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Abstract— We study the daily operation of hybrid energy
resources that couple a renewable generator with a battery
energy storage system (BESS). We propose a dynamic
stochastic control formulation for optimal dispatch of BESS
to maximize the reliability of the hybrid asset relative to
a given day-ahead dispatch target or forecast. We develop
a machine-learning algorithm based on Gaussian Process
regression to efficiently find the dynamic feedback control
map. Several numerical case studies highlight the flexibility
and extensibility of our methodology, including the ability
to consider alternative objectives, such as peak shaving. We
also provide a sensitivity analysis with respect to the energy
capacity and power rating of the BESS.

I. INTRODUCTION

The stochastic and intermittent nature of wind and
solar energy resources creates a mismatch between their
projected generation at the time of day-ahead (DA) unit
commitment and their actual power production. Renewable
over-generation relative to the DA dispatch target can lead
to curtailment and revenue loss. Under-generation requires
the use of grid reserves and may trigger financial penalties.
To remedy this reliability problem, grid operators are
encouraging the deployment of hybrid assets [1] that couple
a renewable resource with a battery energy storage system
(BESS), participating in the daily power market as a single
entity. Hybrid assets are being deployed at an exponential
rate: according to the 2022 EIA report [2], more than 10GW
of hybrids will come online in U.S. in 2023 and 2024.
This corresponds to approximately one-third of all new solar
energy projects and more than half of new storage proposals
[3]. Independent system operators like ERCOT and CAISO
have accordingly been creating new rules for day-to-day
operation of hybrid resources.

Contributions: In this article, we investigate operation
of integrated hybrid resources aiming to optimally firm
their output via BESS-provided real-time control. Thus,
the battery is dynamically used to counter deviations of
realized renewable production relative to a given dispatch
target, optimally taking into account the intertemporal
constraints of the BESS capacity and power rating limits.
We formulate a time-dependent stochastic control problem
and propose a direct implementation of the dynamic
programming equations via a machine learning approach,
namely by building two Gaussian Process emulators for
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the continuation value and the optimal control maps.
Methodologically, our primary contribution is a general-
purpose algorithm that tractably determines BESS adaptive
dispatch trajectories through minimizing a proxy step-
wise loss functional. Our approach directly works with
probabilistic generation scenarios and continuous input and
action spaces, offering an experimental investigation of
BESS dispatch in hybrid assets.

Literature Review: With the explosive growth in BESS
deployment, a rapidly expanding literature considers both
standalone BESS operations, as well as the coupling of
BESS with renewable resources [4], [5]. Thanks to the
flexibility of BESS, there is a slew of potential objectives,
such as energy arbitrage (shifting energy production in time)
[6], [7], [8], [9], ancillary service participation [10], [11],
[12], peak shaving [13], [14], and transmission congestion
mitigation. Unlike our approach, most extant works (such
as [15]) consider only a limited number of pre-determined
scenarios to capture the uncertainty in renewable production.

To solve the stochastic control problem, we utilize
Regression Monte Carlo (RMC), which is a simulation-
based policy/value function iteration scheme. RMC falls
within the realm of Approximate Dynamic Programming
[16] which exploits the classical Bellman’s recursion. RMC
has been extensively used for valuing natural gas storage
[17], [18], [19], as well as for microgrid operations in [20],
[21], [22] where the BESS assists a backup diesel generator.
To our knowledge, we are the first to apply RMC to the task
of firming hybrids’ output.

In this article, we rely on Gaussian Processes (GP) for
emulation of conditional expectation. An alternative to using
GPs are feedforward neural networks, which have been
utilized for related problems in [14], [23]. Unlike the above
approaches that directly parametrize the policy map, in
RMC we first compute pointwise optimal controls and then
learn the interpolating statistical surrogate. Neural networks
require large datasets and numerous hyperparameters to
tune, whereas GPs work efficiently with small datasets, with
the kernel being the sole hyperparameter to consider.

