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Abstract— We consider a general form of the sensor schedul-
ing problem for state estimation of linear dynamical systems,
which involves selecting sensors that minimize the trace of
the Kalman filter error covariance (weighted by a positive
semidefinite matrix) subject to polyhedral constraints. This
general form captures several well-studied problems including
sensor placement, sensor scheduling with budget constraints,
and Linear Quadratic Gaussian (LQG) control and sensing co-
design. We present a mixed integer optimization approach that
is derived by exploiting the optimality of the Kalman filter.
While existing work has focused on approximate methods to
specific problem variants, our work provides a unified approach
to computing optimal solutions to the general version of sensor
scheduling. In simulation, we show this approach finds optimal
solutions for systems with 30 to 50 states in seconds.

I. INTRODUCTION

In large scale dynamical systems, it is practically infeasible
to measure all output variables due to communication or
energy constraints. Thus, practical solutions often have to
rely on only accessing a subset of the data. Optimizing the
subset of output variables to measure in order to best perform
state estimation is commonly known as the sensor scheduling
problem. This finds applications in multi-robot environmental
monitoring [1]–[3], minimal controllability problems [4]–[6],
control and sensing co-design [7]–[9], among others.

Sensor scheduling considers a stochastic linear system
evolving in discrete time, which can be partially observed
using sensors. Due to resource constraints (e.g., energy
constraints), at each time step only a subset of sensors can
be turned on. By limiting the number of active sensors,
the sensor battery life is prolonged, allowing for long-term
usage. The objective is to determine a sensor schedule, i.e., a
subset of sensors to be activated at each step, that minimizes
the trace of the Kalman filter weighted error covariance while
satisfying the resource constraints. The weight is provided
by a positive semidefinite matrix which can encode several
objectives including final state error and average error. When
the chosen sensor set is not allowed to change over time,
the problem is known as the sensor selection problem. The
sensor scheduling problem and its variants are challenging;
existing approaches have provided approximate solutions via
greedy algorithms [7], [10]–[18], convex relaxations [19]–
[27], and randomized algorithms [28]–[30]. However, in this
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paper we strive to compute optimal solutions leveraging
advances in mixed integer optimization.

While approximation algorithms have yielded useful in-
sights into specific variants of the problem, an approach that
computes optimal solutions to the general version has been
elusive. The main difficulty lies in the analysis of the Kalman
filter recursive equations in terms of the selected sensor
subsets. However, the combinatorial nature of the problem
suggests encoding the problem as an integer program.

Despite integer programming being NP-complete [31]
and generally being considered intractable beyond specific
cases, the mixed integer optimization community has made
tremendous theoretical and practical advances in last few
decades with machine-independent speedup factors of upto
580,000 [32, Section 2.1]. One of the benefits is that modern
solvers are anytime i.e., if terminated early, approximate
solutions with suboptimality certificates are provided to the
user. It is relatively straightforward to set up most com-
binatorial problems as integer programs by modelling the
objects of interest as binary decision variables. However,
the structure of the resulting objective may not be amenable
to optimization. It is well known that the formulation plays
an important role in solving integer programs [33, Section
1.2]. This is because the relaxation is used extensively to
provide lower bounds in the branch and bound procedure
in mixed integer optimization. Thus, if the relaxation has
good structure (linearity, convexity) and is tight, one can
find optimal solutions relatively quickly by pruning many
parts of the search tree. The question we wish to answer
is whether one can leverage the structure of the sensor
scheduling problem to formulate mixed integer programs.

Contributions: Our main contribution is the formulation
of the general sensor scheduling problem as a mixed inte-
ger program with a convex quadratic objective and linear
constraints (Theorem 1). This enables us to leverage modern
solvers such as GUROBI [34] or CPLEX [35]. We accom-
plish this using the optimality property of the Kalman filter
for the trace of a weighted error covariance. This enables
us to optimize over the class of linear filters, resulting in a
convex minimization problem. This circumvents the need to
work with the recursive form of the filter and the associated
non-linear algebraic Riccati equations, which can be difficult
to model. In simulations, our approach computes optimal
solutions to sensor selection and scheduling problems on
systems with 35 to 50 states in seconds.

