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Abstract— In a regular mean field game (MFG), the agents
are assumed to be insignificant, they do not realize their effect
on the population level and this may result in a phenomenon
coined as the Tragedy of the Commons by the economists.
However, in real life this phenomenon is often avoided thanks to
the underlying altruistic behavior of (all or some of the) agents.
Motivated by this observation, we introduce and analyze two
different mean field models to include altruism in the decision
making of agents. In the first model, mixed individual MFGs,
there are infinitely many agents who are partially altruistic
(i.e., they behave partially cooperatively) and partially non-
cooperative. In the second model, mixed population MFGs, one
part of the population behaves cooperatively and the remaining
agents behave non-cooperatively. Both models are introduced in
a general linear quadratic framework for which we characterize
the equilibrium via forward backward stochastic differential
equations. Furthermore, we give explicit solutions in terms of
ordinary differential equations, and prove the existence and
uniqueness results.

I. INTRODUCTION

Mean field games (MFG) and mean field control (MFC)
offer frameworks to analyze decision-making in large popu-
lations by using a mean-field approximation. In these prob-
lems, instead of considering interactions between a finite
number individuals (which increases exponentially with the
number of individuals), we consider the interactions between
one representative agent and a mean-field, which is the popu-
lation’s distribution1. On the one hand, MFGs delve into non-
cooperative settings, where individuals make choices based
on their own benefit and the average behavior of everyone
else. This corresponds to a Nash equilibrium. On the other
hand, MFC considers a cooperative situation, where agents
jointly optimize an objective function which represents an
average over the whole population of individual’s costs.
Alternatively, this situation can be viewed as an optimization
problem for a central (i.e., social) planner. To be more
specific, the notions of solutions studied respectively in
MFGs and MFC are Nash equilibrium and social optimum.

So far the two settings have been extensively studied, both
theoretically and numerically. We refer to [1], [2], [3] for
more information. For these two settings many applications
have been proposed, such as finance [4], [5], [6], [7],
economics [8], [9], [10], epidemic management [11], [12],
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1This can be state, control or joint state-control distribution of the
population.

[13], cybersecurity [14], or energy production and climate
change [15], [16], [17], [18], [19], to cite just a few.

These two settings correspond to extreme cases: the agents
are either fully non-cooperative (selfish) or fully cooperative
(altruistic). However, many real life applications do not fall in
one of these situations because there is a mix of cooperation
and competition. The main focus of this paper is to study
models which combine cooperative and non-cooperative be-
haviors in the context of mean field populations of agents.

One of our motivations for combining the cooperative and
non-cooperative behaviors is the tragedy of the commons,
which describes a situation where individuals, acting in
their own self-interest, overuse a shared resource, ultimately
exploiting it to create a long term negative outcome for
everyone. For instance shepherds might add more sheep to a
pasture for personal gain, but collectively they risk depleting
the grass, harming the land, and hurting everyone’s livelihood
in the long run. However, in many cases, the agents antic-
ipate this catastrophic outcome and behave in a sufficiently
altruistic (i.e. cooperative) way to avoid exploiting common
resources [20], [21].

The literature on the models that includes both cooperative
and non-cooperative behavior in the mean field models is not
yet well developed. The closest analysis to our equilibrium
notions can be found in [22]; however, the models differ
since in [22] the cooperative agents do not take it into
account the behavior of the non-cooperative agents in their
optimization. A related setup is given in [23] where the
authors study an extension of MFGs where each agent solves
an MFC which can be seen as the limiting scenario for
a competition between a large number of large coalitions.
In [24], authors study co-opetitive linear quadratic mean
field games in which agents take into account the other
agent’s costs positively or negatively while making decisions.
Recently, [25] studied a bi-level optimization problem to
balance equilibrium and social optimum. In this paper, we
focus on two types of mean field models to explore new
equilibrium notions in the cases where both cooperative
and non-cooperative behaviors can be prevalent. In the first
type, there is a single group of agents, in which every
agent’s objective function contains terms which model in-
dividuals’ own cooperative and non-cooperative behaviors.
In the second type, there are two sub-groups in the pop-
ulation, one in which all the agents are cooperative and
the other one in which all the agents are non-cooperative.
Finally, there is also literature on mean field models that
models multi-population settings in which the agents of each
population are either non-cooperative (commonly referred
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as multi-population MFG) [26], [27], [19] or cooperative
(commonly referred as mean field type games) [28], [29].
In this paper, we consider linear-quadratic models. Such
models are popular for their tractability, including in the
MFG and MFC setting [30], [31], [32], [33], [34]. The
rest of the paper is organized as follows. In Section II,
we introduce the finite population models. In Section III,
we present the corresponding mean field models by taking
the number of agents to infinity. The main results are in
Section IV: we first show that, in each case, the solution can
be characterized by a system of forward-backward stochastic
differential equations (FBSDEs) of McKean-Vlasov type by
following Pontryagin stochastic maximum principle. We then
show that these FBSDE systems can be reduced to systems of
forward-backward ordinary differential equations (FBODEs).
Finally we give the existence and uniqueness results for the
first model and the existence results for the second model.