The rest of the paper is organized as follows. In Section
II we present the system dynamics, firming objective, and
the dynamic programming approach. Section III describes
the solution scheme based on GP surrogates and pointwise
optimization. Section IV presents 3 numerical case studies,
as well as a partial sensitivity analysis; Section V concludes.
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II. PROBLEM FORMULATION

A. Renewable Generation and BESS Dynamics

We consider a control horizon T (typically 24 hours) with
a decision time grid T = {0 = t0, t1, . . . , tK = T} where
tk = k∆t, typically 15 minutes. To fix ideas, we consider a
hybrid asset composed of a wind farm and BESS. Following
[24], [25] who used mean-reverting Stochastic Differential
Equations (SDEs) for probabilistic wind power forecasting,
we model wind power generation in MW, (Xk)k∈T , using
the discrete-time equivalent of the time-dependent Ornstein-
Uhlenbeck SDE:

Xk+1 = Xk + α(mk −Xk)∆t+ σ · Zk, (1)

where mk is the mean reversion level (in MW), σ is the
volatility (in MW∆t−0.5), and α ≥ 0 is the unit-less
mean reversion coefficient. Finally, Zk ∼ N (0,∆t) are the
exogenous, i.i.d. stochastic shocks driving (Xk)k∈T .

Denote by Ik the state of charge (SoC) of BESS in MWh
and Bk the controlled charge/discharge rate in MW at time
tk. Then Ik evolves according to

Ik+1 = Ik +
(
ηBk1{Bk≥0} +

1

η
Bk1{Bk<0}

)
∆t (2)

where η ≤ 1 represents the charging efficiency. The BESS
SoC bounds are given by the constraints:

SoCmin · Icap ≤ Ik ≤ SoCmax · Icap (3)

where Icap is the rated capacity in MWh and
SoCmin,SoCmax are SoC percentage limits.

The power ratings of the BESS are given by Bmax >
0 and Bmin < 0. Furthermore, Bk must satisfy the SoC-
dependent capacity constraints of (3):

η · SoCminIcap − Ik
∆t

≤ Bk ≤ SoCmaxIcap − Ik
η∆t

Bmin ≤ Bk ≤ Bmax.

(4)

Given the Markovian structure of (Xk) in (1), we
focus on closed-loop feedback-form strategies so that Bk

is a function of Xk, Ik. Note that due to the form
of (2), this leads to all three processes: the generation
(Xk)k∈T , the SoC process (Ik)k∈T , and the controlled
B(k,Xk, Ik) being adapted to the information filtration
(Fk)k⩾0 generated by the external shocks {Zk}k≥0. We
denote by A the set of admissible feedback controls B :=
(B0, B1, . . . , Bk, . . . , BK−1) such that Bk is adapted to
filtration Fk and satisfies constraints in (4).

B. Firming objective

The hybrid asset firms its renewable generation by aiming
for output Ok := Xk −Bk to be close to Mk, representing
the dispatch target at time tk. Thus, the controller decides
whether to charge/discharge BESS and how much as a
function of SoC and renewable generation, see Figure 1.

We formulate the above objective as minimizing the
expected cost functional given by the stochastic control
value function:

V (0, X0, I0) := inf
B∈A

E

[
K−1∑
k=0

f(Xk,Mk, Bk) + g(IT )

]
(5)

with the state dynamics in (1) and (2).
The key idea of (5) is to convert a global objective, such

as minimizing the L∞ norm of the vector ∥Ok−Mk∥∞, into
a stepwise criterion that can be recursively optimized via
dynamic programming. Hence, the running cost f(x,m, b)
is an auxiliary loss function acting as proxy for a desired
global criterion. The terminal cost g accounts for constraints
on the BESS’s SoC at T so as to avoid complete depletion
of the battery at the control horizon.

Below we consider the following stepwise losses:
• f1(Xk,Mk, Bk) := |Xk − Bk − Mk| ≡ |Ok − Mk|

corresponding to the L1 loss;
• f2(Xk,Mk, Bk) := (Xk−Bk−Mk)

2 ≡ (OK −Mk)
2

corresponding to the L2 loss.
In Section IV-C we introduce a third choice fsh.

Fig. 1: A schematic description of optimizing the output of
a hybrid renewable–BESS resource.