Related Work: Sensor scheduling has been studied in
various forms in the literature. The difference in formulations
generally boils down to the choice of objective function,
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defined in terms of the Kalman filter error covariance. The
work in [11] characterizes the submodularity of commonly
used functions such as the trace, maximum eigenvalue, and
log determinant. This paper considers the trace as it is a direct
measure of the estimation error which we seek to minimize.

The trace is not a submodular function and does not benefit
from the constant factor approximation guarantees provided
by the greedy algorithm. The typical way to address this
is to use surrogate objectives such as the log determinant,
which is submodular and can be efficiently approximately
maximized. However, [17, Remark 1] notes that it is a poor
proxy for minimizing the trace. There is a large body of work
tackling the log determinant/maximum eigenvalue objective
[10]–[13], [19], [21], [30] and various other controllability
metrics [23], [26], [28]. However, these algorithms do not
optimally solve trace minimization over a finite horizon.

The trace minimization of the steady state error covariance
has been considered [14], [16], [36], [37]. It was established
to be NP-hard in [14], which also demonstrated that greedy
algorithms perform well in practice but without guarantees.
In fact, there is no polynomial time constant factor approx-
imation algorithm for this problem unless P = NP [16].

On a finite horizon, greedy algorithms are a popular tool
for minimizing the trace of the error covariance due to
its computational efficiency and empirical success. Recent
work has analyzed their performance through the lens of
approximate submodularity [17], weak submodularity [18],
[29], and identified strict conditions for submodularity [15].
However, [17, Section VI] notes that the performance bounds
tend to be quite loose in practice and greedy algorithms
perform near-optimally on small scale instances. The work
in this paper computes optimal solutions to instances not
previously considered which may help in a more thorough
empirical study of the greedy algorithm.

There has been limited work in computing the optimal so-
lution to the sensor scheduling problem. Convex relaxations
have provided useful insights [20], [23], [24], [26], [27]
for approximate solutions. The work in [38] characterizes
certain properties of the optimal solution and uses it to
construct a suboptimal solution via tree pruning. The work
closest to ours is [22], which formulates a quadratic program
with ℓ0 constraints. The authors solve a relaxed version of
the problem and construct an approximate solution through
iterative reweighting. As a baseline comparison, we convert
the ℓ0 constraint to an indicator constraint to form a MIQP,
which we discuss in detail in Section IV-A.

Outline: We begin with a brief introduction to linear
estimation in Section II. This contains results about the opti-
mality of linear estimators which apply to Kalman filtering.
Section III contains the problem formulation as well as a few
examples of the problem types it captures. Our mixed integer
reformulation is presented in Section IV. We investigate its
performance through numerical simulations in Section V and
conclude with some directions for future work in Section VI.
Due to space limitations, the proofs of all results are omitted
and can be found in the preprint [39].

II. PRELIMINARIES

Notation: Let [n] denote the set of positive integers ranging
from 1 to n. For a vector v ∈ Rn, define supp(v) :=
{i ∈ [n] : vi ̸= 0}. Further, for any S ⊆ [n], let
vS ∈ R|S| be the vector with entries vi for i ∈ S. The
set of n × n positive-definite matrices is denoted by Sn++.
For a matrix X ∈ Rm×n, denote the Frobenius norm by
∥X∥F := (trace(X ′X))

1/2. For two random vectors x, y
with dimensions n and m respectively, denote the matrix of
covariances between x and y by Σxy := E[(x − E[x])(y −
E[y])′] ∈ Rn×m.

A. Linear Estimation

Let x and y be jointly distributed random vectors (of size
n and m respectively) with zero mean and covariance given
by [

Σxx Σxy

Σyx Σyy

]
∈ R(n+m)×(n+m). (1)

The following characterizes the optimal linear estimator.