II. FINITE POPULATION VERSION

We consider a finite time horizon T > 0. We will use bold
letters to denote functions of time. To alleviate the notations,
we will restrict the presentation to one-dimensional states
and actions but the ideas and the theoretical analysis can
be generalized to the multi-dimensional case in a straight-
forward way. We will consider R-valued open-loop controls
that are progressively measurable processes, adapted to all
the available information, and square integrable. We denote
by A the set of such controls. We will denote by E the
expectation of a random variable.

A. Mixed individual
We consider a population of N non-cooperative agents that

are indistinguishable. We will denote by αi = (αi
t)t∈[0,T ] the

control used by agent i ∈ [N ] where [N ] := {1, 2, . . . , N}.
Assume the controls used by the agents other

than agent i are given and denoted by α−i =
(α1, . . . ,αi−1,αi+1, . . . ,αN ). The state of agent i ∈ [N ]

at time t is denoted by Xi,αi

t ∈ R when using control αi

and its dynamics are:

dXi,αi

t =
(
bαα

i
t + bXXi,αi

t

+ bµ
(
λX̄t + (1− λ)E[Xi,αi

t ]
))

dt+ σdW i
t ,

where bα, bX , bµ, σ ∈ R are constant coefficients, W i is a
Brownian motion representing idiosyncratic noise, indepen-
dent of all the other sources of randomness, and Xi

0 ∼ µ0

where µ0 is the initial distribution. Here and thereafter, the
expectation of agent i’s state is denoted by E[Xi,αi

t ], while
the mean of the states is denoted by: X̄t =

1
N

∑N
j=1 X

j,αj

t .

We stress that the evolution of Xi,αi

t depends on the controls
used by all the agents through the X̄t.

The (non-cooperative) agent i ∈ [N ] aims to minimize the
following cost over αi, while α−i is given:

J(αi;α−i) = E

[∫ T

0

(cα
2
(αi

t)
2 +

cX
2

(Xi,αi

t )2

+
cµ
2

(
λX̄2

t + (1− λ)E[Xi,αi

t ]2
))

dt+
cT
2
(Xi,αi

T )2
]
.

Here, cα, cX , cµ, cT > 0 are constant coefficients. The first
and second term respectively penalize large (in absolute
value) individual actions and states. The third term penalizes
large means. Here, and λ ∈ [0, 1] gives the level of altruism
of the representative agent. Note that when N is large, agent
i has only a negligible influence on the empirical average
X̄t, so removing it from the cost function would not modify
her optimal control. However, agent i has an influence on
her own state’s mean E[Xi,αi

t ]. The last term is a terminal
cost which penalizes large terminal state.

Definition 2.1 (Mixed individual equilibrium): Let ϵ > 0.
An ϵ-Nash equilibrium for the mixed individual equilibrium
is a control profile α̂ = (α̂j)j=1,...,N such that: for every i ∈
[N ], α̂i is an ϵ-minimizer for J(·; α̂−i). A Nash equilibrium
is an ϵ-equilibrium with ϵ = 0.

B. Mixed population

We consider two groups, with respectively NNC and NC

agents. The agents of the first group are non-cooperative,
while the agents in the second group are cooperative with
agents of the same sub-group. Let N = NNC +NC be the
total number of agents and let p = NNC

N be the proportion
of non-cooperative agents.

We will denote by αNC,i = (αNC,i
t )t∈[0,T ] the control

used by non-cooperative agent i ∈ [NNC] and by αC,i =
(αC,i

t )t∈[0,T ] the control used by cooperative agent i ∈ [NC].
Non-cooperative agents. Assume the controls αNC,−i =

(αNC,1, . . . ,αNC,i−1,αNC,i+1, . . . ,αNC,NNC

) used by the
other non-cooperative agents and the controls αC =
(αC,1, . . . ,αC,NC

) used by the cooperative agents are given.
The state of non-cooperative agent i ∈ [NNC] at time t is
denoted by Xi,αNC,i

t ∈ R when using control αNC,i and its
dynamics are:

dXαNC,i

t =
(
bNC
α αNC,i

t + bNC
X Xi,αNC,i

t

+ bNC
µ

(
pX̄NC

t + (1− p)X̄C
t

))
dt+ σNCdWNC,i

t ,

where bNC
α , bNC

X , bNC
µ , σNC ∈ R are constant coefficients,

WNC,i is a Brownian motion representing idiosyncratic
noise, independent of all the other sources of randomness and
XNC,i

0 ∼ µNC
0 are i.i.d., where µNC

0 is the initial distribution.
Here and thereafter, the means of the states of each subgroups
are denoted by:

X̄NC
t =

1

NNC

NNC∑
j=1

Xj,αNC,j

t , X̄C
t =

1

NC

NC∑
j=1

Xj,αC,j

t .

