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Abstract— This paper introduces a new composite control
approach for a motion system driven by a reluctance actuator.
To achieve high-performance control, the method leverages
singular perturbation theory to divide the problem into two
components: a fast control problem and a slow control problem.
A feedforward controller is developed based on the reduced
system to address the fast control problem. The dynamic
model is then formulated using the feedforward control law to
address the slow control problem. Full-state feedback control
chooses the input signal that results in the desired reference
signal. The output signal of the feedback control is treated
as the desired input for the feedforward controller. With the
proposed approach, the feedforward controller for the fast
dynamic eliminates the need for measuring the fast states. The
effectiveness of the proposed approach is demonstrated through
experimental testing.

I. INTRODUCTION
Precision motion systems play a crucial role in meeting the

demands of modern Micro/Nano-position applications [1].
Some examples of these systems include the wafer scanner in
semiconductor manufacturing [2]. Electromagnetic actuators
are widely developed and used to drive precision motion
systems with a motion range of millimeters and microme-
tres [3]. Among them, reluctance actuators (RA) have been
introduced as a solution for driving short-stroke motion
stages, such as C-core and E-core reluctance actuators [4]–
[6], hybrid-reluctance actuator [7], and plunger reluctance
actuator [8]. Compared to other electromagnetic actuators,
the RA offers relatively high force density and lower energy
dissipation [9]. However, the application of this actuator
is restricted in high-precision motion systems due to its
high nonlinearity. These nonlinearities include the quadratic
relation between the magnetic flux and magnetic, the air
gap dependency [4], [5], and the magnetic hysteresis of the
material [6].

In the last decade, several studies have been proposed
to linearize the dynamic behavior of the RA. These studies
aimed to develop a control system that compensates for the
nonlinearities of the RA. Examples of such studies include
feedforward compensation with inverse hysteresis model [6],

M. Al Saaideh is with the Department of Mechanical and Mechatronics
Engineering, Memorial University, St. John’s, NL A1B 3X5, Canada.
mialsaaideh@mun.ca

A. M. Boker is with the Bradley Department of Electrical and
Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA.
boker@vt.edu

M. Al Janaideh is with the Department of Mechanical and Mechatronics
Engineering, Memorial University, St. John’s, NL A1B 3X5, Canada.
maljanaideh@mun.ca. Also, he is with the Department of Math-
ematics, Czech Technical University, Thákurova 7, 166 29 Praha 6, Czech
Republic, and the School of Engineering, Guelph, Guelph, ON, Canada.
email: maljanai@uoguelp.ca.

observer-based on sheared-hysteresis model [5], and sensing
coil voltage control circuitry with air gap observer [4]. These
studies mainly focused on developing control systems for
reluctance actuators at a constant air gap, overlooking the
control systems required when incorporating the reluctance
actuator into a motion system where the mover is part of the
moving stage. Furthermore, the most proposed control ap-
proach for reluctance actuators requires the measurement of
magnetic flux. In recent years, the hybrid-reluctance actuator
has emerged in micropositioning. This actuator combines a
reluctance actuator with an additional permanent magnet on
the mover. Several studies have been conducted on this type
of actuator, including [7], [10]. However, using permanent
magnets in the hybrid design can lead to demagnetization
effects, decreasing performance, output force, and efficiency
over time. Moreover, the presence of permanent magnets
can make the manufacturing process of the hybrid-reluctance
actuator more challenging and costly compared to other
reluctance actuators.

The singular perturbation approach is a mathematical
technique that helps analyze the behavior of dynamic systems
with two-time scales. One set of parameters is much larger
than the other by scaling the system’s parameters, effectively
separating the system’s fast and slow dynamics, which can
be modeled separately [11]. This approach takes advantage
of the fact that fast dynamics can be assumed to be in steady-
state. In contrast, the slow dynamics evolve, simplifying
complex systems and resulting in more accurate predic-
tions of system behavior. Researchers have demonstrated the
approach’s effectiveness, showing improved control perfor-
mance and accuracy in system behavior prediction, as seen
in recent studies [12]–[14].