Definition 1 (Theorem 2.1, [40]). The optimal linear esti-
mator of x given y is defined as

x̂ := K∗y, (2)

where the optimal coefficient matrix K∗ ∈ Rn×m is the
solution that minimizes the expected squared error

K∗ := arg min
K

E
[
(x−Ky)

′
(x−Ky)

]
= ΣxyΣ

−1
yy . (3)

The resulting estimation error is

E
[
(x−K∗y)

′
(x−K∗y)

]
= trace

(
Σxx − ΣxyΣ

−1
yy Σyx

)
.

(4)
The optimal linear estimator also satisfies a stronger property,
given in the following lemma. This is a relatively straight-
forward extension of the previous result.

Lemma 1. Given a positive semi-definite matrix M =
Q′Q ∈ Sn+, the coefficient matrix K∗ in (3) is also minimizes
the M -weighted expected square error:

K∗ = arg min
K∈Rn×m

E
[
(x−Ky)′M(x−Ky)

]
. (5)

III. PROBLEM FORMULATION

Our setup closely follows [22] which captures a variety of
interesting sensor scheduling problems.

Dynamical System: Consider the following linear system:

xk+1 = Axk + wk,

yk = Cxk + vk,
(6)

where the process noise wk, measurement noise vk, and
initial state x1 are zero mean uncorrelated random variables.
For all k ≥ 1, we assume the covariance of wk and vk
are given by W ∈ Sn++ and V ∈ Sm++ respectively and
the a priori covariance of the initial state x1 is given by
Σ1|0 ∈ Sn++. Further, we assume the state xk ∈ Rn and the
vector resulting from all m sensor measurements is yk ∈ Rm.
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Sensor Schedule: For a given time horizon T , the total
number of measurements is mT since each step yields m
sensor readings. For i ∈ [mT ], consider binary indicator
variables γi ∈ {0, 1} such that if sensor j ∈ [m] is on at
time step k ∈ [T ], then γm(k−1)+j = 1. The binary vector
γ = [γ1, . . . , γmT ] ∈ {0, 1}mT is called a sensor schedule.

Kalman filter: The Kalman filter (KF) is usually described
recursively in terms of the estimates from the previous time
step. However, viewing it directly as a linear estimator over
the set of sensor measurements will be more useful for our
purposes. Let γ ∈ {0, 1}mT be a sensor schedule over a
horizon T with Sγ := supp(γ). For each k ∈ [T ], define

Yk :=
[
y′1, . . . , y

′
k

]′
∈ Rmk (measurements until time k)

x̂γ
k|k := Kγ

∗,kYk,γ ∈ Rn (KF estimate using selected measurements)

eγk := xk − x̂γ
k|k ∈ Rn (KF estimation error)

Σγ
k|k := Σeγke

γ
k
∈ Sn+ (KF posterior error covariance)

(7)

Note that Yk,γ ∈ R|Sγ | only uses the measurement variables
selected by the sensor schedule γ. Further, Kγ

∗,k ∈ Rn×|Sγ |

contains the optimal Kalman filter coefficients for estimating
the state xk using measurement variables Yk,γ . This is dif-
ferent from the gain matrix used in the recursive form of the
filter. Each row i ∈ [n] of Kγ

∗,k contains the coefficients of
the optimal linear combination of the measurement variables
used in estimating the ith entry of the state xk.

In summary, given the schedule γ, the Kalman filter
computes the optimal linear estimate x̂γ

k|k of the state xk and
provides the a posteriori error covariance estimate Σγ

k|k. Our
goal is to compute the schedule γ that minimizes a function
related to Σγ

k|k, subject to resource constraints on γ.

Problem 1 (Sensor Scheduling). Given a time horizon T >
0, cost matrices Qk ∈ Rn′×n with Mk := Q′

kQk ∈ Sn+,
constraint matrix H ∈ Rh×mT , and budget b ∈ Rh, compute
the sensor schedule γ that solves

minimize
γ∈{0,1}mT

T∑
k=1

trace
(
QkΣ

γ
k|kQ

′
k

)
subject to Hγ ≤ b.