We stress that the evolution of Xi,αNC,i

t depends on the
controls used by all the agents through the above averages.

This non-cooperative agent i ∈ [NNC] aims to minimize
the following cost over αNC,i, while αNC,−i and αC =
(αC,j)j=1,...,NC are given:

JNC(αNC,i;αNC,−i,αC)

= E

[∫ T

0

(cNC
α

2
(αNC,i

t )2 +
cNC
X

2
(Xi,αNC,i

t )2

+
cNC
µ

2

(
pX̄NC

t + (1− p)X̄C
t

)2 )
dt+

cNC
T

2
(Xi,αNC,i

T )2
]
.
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Here, cNC
α , cNC

X , cNC
µ , cNC

T > 0 are constant coefficients. The
first and second term respectively penalize large (in absolute
value) individual actions and states. The third term penalizes
large means. Note that, when NNC is large, non-cooperative
agent i has only a negligible influence on this term, so
removing it from the cost function would not modify her
optimal control. However, this term will have an influence
for the cooperative agents so we include it here too. The last
term is a terminal cost which penalizes large terminal state.

Cooperative agents. The state of cooperative agent i ∈
[NC] at time t is denoted by Xi,αC,i

t ∈ R and its dynamics
are:

dXαC,i

t =
(
bCαα

C,i
t + bCXXi,αC,i

t

+ bCµ
(
pX̄NC

t + (1− p)X̄C
t

))
dt+ σCdWC,i

t ,

where bCα , b
C
X , bCµ , σ

C ∈ R are constant coefficients, WC,i is
a Brownian motion representing idiosyncratic noise, indepen-
dent of all the other sources of randomness and XC,i

0 ∼ µC
0

i.i.d., where µC
0 is the initial distribution.

Given the non-cooperative agents’ controls αNC =
(αNC,j)j=1,...,NNC , the cooperative agents try to jointly
minimize over αC = (αC,j)j=1,...,NC the social cost:

JC(αC;αNC) =
1

NC

NC∑
i=1

E

[∫ T

0

(cCα
2
(αC,i

t )2 +
cCX
2

(Xi,αC,i

t )2

+
cCµ
2

(
pX̄NC

t + (1− p)X̄C
t

)2 )
dt+

cCT
2
(Xi,αC,i

T )2
]
.

Here, cCα , c
C
X , cCµ , c

C
T > 0 are constant coefficients. The terms

composing the cost have the same interpretation as above.
Note that the cooperative agents have a collective impact on
the average X̄C

t .
Definition 2.2 (Mixed population equilibrium): Let ϵ >

0. An ϵ-Nash equilibrium for the mixed population equilib-
rium is a pair of a control profile α̂NC = (α̂NC,j)j=1,...,NNC

for the non-cooperative agents and a control profile α̂C =
(α̂C,j)j=1,...,NC for the cooperative agents such that:

• for every i ∈ [NNC], α̂NC,i is an ϵ-minimizer for
JNC(·; α̂NC,−i, α̂C)

• α̂C is an ϵ-minimizer JC(·; α̂NC).
A Nash equilibrium is an ϵ-equilibrium with ϵ = 0.

III. MEAN FIELD VERSION

In this section, we introduce the corresponding mean
field models for the mixed individual and mixed population
setups.

A. Mixed individual
We assume that N → ∞. Since every agent is identical,

we can focus on a representative agent. The representative
agent aims to minimize the following cost by choosing a
square-integrable, progressively measurable control process
α = (αt)t∈[0,T ] where αt ∈ R:

J(α; X̄) := E

[∫ T

0

(cα
2
α2
t +

cX
2

(Xα
t )2+

cµ
2

(
λ(X̄t)

2 + (1− λ)(X̄α
t )2

) )
dt+

cT
2
(Xα

T )2
]
,

(1)

where X̄α
t =

∫
R xdµα

t (x). Here, cα, cX , cµ, cT > 0 are
constant coefficients and we recall that λ ∈ [0, 1] gives the
level of altruism of the representative agent. When λ = 0,
the agents in a pure game theoretical (i.e., non-cooperative)
setup; whereas, when λ = 1, the agents are in a control (i.e.,
cooperative) setup. Therefore, this setting can be understood
as an interpolation between MFG and MFC problems. The
dynamics of the representative agent’s state process Xα =
(Xα

t )t∈[0,T ] where Xt ∈ R is given as:

dXα
t =

(
bααt + bXXα

t + bµ
(
λX̄t + (1− λ)X̄α

t

))
dt+ σdWt,

where bα, bX , bµ ∈ R are non-zero constant coefficients, W
is the Brownian motion representing the idiosyncratic noise,
X0 ∼ µ0, and λ is interpreted as introduced above.