We have formulated a novel composite control approach
for reluctance-actuated motion systems using the singular
perturbation technique. We employ a feedforward controller
to address the fast dynamic problem, while a full-state
feedback controller is utilized to handle the slow dynamic
problem. Initially, we reformulate the dynamic model of the
system using the singular perturbation method by choosing
a small constant. Next, we discuss the design process for our
proposed composite control approach. Finally, we integrate
an extended high-gain observer with the state feedback
controller to resolve the output feedback control problem.
The main contribution of the paper is summarized as

• Develop a robust control approach using singular per-
turbation that merges a feedforward controller with a
state feedback controller. The feedforward controller
provides an advantage as there is no requirement for
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Fig. 1: The proposed design of the reluctance-actuator mo-
tion system (RAMS) (a) view of the proposed design; (b) the
components of the fixed part (stator); and (c) the components
of the moving part (mover).

measuring or estimating the fast states in the system.
• Design an extended-high gain observer that uses the

measured displacement to estimate the slow states in
the system and the unknown force effect on the slow
dynamic due to the error of the feedforward controller.

II. RELUCTANCE-ACTUATED MOTION SYSTEM

Figure 1(a) illustrates the top view of the proposed
reluctance-actuated motion system (RAMS). The system
comprises a reluctance actuator attached to a moving stage,
which includes linear slide bearings and a preload mech-
anism as a compression spring. The actuator has a fixed
stator comprising C-core laminations and a mover of I-core
laminations installed in the moving stage. The magnetic flux
generated by the coil in the C-core creates an attractive
magnetic force in the air gap between the stator and the
mover. This force moves the stage toward the stator in the
positive direction x > 0. The motion of the stage is resisted
by the compression springs, which are set to maintain a
nominal air gap between the stator and the mover.

A. Proposed Design

The reluctance actuator utilized in the experiments in-
volved C-core and I-core Nonoriented Electrical Steel (M-
19) laminations with a width of 0.35 mm stacked together to
achieve a cross-section area of 25× 25 mm2. The excitation
coil included two coils on each limb of the C-core with N =
400 turns. The fixed stator of the reluctance actuator and the
motion stage, represented by the I-core, were implemented
in an Aluminum enclosure. The motion stage, weighing
approximately m = 1.65 kg, was guided by two linear
slide bearings, enabling linear motion in the x-axis. Two
compression springs (ISO D DIE SPRING) with a total
stiffness of about 100 N/mm were utilized to restrict the
magnetic force generated and return the motion stage to its
initial position. The four springs were also set up to attain
a nominal air gap of 2.5 mm, permitting a displacement
range of [0, 2] mm in the x-direction. Figures 1 (b) and
(c) show the components of the fixed part and the moving
part, respectively.

Fig. 2: Schematic diagram of the reluctance-actuated motion
system.

B. Dynamic Modeling and problem formulation

Figure 2 depicts the reluctance-actuated motion system,
which shows that the actuator’s mover is connected to the
motion system’s stage. During the motion, the air gap g
changes continuously with the position x, and it is given
by g = go − x, where go represents the nominal air
gap when the position is at zero. The interaction among
electrical, magnetic, and mechanical behavior is captured
by the electromechanical model that is formulated for this
system.

To derive the dynamic model of the RAMS, the displace-
ment x1 = x, the velocity x2 = ẋ, and the magnetic flux
ξ = B is defined as the system’s states. Accordingly, the
dynamic model of the RAMS can be formulated as [15]

ẋ1 =x2, (1)

ẋ2 =− k

m
x1 −

b

m
x2 +

1

m
F, (2)

ξ̇ =− 2R

µoN2Ac
(go − x1)ξ −

lc

N2Ac
Ψh +

1

NAc
u, (3)

F =
Ac

µo
ξ2, (4)

y =x1, (5)

where y is the measured output displacement, u is the control
input, and Ψh is an unknown bounded nonlinear function
that presents the magnetic hysteresis of the ferromagnetic
material.

Practically, a well-designed reluctance actuator allows
selecting the parameters Ac and N such as the constant
ε ≜ µoAc

N is a small that can be neglected. Then, following
the singular perturbation method [11], the RAMS model can
be represented in the standard form as

ẋ1 =x2, (6)

ẋ2 =− k

m
x1 −

b

m
x2 +

1

m
F, (7)

εξ̇ =− 2R

N3
(go − x1)ξ + ρΨh +

µo

N2
u, , (8)

y =x1, (9)

where ρ = − lcµo

N3 is a constant based on the system
parameters.
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It can be observed that the RAMS dynamic model evolves
in two-time scales, where x1, x2 are the slow states, and ξ is
the fast state. The objective is to design a controller so that
y(t) = x1(t) tracks a desired reference signal r(t), which is
assumed to be sufficiently smooth and bounded with bounded
derivatives.