(8)

The objective and constraints capture several interesting
problems. For example, consider the following objectives.

1) Total Error: Qk = θkIn, k ∈ [T ], where θk ∈ R≥0.
2) Final State Error: Q1 = . . . = QT−1 = 0, QT = In.
3) LQG Sensing Design: It is known that the optimal

strategy for LQG control is to provide state estimates
via Kalman filtering and then perform LQR control
using the state estimate in place of the true state. A
similar principle holds in LQG control and sensing
co-design [7, Theorem 1] where one designs a sensor
selection policy as well as the optimal controller. The
result states the budgeted sensor selection problem can
be decoupled from the control design where the sensor
schedule is computed to optimize trace(ΘΣγ

k|k), and
Θ is computed from the LQG system parameters.

Further, the polyhedral constraints in Hγ ≤ b are general
and capture different types of resource constraints.

1) Sensor Selection: One commits to a sensor subset of
size p for all steps:

∑m
i=1 γi = p and γi = γi+jm, for

i ∈ [m], j ∈ [T−1] effectively using only m variables.
2) Sensor Scheduling: One selects a sensor subset for each

time step k ∈ [T ] of size p:
∑m

i=1 γ(k−1)m+i = p.
3) Energy Constraints: If sensor i incurs an energy cost

αi each time it is switched on and has an energy
budget βi, then the constraint can be represented as∑T

k=1 γ(k−1)m+i ≤ βi/αi.
Various problems in the literature are modeled as combina-
tions of these objectives and constraints. For example, objec-
tive 1) and constraint 1) model the sensor selection problem
[11], [12], [15], [17], [18], [20], [24], [29]. Combining the
accumulated error in objective 2) and constraint 2) is sensor
scheduling with budget constraints [27], [38].

IV. MIXED INTEGER PROGRAM FOR SENSOR
SCHEDULING

This section describes our MIQP formulation. As dis-
cussed in the introduction, one requires good formulations
in mixed integer programming to compute optimal solutions
relatively quickly [33]. For example, if the objective is
convex (when the binary variables are relaxed), one can
quickly solve the ensuing convex optimization problem to get
a lower bound on the optimal solution to the mixed integer
program. This helps in eliminating parts of the search tree
by comparing lower bounds (by solving the relaxed problem)
and upper bounds given by feasible solutions. In the context
of sensor scheduling, it is not immediately obvious how one
would model the objective in (8) as a convex function.

The convex MIQP formulation is presented in Section IV-
A with Theorem 1 giving the main result. Note that the
results in Section IV-A depend on the covariance matrices
between the states and observations in system (6), which are
fully specified in Section IV-B.

A. Binary Convex Reformulation

We wish to rewrite the objective in (8) purely in terms
of continuous variables. By exploiting the optimality of the
Kalman filter, we reformulate the summands in (8) as convex
minimization problems where the continuous variables are
the coefficients of linear filters. The key idea is to optimize
over the class of linear filters using all sensor measurement
variables with the constraint that a measurement variable i
can only be used if its corresponding entry in the schedule
satisfies γi = 1. This is established in Lemma 2.

Lemma 2. Given a schedule γ ∈ {0, 1}mT and a time step
k ∈ [T ], each summand in (8) can be represented as the
following optimization problem

trace
(
QkΣ

γ
k|kQ

′
k

)
= min

{
ck(K) : [K]ij(1− γj) = 0,

i ∈ [n], j ∈ [mk],

K ∈ Rn×mk
}
,

(9)
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where ck : Rn×mk → R≥0 is the expected squared error of
a linear filter specified by coefficients K and is defined as

ck(K) := E
[
(xk −KYk)

′
Mk (xk −KYk)

]
= trace

(
Mk

(
KΣYkYk

K ′ − 2ΣxkYk
K ′ +Σxkxk

))
.

(10)

Note that we delay the definition of the covariance matri-
ces appearing in ck until Section IV-B since it is not crucial
to understanding the formulated MIQP. The interested reader
can refer directly to Equation (16) for the exact definition of
the covariance matrices. Next, we show that ck is convex.
The proof is omitted and can be found in [39].