Definition 3.1 (Mixed Individual MFNE): We will call a
control and mean field tuple (α̂, ˆ̄X) a mixed individual mean
field Nash equilibrium (MI-MFNE) if:

i. α̂ is the best response of the representative agent
given the mean field ˆ̄X . In other words, α̂ ∈
argminα∈A J(α; ˆ̄X),

ii. For all t ∈ [0, T ], we have ˆ̄Xt = X̄α̂
t .

B. Mixed population
We assume N → ∞ and the population is mixed, i.e., a

proportion p of the agents are non-cooperative and the re-
maining (1−p) proportion of the agents are cooperative. For
the mixed population mean field model, we need to introduce
both the model of the representative non-cooperative agent
and of the representative cooperative agent.

The representative non-cooperative agent aims to mini-
mize the following cost over the square integrable and pro-
gressively measurable control process αNC = (αNC

t )t∈[0,T ]

where αNC
t ∈ R:

JNC(αNC; X̄NC, X̄C) :=

E

[∫ T

0

(cNC
α

2
(αNC

t )2 +
cNC
X

2
(XαNC

t )2

+
cNC
µ

2

(
pX̄NC

t + (1− p)X̄C
t

)2 )
dt+

cNC
T

2
(XαNC

T )2
]
.

(2)

Here, cNC
α , cNC

X , cNC
µ , cNC

T > 0 are constant coefficients. The
dynamics of the representative non-cooperative agent’s state
process XαNC

= (XαNC

t )t∈[0,T ] where XαNC

t ∈ R is:

dXαNC

t =
(
bNC
α αNC

t + bNC
X XNC

t

+ bNC
µ

(
pX̄NC

t + (1− p)X̄C
t

))
dt+ σdWNC

t ,

where bNC
α , bNC

X , bNC
µ ∈ R are non-zero constant coefficients,

WNC is the Brownian motion representing the idiosyncratic
noise for non-cooperative agents, XNC

0 ∼ µNC
0 , and p is

interpreted as introduced above.
Similarly, the representative cooperative agent aims to

minimize the following cost over the square integrable and
progressively measurable control process αC = (αC

t )t∈[0,T ]

where αC
t ∈ R:

JC(αC; X̄NC) := E

[∫ T

0

(cCα
2
(αC

t )
2 +

cCX
2

(XαC

t )2

+
cCµ
2

(
pX̄NC

t + (1− p)X̄αC

t

)2 )
dt+

cCT
2
(XαC

T )2
]
.

(3)
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Here, cCα , c
C
X , cCµ , c

C
T > 0 are constant coefficients. The dy-

namics of the representative cooperative agent’s state process
XαC

= (XαC

t )t∈[0,T ] where XαC

t ∈ R is given as:

dXαC

t =
(
bCαα

C
t + bCXXC

t

+ bCµ
(
pX̄NC

t + (1− p)X̄αC

t

))
dt+ σdWC

t ,

where bCα , b
C
X , bCµ ∈ R are non-zero constant coefficients,

WC is the Brownian motion representing the idiosyncratic
noise for non-cooperative agents, XC

0 ∼ µC
0 , and p is

interpreted as introduced above.
Definition 3.2 (Mixed Population MFE): We will call

controls and mean field tuple (α̂NC, α̂C, ˆ̄XNC) a mixed
population mean field equilibrium (MP-MFE) if:

i. α̂NC is the best response of the representative
non-cooperative agent given the mean fields of
the non-cooperative and cooperative agents, ˆ̄XNC

and X̄α̂C

, respectively. In other words, α̂NC ∈
argminαNC∈A JNC(αNC; ˆ̄XNC, X̄

α̂C

),
ii. For all t ∈ [0, T ], we have ˆ̄XNC

t = X̄α̂NC

t ,
iii. α̂C is the optimal control of the representative co-

operative agent given the mean field of the non-
cooperative agents, ˆ̄XNC. In other words, α̂C ∈
argminαC∈A JC(αC; ˆ̄XNC).

We would like to stress that a mixed population mean field
problem is different than multi-population MFG, in which
all the agents are non-cooperative, and than mean-field type
games, in which all the agent of each sub-population are
cooperative with each other. It is also different than a major-
minor MFG problem, see e.g. [35] and [3, Section 7.1]. In
major-minor MFG, there is only one major player (instead
of a population of cooperative agents). This major agent’s
state directly affect the cost function and/or dynamics of the
minor agents. If the state dynamics of the major agent has
a noise, then this noise behaves as a common noise for the
minor agents. However, in the current setup the distribution
of the cooperative agents affect the competitive agents.