III. COMPOSITE CONTROL APPROACH

To address the control design problem for the singularly
perturbed system, we propose a two-time scale approach,
dividing the problem into slow and fast subproblems. The
fast dynamic is handled using feedforward control to achieve
the desired signal ξd. In contrast, the slow dynamics are
stabilized through state feedback control to minimize the
tracking error between the output y = x1 and the desired
motion profile r, even in the presence of unknown errors
caused by feedforward compensation. It’s important to note
that our proposed composite control approach differs from
the composite control proposed in previous works, such as
[11], [16], as it doesn’t require the measurement of the fast
state ξ.

A. Feedforward Control Design

The slow subsystem of the system (6)-(8) is obtained by
setting ε = 0 in (8) as

ẋ1 =x2, (10)

ẋ2 =− k

m
x1 −

b

m
x2 +

1

m
F, (11)

0 =− 2R

N3
(go − x1)ξ + ρΨh +

µo

N2
u. (12)

Now, we consider a feedforward controller designed to
achieve the tracking performance of the fast dynamic, such
as the state ξ following a desired flux ξd. The feedforward
control law can be expressed using the reduced system (12)
as

uff =
2R

Nµo
(go − x1)ξd, (13)

where ξd is the input of the feedforward controller. The
desired flux ξd is calculated based on a desired force Fd

as

ξd =

√
µo

Ac
Fd, (14)

Applying the feedforward control law uff into the system
(6)-(8), we have

ẋ1 =x2, (15)

ẋ2 =− k

m
x1 −

b

m
x2 +

1

m
F, (16)

εξ̇ =− 2R

N3
(go − x1)(ξ − ξd) + ρΨh, (17)

Consider the error due to the feedforward controller being
defined by ef = ξ − ξd; thus, the system (6)-(8) with the

feedforward control law (13) can be expressed as

ẋ1 =x2, (18)

ẋ2 =− k

m
x1 −

b

m
x2 +

1

m
F, (19)

εėf =− 2R

N3
(go − x1)ef + ρΨh − εξ̇d. (20)

According to (4), the input force F for the system (18)-
(19) can be expressed as

F =
Ac

µo
ξ2 =

Ac

µo
(ξd + ef )

2,

=
Ac

µo
ξ2d +

Ac

µo
(2ξd + ef ) ef , (21)

Using (14) and (21), the system (18)-(20) is rewritten as

ẋ1 =x2, (22)

ẋ2 =− k

m
x1 −

b

m
x2 +

1

m
Fd + δff , (23)

εėf =− 2R

N3
(go − x1)ef + ρΨh − εξ̇d. (24)

where δff ≜ Ac

µom
(2ξd + ef ) ef is an unknown function that

represents the force effect on the motion system due to the
unknown feedforward error ef .

Now, the slow subsystem of the system (22)-(24) is
obtained by setting ε = 0 in (24) as

ẋ1 =x2, (25)

ẋ2 =− k

m
x1 −

b

m
x2 +

1

m
Fd + δff , (26)

ef =
ρN3

2R(go − x1)
Ψh. (27)

where go − x1 > 0 from a practical point of view based on
the proposed design of the RAMS. The system (27) indicates
that the feedforward error ef depends on the unknown
nonlinearities Ψh.

B. Full-State Feedback Control

Toward achieving the tracking goal, we introduce the error
variables as

e1 = x1 − r, e2 = x2 − w, (28)

where we recall that r is the desired reference position with
bounded derivatives, and w is a desired signal selected as

w = −k1e1 + ṙ, (29)

with k1 being a positive parameter to be designed. In view
of this change of variable, the system (18)-(20) is written as

ė1 =− k1e1 + e2, (30)

ė2 =− k

m
(e1 + r)− b

m
(e2 + w)− ẇ +

1

m
Fd + δff ,

(31)

εėf =− 2R

N3
(go − (e1 + r)) ef + ρΨh − εξ̇d. (32)

To achieve the desired tracking objective, the goal is to
ensure exponential stability at the system’s origin described
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by equations (30)-(31) through the design of a suitable state
feedback control ξd. For this purpose, consider a smooth
and positive definite Lyapunov function as Va = 1

2e
2
1 +

1
2e

2
2,

where the derivative of Va along the system (30)-(31) is given
as

V̇a = −k1e21 + e1e2

+ e2

(
− k

m
(e1 + r)− b

m
(e2 + w)− ẇ + γ(ξd + ef )