Lemma 3 (Convexity). The function ck : Rn×mk → R≥0

defined in Lemma 2 is convex.

Finally, we establish that the sensor scheduling problem
(8) can be represented as a mixed integer convex quadratic
program, which can be tackled by solvers like GUROBI [34].

Theorem 1 (MIQP for Sensor Scheduling). The sensor
scheduling problem (8) can be formulated as the following
mixed-integer convex optimization problem

min
γ∈{0,1}mT

Kk∈Rn×mk

T∑
k=1

ck(Kk)

subject to Hγ ≤ b,

[Kk]ij (1− γj) = 0, i ∈ [n], j ∈ [mk], k ∈ [T ]
(11)

where the functions ck(·) are given by Lemma 2.

The optimization problem (11) is a MIQP of the sensor
scheduling problem where the decision variables are the
filter coefficients Kk and binary sensor schedule γ. The last
constraint allows a filter coefficient to be used only if the
corresponding sensor variable is turned on. This constraint
can be implemented as a SOS Type-1 constraint in GUROBI
or CPLEX. It should be noted that the number of binary
variables is mT and the number of continuous variables is∑T

k=1 nmk = nmT (T+1)
2 . For high-dimensional systems

and long horizons, this can quickly become intractable. It
would be desirable to have a minimal formulation purely in
terms of binary variables γ, which we leave to future work.

Remark (Comparison with [22]). At first glance, Theorem 1
seems similar to the quadratic program in [22]. However,
the key difference is the relationship between the continuous
and binary variables. In Theorem 1, there is one indicator
constraint for each entry of the matrix Kk which is easy
to implement in modern solvers and also leads to fast solve
times as evidenced in Section V. In [22], the constraint is
more involved. It has the form g(X) ≤ γi, where γi is a
binary decision variable and g is the ℓ0 norm of the sum
of ℓ1 norms of the columns of the matrix of continuous
variables X . This constraint cannot be directly implemented
in modern mixed integer solvers. One has to setup indicator
variables to model the relationship between γi and the ℓ0

norm. Unfortunately, this does not yield fast solve times as
shown in Section V. It should be noted that [22] did not set
out to solve an integer program; it relaxed the formulation to
compute approximate solutions using an iterative weighting
technique which yielded good solutions in simulations.

B. Covariance Matrices

The last piece is to specify the covariance matrices used
in the definition of the functions ck in (10). First, we require
a representation of state xj in terms of the initial state x1.

Observation 1 (State Representation). For any j ∈ N,

xj = Aj−1x1 +

j−1∑
i=1

Aj−i−1wi, (12)

Observation 2 (Zero-mean States). For any j ∈ N, E(xj) =
0. This follows from the combination of Observation 1 and
the fact that the initial state x0 and process noise wt are
zero-mean random variables.

Using these two observations, we will establish the struc-
ture of the covariance between any two states xi and xj .

Observation 3 (Covariance between States). For j ≤ i, the
covariance between states xi and xj is given by

Σxixj
= E

[(
Ai−1x1 +

i−1∑
t=1

Ai−t−1wt

)
(
Aj−1x1 +

j−1∑
t=1

Aj−t−1wt

)′
]
∈ Rn×n

= E
(
Ai−1x1x

′
1A

j−1′ +

j−1∑
t=1

Ai−t−1wtw
′
tA

j−t−1′
)

= Ai−1Σ1|0A
j−1′ +

j−1∑
t=1

Ai−t−1W (Aj−t−1)′.

(13)

For j > i, Σxixj = Σ′
xjxi

.

Since the measurement is a linear combination of the
state (6), we can determine the covariance between any state
and measurement variable and also between measurement
variables. This is described in the following observations.