IV. MAIN RESULTS

A. Mixed individual
Theorem 4.1 (FBSDE characterization of equilibria): A

control α̂ is an MI-MFNE control profile (see Definition 3.1)
if and only if:

α̂t = − bαYt

cα
(4)

where (X,Y ,Z) = (Xt, Yt, Zt)t∈[0,T ] solve the following
forward-backward stochastic differential equation (FBSDE)
system:

dXt =
(
− (bα)

2

cα
Yt + bXXt + bµX̄t

)
dt+ σdWt, X0 ∼ µ0,

dYt = −
(
bXYt + cXXt + bµ(1− λ)Ȳt + cµ(1− λ)X̄t

)
dt

+ ZtdWt, YT = cTXT .
(5)

Proof: The proof is based on i) characterizing the
solution of a mean field control problem with a given mean
field X̄ and ii) realizing that at the equilibrium we should
have X̄t is equal to the mean field introduced by mean

field control, X̄α̂
t for all t ∈ [0, T ]. We have the following

Hamiltonian:

H(t, x, α, x̄, x̄α, y) =
(
bαα+ bXxα + bµ

(
λx̄+ (1− λ)x̄α))y

+
cα
2
α2 +

cX
2

(xα)2 +
cµ
2

(
λ(x̄)2 + (1− λ)(x̄α)2

)
and the optimal control is given as the minimizer of the
Hamiltonian:

α̂t = − bαY
α̂
t

cα

where (Xα̂,Y α̂,Zα̂) satisfies the following FBSDE system
characterizing the Mean Field Control solution given X̄
(e.g. [2, Chapter 6.7]):

dXα̂
t =

(
− (bα)

2

cα
Y α̂
t + bXXα̂

t +

bµ(λX̄t + (1− λ)X̄α̂
t )

)
dt+ σdWt, X0 ∼ µ0,

dY α̂
t = −

(
bXY α̂

t + cXXα̂
t + bµ(1− λ)Ȳ α̂

t

+ cµ(1− λ)X̄α̂
t

)
dt+ Zα̂

t dWt, Y α̂
T = cTX

α̂
T .

The equation for the adjoint process is written
as dY α̂

t = −
(
∂xH(t,Xα̂

t , α, X̄t, X̄
α
t , Y

α̂
t ) +

E[∂x̄αH(t,Xα̂
t , α, X̄t, X̄

α
t , Y

α̂
t )]

)
dt + Zα̂

t dWt with
Y α̂
T = ∂x

cT
2 (Xα̂

T )2 by using the stochastic Pontryagin
maximum principle. At the end, we need to impose our
fixed point condition X̄t = X̄α̂

t for all t ∈ [0, T ] to find the
MI-MFNE. In order to simplify the notations, we also drop
the superscript α and conclude our result. We would like to
emphasize that different than a regular MFG, the effect of
the individuals deviation on the X̄α should be taken into
account, as in MFC problems. Hence, the adjoint process
dynamics includes a partial derivative with respect to x̄α.

Proposition 4.2 (FBODE characterization of MI-MFNE):
Assume there exists an R × R × R × R-valued function
t 7→ (At, Bt, Ct, X̄t) solving the following forward-
backward ordinary differential equation (FBODE) system:

Ȧt −
(bα)

2

cα
A2

t + 2bXAt + cX = 0, (6)

Ḃt −
(bα)

2

cα
B2

t − 2
(bα)

2

cα
AtBt + (2bX + 2bµ − λbµ)Bt

+ bµ(1− λ)At + cµ(1− λ) = 0, (7)

Ċt +

(
− (bα)

2

cα
(At +Bt) + bX + bµ(1− λ)

)
Ct = 0, (8)

˙̄Xt =

(
− (bα)

2

cα
(At +Bt) + bX + bµ

)
X̄t −

(bα)
2

cα
Ct, (9)

AT = cT , BT = 0, CT = 0, X̄0 = µ̄0. (10)

Then

α̂t = − bα
cα

(AtXt +BtX̄t + Ct) (11)

is the MI-MFNE control.
Proof: Since our problem is in linear-quadratic form,

we propose the following ansatz Yt = AtXt + BtX̄t + Ct.
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Then, we have:

dYt =ȦtXtdt+AtdXt + ḂtX̄tdt+BtdX̄t + Ċtdt

=ȦtXtdt+At

((
− (bα)

2

cα
Yt + bXXt + bµX̄t

)
dt+ σdWt

)
+ ḂtX̄tdt+Bt

((
− (bα)

2

cα
Ȳt + (bX + bµ)X̄t

)
dt
)
+ Ċtdt

=ȦtXtdt+At

((
− (bα)

2

cα
(AtXt +BtX̄t + Ct) + bXXt

+ bµX̄t

)
dt+ σdWt

)
+ ḂtX̄tdt+ Ċtdt

+Bt

((
− (bα)

2

cα
((At +Bt)X̄t + Ct) + (bX + bµ)X̄t

)
dt
)
,

(12)
where in the second equality we plugged in dXt and dX̄t

terms using the forward equation in (5) and in the third
equality we plugged in Yt and Ȳt ansatz forms to have the
final form. Finally, we can match the terms in equation (12)
with the backward equation in (5) to end up with the ODEs
for the At, Bt and Ct. The dynamics of X̄t is also acquired
after plugging in the ansatz for Yt in the forward equation
in (5) and taking the expectation.

