Assumptions 1 and 2 hold. If we follow

Algorithm 2 with stepsize η = (1−p)q+p
28Lρ , we will have

min
0≤t≤T−1

E∥∇f(x̄t)∥2 ≤ 100Lρ(f(x0)− f∗)

((1− p)q + p)T
. (8)

Proof: The proof follows by using Proposition 1 to
Theorem 4 in [23], which gives us the desired convergence
result for the Decentralized SGD for over-parameterized
models under the random link failure.
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Fig. 1. Training loss versus the number of communication rounds R.

V. NUMERICAL ANALYSIS

In this section, we simulate the training loss of Algo-
rithm 1 versus the number of communication rounds for
different values of participation S. We distribute the Cifar10
dataset [24] to n = 20 nodes and apply Local SGD to train
a ResNet18 neural network [25]. The neural network has
11 million trainable parameters and, after sufficient training
rounds, can achieve close to 0 training loss, thus satisfying
the interpolation property.

For this set of experiments, we run the Local SGD
Algorithm 1 with K = 10 number of local steps and for
R = 20000 communication rounds with different values of
participation S = 2, 5, 10, 20 per communication round. The
training error of the global model along the process has been
illustrated in Figure 1, which decreases at nearly the same
rate characterized in Theorem 1, as expected.

VI. CONCLUSION

In this paper, we analyzed the convergence rate of Local
SGD with partial agents’ participation for over-parameterized
models. We established an error bound of O (1/R) for
R number of communication rounds, which is the first
error bound under this setting. Importantly, compared to the
nonconvex case, the rates are comparable with Local SGD
with full participation without any sacrifice in terms of the
magnitude of the convergence rate. Moreover, we extended
our results to more general communication networks but
under a different partial participation setting.

One future research direction is to extend our results to
other models of partial participation where the agents are
not necessarily uniformly sampled or the link failures are
not i.i.d. Moreover, one can consider analyzing the effect of
noise (also known as client drift) that occurred due to partial
participation during communication with the server.
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