Observation 4 (Covariance between State and Measure-
ment). For j ≤ t, the matrix of covariances between state
xt ∈ Rn and all sensor observation yj ∈ Rm is given by

Σxtyj
= E

(
xt(Cxj + vj)

′
)

= Σxtxj
C ′ ∈ Rn×m

(14)

Observation 5 (Covariance between Measurements). The
covariance between measurements yi and yj is given by

Σyiyj = E
(
(Cxi + vi)(Cxj + vj)

′
)

= C Σxixj
C ′ + E(viv′j) ∈ Rm×m

(15)

If i ̸= j then E(viv′j) = 0 (Kalman filter assumptions) and
is equal to V ∈ Sm++ (noise covariance) otherwise.
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We now establish the form of the matrices in Theorem 1
whose entries are given by the observations above.

ΣxkYk
=

[
Σxky1

. . . Σxk,yk

]
∈ Rn×mk,

ΣYkYk
=

Σy1y1
. . . Σy1yk

...
. . .

...
Σyky1

. . . Σykyk

 ∈ Smk
++.

(16)

By substituting (16) into (10), the MIQP provided in
Theorem 1 is now fully specified. This forms our approach
to solving the general sensor scheduling problem.

V. EVALUATION

To evaluate our proposed MIQP, we consider two variants
involving budget constraints: sensor selection (Section V-A)
and sensor scheduling (Section V-B). For both problems, we
compare against

• Mo et al. [22]: We convert the quadratic program using
an ℓ0 constraint to a MIQP using an indicator constraint
(see Section IV-A for a detailed discussion).

• Greedy algorithm: We keep selecting sensors one at a
time until the budget constraint is met. In each step, the
sensor yielding the highest reduction in error is chosen.
For more details, see [11], [17].

We now describe the system parameters. The process matrix
A ∈ Rn×n is drawn from a uniform distribution on [0, 1] and
normalized so that the magnitude of the largest eigenvalue
is 0.5. The measurement matrix C ∈ Rm×n is drawn from a
uniform distribution on [0, 1]. The measurement noise matrix
is constructed as W = LL′ ∈ Sn+ where L ∈ Rn×n is
drawn from a uniform distribution on [0, 1]. Finally, the noise
matrix is V = σ2Im where σ2 = 0.01 and the initial state
covariance is Σ1|0 = In. We run each algorithm on 20 trials
with each trial drawing a new set of system parameters. The
experiments are implemented in GUROBI [34] on an AMD
Ryzen 7 2700 8-core processor with 16 GB of RAM.

For both selection and scheduling, the goal is to minimize
the final state estimation error. Thus, the cost matrices Qk ∈
Rn×n are defined as Qk = 0 for k ∈ [T − 1] and QT = In.
The definitions of the constraint matrix and vector are given
in Section III. We now proceed to discuss the results.

A. Sensor Selection with Budget Constraints

The first question we seek to answer is how the runtime
of the MIQP scales as the system size increases. We set
a timeout of 120 seconds for each algorithm. The results
of this experiment are shown in Figure 1. We see that the
approach of [22] does not scale favourably and it times out on
systems with n > 30. On the other hand, the proposed MIQP
solves these instances in under a second which is on average,
roughly 50 times faster for a system with 25 states. However,
the proposed MIQP also shows an increase in runtime as the
system size increases albeit at a much slower rate. In fact,
until systems of size n = 35, the runtime is comparable with
greedy. The runtime of greedy is extremely efficient solving
all instances in under a second. Further, the approach of [22]
exhibits high variance in its runtime which is in contrast to

Fig. 1. Sensor Selection: Runtime comparison of our MIQP, [22], and
the greedy algorithm. The parameters are T = 3 with m = 10 sensors
and a budget of p = 5. The x−axis indicates the state dimension while the
y−axis is the running time measured in seconds.

Fig. 2. Sensor Selection: Solution quality comparison of our MIQP (timed
out after 10 seconds) and the greedy algorithm. The x and y coordinate
denote the MIQP (timed out) solution and the greedy solution respectively.

the proposed MIQP and the greedy algorithm which exhibit
low runtime variability. In summary, the MIQP has a better
runtime when compared to [22] with timings up to 40 times
faster while providing optimal solutions.