C. Dynamic Programming

To solve the stochastic control problem (5), we rely
on the Dynamic Programming Principle (DPP) [26] which
decouples our multi-stage control problem into intermediate
sub-problems via Bellman’s recursion:

V (tk, Xk, Ik) = inf
Bk∈Ak

{
f(Xk,Mk, Bk)

+ E[V (tk+1, Xk+1, Ik+1)|Xk, Ik]
} (6)

where Ak is the feasible set for Bk and the expectation
is taken over the random variable Xk+1, conditioned on
current generation Xk. In line with the DPP approach, we
numerically optimize the control at time tk by

arg inf
Bk∈Ak

f(Xk,Mk, Bk) +Q(tk, Xk, Ik+1), (7)

where Q(tk, Xk, Ik+1) := E[V (tk+1, Xk+1, Ik+1(Bk)|Xk]
is the continuation q-value. To solve for the optimal control
at time tk according to (7), we need to approximate Q(tk, ·).
To do so, we proceed within the realm of RMC algorithms.
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III. IMPLEMENTATION

A. RMC Algorithm

We follow the Dynamic Emulation Algorithm (DEA)
framework [18]. As in standard DPP, we proceed backward
in time, starting with the known terminal condition
V (T,XT , IT ) = g(IT ). Then for k = K − 1, . . . , 0, we
repeat the following 3 sub-steps:

1) Evaluate the pointwise optimal control B∗ in (7) for every
input in the simulation design;
2) Evaluate the pointwise value function in (6) for every
input using the above optimal control B∗;
3) Construct the continuation value emulator for

Q̂k : (X, I) 7→ E
[
V̂ (tk+1, Xk+1, I) | Xk = X

]
. (8)

In (8), the q-value Q̂k is a function of the current wind
power generation Xk at step tk and the lookahead SoC
Ik+1 at step tk+1. Accordingly, the simulation design is
Dk = (Xn

k , I
n
k+1)

N
n=1.

The first two sub-steps of the DEA loop entail obtaining
the training output v1:Nk+1 for each input (Xn

k , I
n
k+1). To do

so, we first sample a one-step forward simulation Xn
k →

Xn
k+1. We then perform the numerical optimization (7) to

obtain the corresponding lookahead optimal control B∗,n
k+1.

Finally, we compute the resulting pathwise value

vnk+1 = f(Xn
k+1,Mk+1, B

∗,n
k+1)+

Q̂k+1(X
n
k+1, I

n
k+2), n = 1, . . . , N.

(9)

For sub-step 3), we learn the mapping Q̂k(·) by regressing
v1:Nk+1 against the design Dk, i.e. an empirical L2-projection
into a given function space Hq ,

Q̂k := arg inf
qk∈Hq

N∑
n=1

(qk(X
n
k , I

n
k+1)− vnk+1)

2. (10)

B. Simulation Design

We provide details on the simulation design Dk

introduced in the prior section. We use a space filling design
over [Xk

min, X
k
max] × [0, Icap], where the choice of Xk

min

and Xk
max is based on the range of Xk. We opt for Latin

Hypercube Sampling (LHS), which is a variance-reduced
version of random uniform sampling in each coordinate.

We also apply replication, dividing our training design
into Nloc distinct sites, with each distinct input repeated
Nrep times (for the remainder of the subsection, x ≡ (X, I)
is a generic training input):

Dk = {x1, . . . ,x1︸ ︷︷ ︸
Nrep times

,x2, . . . ,x2︸ ︷︷ ︸
Nrep times

, . . . ,xNloc }. (11)

The total simulation budget at each step tk is N =
Nloc × Nrep. Subsequently, one-step forward simulations
and optimizations are performed to acquire the respective
responses y1,1, y1,2, . . . , yi,j , . . . , yNloc,Nrep . After pre-
averaging the replicates ȳi := 1

Nrep

∑Nrep

j=1 yi,j , the

regression model for the continuation value emulator Q̂k(·)

is applied to the reduced design D̄k := (x1:Nloc , ȳ1:Nloc).
The replicated design lowers training errors thanks to the
decreased variability in ȳi’s, raising the signal-to-noise ratio.