Theorem 4.3 (Existence & Uniqueness of a solution): If
the following condition holds, then there exists a unique
MI-MFNE:

bµ
−cX

(
e(δ

+−δ−)(T−t) − 1
)
− cT

(
δ+e(δ

+−δ−)(T−t) − δ−
)(

δ−e(δ+−δ−)(T−t) − δ+
)
− cT

(bα)2

cα

(
e(δ+−δ−)(T−t) − 1

)
+ cµ ≥ 0, ∀t ∈ [0, T ],

where δ± = bX ±
√
b2X + cX(bα)2/cα.

Proof: From Proposition 4.2, we know that the MI-
MFNE is characterized by solving the given FBODE system.
Therefore, we can focus existence and uniqueness result
of the FBODE system given in Proposition 4.2. We first
realize that both the equations for (At)t and (Bt)t are
Riccati equations. The Riccati equation for (At)t (6) has
a unique solution which is bounded and continuous under
the given model parameter assumptions (cCα , c

C
X , cCµ , c

C
T > 0,

and bCα , b
C
X , bCµ ∈ R) and it can be explicitly written as:

At =
−cX

(
e(δ

+−δ−)(T−t) − 1
)
− cT

(
δ+e(δ

+−δ−)(T−t) − δ−
)(

δ−e(δ+−δ−)(T−t) − δ+
)
− cT

(bα)2

cα

(
e(δ+−δ−)(T−t) − 1

) ,
for all t ∈ [0, T ] and where δ+ and δ− are as introduced
in Theorem 4.3 [2, Chapter 2], [36]. Once the first Riccati
equation is solved, the solution (At)t can be plugged in the
Riccati equation for (Bt)t (7). Then, under the condition
given in Theorem 4.3, there exists a unique continuous
solution to the Riccati equation for (Bt)t, [37] [36]. After
the unique and continuous solutions to equations (6) and (7)
are found, they can be plugged into the first order linear
differential equation for (Ct)t (8). Since the coefficients
are continuous, this ODE has a unique continuous solution
(see e.g., Picard-Lindelöf Theorem). Finally, we can plug
in (At)t, (Bt)t, and (Ct)t in the differential equation for
(X̄t)t. Since these are continuous, the coefficients of the
first order linear ODE for (X̄t)t are continuous, which gives
the existence and uniqueness for (9). In turn, these conclude
the existence and uniqueness of the solution of the FBODE
system.

B. Mixed population
Theorem 4.4 (FBSDE characterization of equilibria):

Controls α̂NC and α̂C (respectively for the non-cooperative
and cooperative agents) are MP-MFE control profiles (see
Definition 3.2) if and only if:

α̂NC
t = − bNC

α Y NC
t

cNC
α

, α̂C
t = − bCαY

C
t

cCα
, (13)

where (XNC,Y NC,ZNC,XC,Y C,ZC) = (XNC
t , Y NC

t ,
ZNC
t , XC

t , Y
C
t , ZC

t )t∈[0,T ] solve the following forward-
backward stochastic differential equation (FBSDE) system:

dXNC
t =

(
− (bNC

α )2

cNC
α

Y NC
t + bNC

X XNC
t

+ bNC
µ (pX̄NC

t + (1− p)X̄C
t )

)
dt+ σdWNC

t ,

dY NC
t = −

(
bNC
X Y NC

t + cNC
X XNC

t

)
dt+ ZNC

t dWNC
t ,

dXC
t =

(
− (bCα)

2

cCα
Y C
t + bCXXC

t

+ bCµ (pX̄
NC
t + (1− p)X̄C

t )
)
dt+ σdWC

t ,

dY C
t = −

(
bCXY C

t + cCXXC
t + bCµ (1− p)Ȳ C

t

+ 2cCµ (1− p)(pX̄NC
t + (1− p)X̄C

t )
)
dt+ ZC

t dW
C
t ,

XNC
0 ∼ µNC

0 , XC
0 ∼ µC

0 , Y NC
T = cNC

T XNC
T , Y C

T = cCTX
C
T .

(14)

Proof: For the non-cooperative and cooperative repre-
sentative agents we can write their respective Hamiltonians
as follows:

HNC(t, xNC, αNC, x̄NC, x̄C, yNC) =
(
bNC
α αNC + bNC

X xNC

+ bNC
µ

(
px̄NC

t + (1− p)x̄C
t

))
yNC +

cNC
α

2
(αNC)2

+
cNC
X

2
(xNC)2 +

cNC
µ

2

(
px̄NC + (1− p)x̄C

)2

HC(t, xC, αC, x̄C, x̄NC, yC) =
(
bCαα

C + bCXxC

+ bCµ
(
px̄NC

t + (1− p)x̄C
t

))
yNC +

cCα
2
(αC)2

+
cCX
2

(xC)2 +
cCµ
2

(
px̄NC + (1− p)x̄C

)2

.