2

)
,

(33)

the the input ξd can be selected as

Fd ≜Γ(e1, e2, ef , σ, w), (34)

Γ =m

(
−k2e2 +

k

m
(e1 + r)− σ + ẇ

)
, (35)

where ẇ = −k1ė1 + r̈, k2 is a positive parameters to be
designed, and σ is defined as

σ = − b

m
(e2 + w) + δff . (36)

The function σ is utilized to capture the unknown dynam-
ics of the system arising from the unknown damping coeffi-
cient b and the unknown force generated by the feedforward
controller. Moreover, this function can be estimated using an
extended high-gain observer (EHGO), as demonstrated later,
and can thus be utilized in the feedback controller.

With the selection of Fd as (35), the derivative of Va
satisfies

V̇a = e1ė1 + e2ė2 = −eTaQaea,

≤ −λmin(Qa)∥ea∥2. (37)

where ea =
[
e1 e2

]T
and Qa =

[
k1 0.5
0.5 k2

]
is a positive

definite matrix.
Thus, the system (30)-(32) with the feedforward con-

trol (13) and state feedback control (35) is expressed as

ėa =A1ea, (38)

εėf =− 2R

N3
(go − (e1 + r)) ef + ρΨh − εξ̇d, (39)

where A1 =

[
−k1 1
0 −k2

]
is a Hurwitz matrix by selecting

k1 and k2. The closed-loop system (38)-(39) is in the
standard singularly perturbed form with a two-time scale
structure. The slow variable is ea(t), and the fast variable
is ef (t). By setting ε = 0 in (39), the system (38) has
an exponential stable equilibrium point at ea = 0, and the
reduced system (39) has an equilibrium point at
ef = ρN3

2R(go−r)Ψh.

Assumption 1. The nonlinear function Ψh captures the
magnetic hysteresis nonlinearity of the reluctance actuator,
which depends on the system’s magnetic flux ξ. Specifically,
ψh = 0 when ξ = 0. Additionally, the hysteresis is physically
limited by the magnetic properties of the ferromagnetic
material. Hence, the function Ψh is assumed to be bounded
with ∥Ψh∥.

Fig. 3: Block diagram representation of the proposed control
approach for the reluctance-actuated motion system.

IV. OUTPUT FEEDBACK CONTROL

The previous section presented the controller design as-
suming all dynamic states for the controller and knowledge
of the nonlinear function σ. However, this assumption re-
quires measurements of all these signals, which is impractical
and requires additional sensing devices. This section uses
an extended high-gain observer (EHGO) to estimate the
dynamics and the function σ in (36) that represents the
unknown force error due to the feedforward controller using
the feedback measurements of the position only. Then, it is
combined with the proposed controller to solve the output
feedback control problem.

A. Extended High Gain Observer

The concept of the Extended High Gain Observer (EHGO)
is used to estimate the states and the unknown hysteresis
nonlinearities of the nonlinear dynamic systems [17]. The
proposed observer is a structured cascade of observers with
two EHGOs, where the first EHGO is designed to estimate
the states x1, x2, and the function σ. The EHGO is formu-
lated as

˙̂x1 =x̂2 +
α1

ϵo
(y − x̂1), (40)

˙̂x2 =− k

m
x̂1 +

1

m
Fd + σ̂ +

α2

ϵ2o
(y − x̂1), (41)

˙̂σ =
α3

ϵ3o
(y − x̂1), (42)

where ϵo > 0 is a small parameter to be designed, and α1,
α2, and α3, are chosen such that the polynomial s3+α1s

2+
α2s+ α3 = 0 is Hurwitz. The error dynamic is given by

ê1 = x̂1 − r, ê2 = x̂2 − ŵ, ŵ = −k1ê1 + ṙ. (43)

B. Output Feedback Control

High-gain observers are known to have the ability to
recover performance of any stabilizing state-feedback con-
troller [18]–[22]. This property is beneficial in shaping the
transient performance of the closed-loop system. In what
follows, we will combine the state feedback controller with
the proposed observer to solve the output-feedback control
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problem. Accordingly, we use the output-feedback control
using the estimated states as

Fd =±Msat

(
Γ(ê1, ê2, σ̂, ŵ)

M

)
, (44)

where the control law Γ is defined in (35) and sat(.) is
the saturation function which is used to protect the system
from peaking in the observer’s transient response [23]. The
saturation limit M is chosen to include the set defining the
states under state feedback control. In practice, the value of
M is selected based on the maximum force of the mechanical
system. Figure 3 represents the closed-loop representation of
the proposed output feedback control approach with EHGO.