We also investigate the quality of the solution returned
by the MIQP when given a time out of 10 seconds. In this
situation, it would be apt to compare it to greedy since both
return approximate solutions. The setup for this experiment
involves fixing the state dimension n = 10, horizon T = 3,
number of sensors m = 25, and budget p = 5. We select a
time out of 10 seconds as it is practical assumption on the
runtime for an algorithm. We draw 50 random instances of
the system parameters and run both algorithms to get their
solutions. We observed that the MIQP timed out on all drawn
instances. For each instance i, we plot (xi, yi) where xi is the
objective value of the solution returned by the MIQP and yi
is the objective value of the greedy solution on instance i. We
plot these points in Figure 2. We see that all points lie above
the black line y = x indicating that even in this challenging
setting, the MIQP outperforms greedy on all instances even
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though it times out. The red line is the function y = 1.1x and
thus points that lie above it are instances where the greedy
obtains solutions that are at least 10% worse than the MIQP
solution. We recorded the mean error difference to be 13%.
To summarize, these results suggest the 10 second timed out
MIQP returns solutions of quality better or equal to that of
the greedy algorithm. The added benefit is that the MIQP
gives a certificate of suboptimality even though it times out
whereas the greedy algorithm, in general, cannot.

B. Sensor Scheduling with Budget Constraints

We now study the runtime of each approach for sensor
scheduling problems. The results are shown in Figure 3.
Note that sensor scheduling is a more challenging problem
than sensor selection as one has to select a sensor subset for
each time step. We see the approach of [22] can only tackle
systems of size up to n = 14 before timing out (set to 100
seconds). In contrast, our MIQP solves the same instances
in under a second giving improvements of up to 40 to 60
times. The greedy remains extremely efficient and provides
solutions in under a second for all instances. The summary
here is that our MIQP can tackle systems of size up to n = 35
while providing optimal solutions before starting to display
an increase in runtime, demonstrating its effectiveness.

Our final experiment compares the solution quality of the
MIQP, with a 10 second time out, to the greedy algorithm.
This follows the same setup used in the second experiment
for sensor selection (Section V-A) which generates 50 ran-
dom instances. In this setting, the MIQP was observed to
time out on all drawn instances. The results are shown in
Figure 4. The observations are similar to that in sensor
selection. We note the MIQP always returns solutions whose
quality is better or equal to that of the greedy algorithm. In
addition, the points above the red line are the instances where
the greedy solution is at least 10% worse. When compared
to the results in sensor selection (Figure 2), the number of
points above the red line is greater in Figure 4. This indicates
the performance difference between greedy and the MIQP is
larger in sensor scheduling which is also evidenced by the
average error difference recorded to be 19%.

VI. CONCLUSIONS

We studied the generalized version of the sensor schedul-
ing problem capturing problems such as sensor placement,
scheduling, and LQG sensing design. Our approach was
rooted in mixed integer optimization. We formulated a mixed
integer quadratic program by exploiting the optimality of the
Kalman filter. In simulations, we showed the effectiveness
of the approach in computing optimal solutions to systems
with 30 to 50 states. In addition, the solver also returned
better quality solutions over the popular greedy algorithm
when constrained to time out within a few seconds. Looking
forward, we believe a minimal formulation that solely con-
tains integer variables would be desirable. This is because
the number of continuous variables in the MIQP scales
quadratically with the time horizon whereas the number of
integer variables only depends on the number of sensors.

Fig. 3. Sensor Scheduling: Runtime comparison of different algorithms
on varying system sizes. The system parameters are T = 3, m = 10, and
budget p = 5. The runtime is measured in seconds indicated on the y-axis.

Fig. 4. Sensor Scheduling: Comparison of solutions the MIQP (timed out
after 10 seconds) and the greedy algorithm. The points above the black line
indicate MIQP obtaining better solutions than greedy. The greedy solution
of points above the red line are at least 10% worse than the MIQP solution.

Further, it would also be interesting to study the structure
of the relaxed problem and identify any avenues for the
development of approximation algorithms.
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