Then, the equilibrium controls will be given as the minimiz-
ers of the Hamiltonian:

α̂NC
t = − bNC

α Y NC
t

cNC
α

, α̂C
t = − bCαY

C
t

cCα
. (15)

Here Y NC and Y NC will be determined as the solution of
a forward-backward stochastic differential equation system.
In order to construct this system, we realize that the rep-
resentative non-cooperative agent solves a mean field game
given the mean field of the cooperative agents, X̄C, and the
representative cooperative agent solves a mean field control
given the mean field of the non-cooperative agents, X̄NC.
Following this idea, we can write the FBSDE system for
the representative non-cooperative agent as follows (e.g. [2,
Chapter 3]:

dXNC
t =

(
− (bNC

α )2

cNC
α

Y NC
t + bNC

X XNC
t

+ bNC
µ (pX̄NC

t + (1− p)X̄C
t )

)
dt+ σdWNC

t ,

dY NC
t = −

(
bNC
X Y NC

t + cNC
X XNC

t

)
dt+ ZNC

t dWNC
t ,

XNC
0 ∼ µNC

0 , Y NC
T = cNC

T XNC
T .

(16)
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Here, the forward component gives the state dynam-
ics under the equilibrium control αNC (i.e., the con-
trol form at the equilibrium (13) is plugged in the state
dynamics. The backward component (i.e., the dynam-
ics of the adjoint process Y ) is written as dY α̂

t =
−∂xH

NC(t,XNC
t , αNC

t , X̄NC
t , X̄C

t , Y
NC
t )dt+ZNC

t dWt with
terminal condition Y NC

T = ∂x
cNC
T

2 (XNC
T )2 by using the

stochastic Pontryagin maximum principle. Similarly, we can
write the FBSDE system for the representative cooperative
agent as follows:

dXC
t =

(
− (bCα)

2

cCα
Y C
t + bCXXC

t

+ bCµ (pX̄
NC
t + (1− p)X̄C

t )
)
dt+ σdWC

t ,

dY C
t = −

(
bCXY C

t + cCXXC
t + bCµ (1− p)Ȳ C

t

+ 2cCµ (1− p)(pX̄NC
t + (1− p)X̄C

t )
)
dt+ ZC

t dW
C
t ,

XC
0 ∼ µC

0 , Y C
T = cCTX

C
T .

(17)

Here, the forward component gives the state dynamics under
the equilibrium control αNC (i.e., the control form at the
equilibrium (13) is plugged in the state dynamics. The back-
ward component (i.e., the dynamics of the adjoint process Y )
is written as dY α̂

t = −
(
∂xH

C(t,XC
t , α

C
t , X̄

C
t , X̄

NC
t , Y C

t )+

∂x̄CHN(t,XC
t , α

C
t , X̄

C
t , X̄

NC
t , Y C

t )
)
dt + ZC

t dWt with ter-

minal condition Y C
T = ∂x

cCT
2 (XC

T )
2 by using the stochastic

Pontryagin maximum principle. These two FBSDE systems
are coupled through the mean fields X̄

NC and X̄
C, in this

way we end up with our final FBSDE system with 2 forward
and 2 backward components.

Proposition 4.5 (FBODE characterization of equilibria):
Assume there exists an R2×2 × R2×2 × R2×1 × R2×1-
valued function t 7→ (At, Bt, Ct, X̄t) solving the following
forward-backward ordinary differential equation (FBODE)
system:

Ȧt +AtM2At +M1At +AtM1 −M4 = 0, (18)

Ḃt +BtM2Bt +AtM2Bt +BtM2At (19)
+ (M1 −M6)Bt +Bt(M1 +M3) +AtM3 −M5 = 0,

Ċt + ((At +Bt)M2 +M1 −M6)Ct = 0, (20)

˙̄Xt = (M1 +M2At +M2Bt +M3)X̄t +M2Ct, (21)

AT =

[
cNC
T 0
0 cCT

]
BT =

[
0 0
0 0

]
, CT =

[
0
0

]
, (22)

where M1 =

[
bNC
X 0
0 bCX

]
, M2 =

[
−(bNC

α )2/cNC
α 0

0 −(bCα)
2/cCα

]
,

M3 =

[
pbNC

µ (1− p)bNC
µ

pbCµ (1− p)bCµ

]
, M4 =

[
−cNC

X 0
0 −cCX

]
,

M5 =

[
0 0

2(1− p)pcCµ 2(1− p)2cCµ

]
, M6 =

[
0 0
0 bCµ (1− p)

]
.