To analyze the performance of the closed-loop system,
consider the scaled estimation errors

χ1 =
x1 − x̂1
ϵ2o

, χ2 =
x2 − x̂2
ϵo

, χ3 = σ − σ̂. (45)

Using the scaled error, the closed-loop system under the
output feedback can be expressed by the system (38)-(39)
and the observer (40)-(42) as

ėa =A1ea, (46)
ϵoχ̇ =Λ1χ+ ϵo [B1∆1 +B2σ̇] , (47)

εėf =− 2R

N3
(go − (e1 + r)) ef + ρΨh − εξ̇d, (48)

where Λ1 =

−α1 1 0
−α2 0 1
−α3 0 0

, B1 =

01
0

, B2 =

00
1


and ∆1 = − k

mϵoχ1. Equations (46)-(48) are in the
standard singularly perturbed form with a three-time scale
structure. The slow variable of this structure is ea(t) and
the fast variables are (ef (t), χ(t)), moreover, ef (t) is faster
than χ(t). Let (χ) ∈ Z ⊂ R3 where Z is a compact set.

V. EXPERIMENTAL VERIFICATION

The experimental tests of the RAMS are carried out for
verification of the proposed control approach. In this test, we
consider a step response and tracking of a sinusoidal motion
profile.

A. Step response:

For this experimental setup, a step signal with an ampli-
tude of 1mm was chosen as the desired reference signal.
The tracking performance of the measured displacement
x(t) is shown in Figure 4(a), which indicates that the
proposed controller achieves the desired signal with an error
of approximately 19.85 µm. The feedforward voltage uff (t)
of the control law (13) and the desired force Fd of the
feedback control (35) are illustrated in Figure 4(b)(a). The
figure depicts that a high voltage is required at time zero to
initiate motion. The steady-state value of the desired force
is approximately Fd = 46.26 N, and the steady-state value
of the voltage is around uff = 5.32 V.

(a)

(b)

Fig. 4: Step response of the RAMS using the proposed
control approach (a) tracking performance of the displace-
ment x1(mm); and (b) the desired force Fd (N) and the
feedforward voltage uff (V).

(a)

(b)

Fig. 5: Tracking performance of the displacement x1(mm) to
a desired sinusoidal motion profile as r(t) = 0.5 sin(2πft)+
0.7 for (a) frequency f = 0.5 Hz; and (b) frequency f =
1 Hz.

B. Sinusoidal motion profile:

In this experiment, a sinusoidal motion profile with two
different frequencies is designed as r(t) = 0.5 sin(2πft) +
0.7mm, where f takes on values of 0.5Hz, and 1Hz. The
tracking performance of the measured displacement x(t) for
the selected frequencies is presented in Figure 5 with the
tracking error e(t) = r(t) − x(t). It can be observed that
the proposed controller can achieve the desired signal with a
bounded error of [−84, 114](µm). Figure 6 shows the output
force Fd of the state feedback controller and the feedforward
voltage uff as a function of time.
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(a)

(b)

Fig. 6: The desired force Fd from the state feedback con-
trol (35) and the voltage uff from the feedforward con-
trol (13) for a desired reference r(t) = 0.5 sin(2πft) + 0.7
for (a) frequency f = 0.5 Hz; and (b) frequency f = 1 Hz.

VI. CONCLUSION

Using a singular perturbation approach, the paper presents
a novel composite control strategy for a reluctance-actuated
motion system (RAMS) with unknown nonlinearities. The
proposed approach formulates the dynamic model of the
RAMS as a two-time-scale model. Firstly, a feedforward
controller is designed based on a reduced system to achieve
a tracking objective of the fast dynamics. Next, a full-
state feedback controller is designed to stabilize the slow
dynamics and achieve a desired output displacement while
considering all states and unknown forces due to the available
feedforward controller. However, since the states and the
unknown dynamics may not be available for the controller, an
extended high-gain observer (EHGO) is designed based on
the slow dynamics to estimate the slow states and unknown
nonlinear function using only the measured output. Finally,
an output feedback control is proposed by integrating the
state feedback with the EHGO. The effectiveness of the
proposed approach is demonstrated through experimental
results, which show that it can achieve the desired tracking
motion profile and reduce tracking errors. Future work will
generalize the proposed control approach for a two-time scale
dynamic model in different mechatronics applications.
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