Then,
α̂t = −K(AtXt +BtX̄t + Ct), (23)

is the MP-MFE control, where K =

[
−bNC

α /cNC
α 0

0 −bCα/c
C
α

]
,

Xt =

[
XNC

t

XC
t

]
, X̄t =

[
X̄NC

t

X̄C
t

]
, α̂t =

[
α̂NC
t

α̂C
t

]
.

We would like to emphasize that At, Bt and Ct that are
introduced in Propositions 4.2 and 4.5 are different functions.
In the Proposition 4.2, these functions are R-valued; however
in Proposition 4.5, At and Bt are matrix (R2×2)-valued
functions and Ct is a vector (R2×1)-valued function.

Proof: We first write the FBSDE system (14) in the
matrix form as follows:

dXt = (M1Xt +M2Yt +M3X̄t)dt+ΣdWt,

dYt = (−M1Yt +M4Xt +M5X̄t +M6Ȳt)dt+ ZtdWt,
(24)

where Xt, X̄t,M1,M2,M3,M4,M5,M6 are introduced in

Proposition 4.5 and Yt =

[
Y NC
t

Y C
t

]
, Σ =

[
σNC 0
0 σC

]
, Wt =[

WNC
t

WC
t

]
.Then, we propose the ansatz Yt = AtXt+BtX̄t+Ct

and take the derivative and plug in first the dXt, dX̄t and
second Yt, Ȳt ansatz forms to conclude:

dYt =ȦtXtdt+AtdXt + ḂtX̄tdt+BtdX̄t + Ċtdt

=ȦtXtdt+At

(
(M1Xt +M2(AtXt +BtX̄t + Ct)

+M3X̄t)dt+ΣdWt

)
+ ḂtX̄tdt+ Ċtdt

+Bt

(
((M1 +M3)X̄t +M2(At +Bt)X̄t + Ct)dt

)
.

(25)
Finally, we match the terms in equation (25) with the
backward equation in (24) to end up with the ODEs for
the At, Bt and Ct. The dynamics of X̄t is acquired after
plugging in the ansatz for Yt in the forward equation in (24)
and taking the expectation.

Assumption 4.6: Let M21(t) := −AtM3+M5, M11(t) :=
M2At +M1 +M3, and M22(t) := −AtM2 −M1 +M6.
For some matrices E ∈ C2×2 with E∗ = E, F ∈ C2×2 with

L(t) =

[
EM11(t) + FM21(t) EM2 +M⊤

11(t)F + FM22(t)
0 M2F

]
the condition L(t) + L∗(t) ≤ 0 holds for all t ∈ [0, T ] and
E > 0. Here G∗ denotes the complex conjugate of complex
valued matrix G.

Theorem 4.7 (Existence of a solution): If the Assump-
tion 4.6 holds, then there exists an MP-MFE.

Proof: Similar to the proof of Theorem 4.3, in order
to show the existence of the MP-MFE, we can focus on
the existence of the solution of the FBODE system given
in Proposition 4.5 that characterizes the solution of the MP-
MFE. We again realize that the differential equations for
(At)t (18) and (Bt)t (19) are matrix Riccati equations and
the equation (18) has a unique and continuous solution that
is bounded under the given model parameter assumptions.
[36], [37] Then we can plug in the (At)t matrix in Riccati
equation (19) to solve for (Bt)t. This equation is a nonsym-
metric Riccati equation and under the assumption 4.6, it has
a continuous solution (see [37, Theorem 3.11]). Then we can
plug in (At)t and (Bt)t in the linear ODE system (20) which
has a unique continuous solution (Ct)t since the coefficients
of the linear ODE are continuous. Then by plugging in (At)t,
(Bt)t and (Ct)t in the linear ODE (21) we can find the
unique solution (X̄t)t since the coefficients of the linear
ODE are continuous. Different than the Theorem 4.3, we
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only conclude the existence results, since the nonsymmetric
Riccati equation 19 does not have a uniqueness result for the
given condition.

V. CONCLUSION & FUTURE WORK

In this paper, we have proposed two families of models
to study large populations of strategic agents with a combi-
nation of cooperative and non-cooperative behavior. We first
presented the models with finitely many agents, and then
we presented the mean field models when the number of
agents goes to infinity. For each type of mean field model, we
proved optimality conditions based on Pontryagin stochas-
tic maximum principle, using forward-backward stochastic
differential equations of McKean-Vlasov type and ordinary
differential equations, for which we showed existence (for
both mixed individual and mixed population models) and
uniqueness (for the mixed individual model) of solutions
under suitable conditions.

As future work, firstly we plan to theoretically and nu-
merically analyze the effect of λ and p. Secondly, we plan
to study general models beyond linear-quadratic structure,
and applications to the tragedy of the commons. Finally, we
plan to analyze the convergence of ϵ-Nash equilibrium to the
mean field equilibrium in both settings.
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