C. Gaussian Process Emulator for Q

In order to enhance the numerical optimization of Bk in
(7), we opt for an emulator that has an analytical gradient.
To achieve this, we make use of Gaussian Process regression
(GPR). GPR models Q(·) as a Gaussian Process (GP),
specified by a mean function m(x) (taken to be zero after
standardizing the outputs) and positive definite covariance
function c(x,x′) [27]. The covariance c(·, ·) specifies the
smoothness of Q̂. Given a training design (x1:N , y1:N ) and
an input x∗, the continuation value, Q̂(x∗), is the posterior
mean of the GP given by

Q̂(x∗) = C⊤
∗ (C+ σ2

ϵ I)
−1y (12)

where I is N ×N identity matrix, y =
[
y1, . . . , yN

]⊤
,

C⊤
∗ =

[
c
(
x∗,x

1;ϑ
)
, . . . , c

(
x∗,x

N ;ϑ
)]

. (13)

Finally, σ2
ϵ represents observation noise and C is the N×N

covariance matrix with Ck,l = c(xk,xl;ϑ) where ϑ is the
parameter vector for the covariance function.

We choose the anisotropic Matérn-5/2 kernel

cM52(x,x
′;ϑ) := σ2

p

2∏
j=1

(
1 +

√
5

ℓj
|xj − x′

j |+

5

3ℓ2j
(xj − x′

j)
2
)
· exp

(
−
√
5

ℓj
|xj − x′

j |
)
,

(14)

where ϑ = (σ2
p, ℓ1, ℓ2): σ2

p indicates the magnitude of
the response, and ℓ1 and ℓ2 determine how the response
fluctuates with respect to wind power generation (MW) and
SoC (MWh), which are expressed in different scales and
units and hence have different lengthscales. The parameters
ϑ and σ2

ϵ are optimized using the maximum likelihood
estimation (MLE). To accelerate the optimization of Q̂k(·),
we warm-start with the hyperparameters ϑ(k+1) obtained
from the trained GP Q̂k+1(·) at time tk+1.

Remark 1: Using replicates not only dramatically speeds
up GPR training which is cubic in Nloc but moreover offers
more stable MLE results thanks to lower observation noise.

Estimating the value function: After training, the RMC
algorithm produces continuation value emulators for each
time step {Q̂k(·)}K−1

k=0 . To evaluate the resulting hybrid
resource output trajectory (Ok) and the respective value
function, we utilize Monte Carlo simulation. Given an
initial state (X0, I0), we generate M out-of-sample paths
(Xm

0:K , I∗,m0:K ), m = 1, . . . ,M , where the optimized SoC
I∗ is based on B∗(Xm

k , I∗,mk ) according to (7). This gives
cumulative pathwise realized cost

vm0:K =

K−1∑
k=0

f(Xm
k ,Mk, B

∗,m
k ) + g(I∗T ), (15)
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and the resulting Monte Carlo estimate of the value function:

V̂ (0, X0, I0) =
1

M

M∑
m=1

vm0:K . (16)

D. Policy Map

The constrained optimization problem in (7) is given
implicitly in terms of the emulator Q̂k(·), with the respective
first-order condition tied to ∂Q̂k/∂I . GPR allows the use
of faster gradient-based optimizers thanks to its analytical
gradients. Differentiating a GP Q̂(·) in xj gives another GP
with posterior mean at input x∗ given by

∂Q̂

∂xj
(x∗) =

N∑
n=1

αn
∂cM52

∂xj
(x∗,x

n;ϑ) (17)

where αn is the n-th component of
(
C+ σ2

ϵ I
)−1

y; see
[28] for the gradient of the Matérn-5/2 kernel. In our case
we differentiate with respect to SoC I , j = 2.

The presence of the black-box Q̂ makes the optimization
problem non-convex. We employ the unconstrained,
gradient-based L-BFGS solver from the SciPy library and
then directly enforce the constraints that define the feasible
set Ak to obtain the optimal pointwise control B∗ in (7).

Emulating the feedback control: Both the training
stage and the out-of-sample evaluation stage in (15) require
repeated calls of L-BFGS subroutine tens of thousands of
times to determine B∗(Xn

k , I
n
k ). To accelerate this aspect,

we build an emulator for the map B̂k : (X, I) 7→ Ak ⊂ R
for each time step tk. To do so, we train B̂k by regressing
(B∗,n

k )Nb
n=1 against (Xn

k , I
n
k )

Nb
n=1 using a subset of size

Nb ≪ N ( in the examples below we take Nb = Nloc)
and an approximation space Hb,

B̂k(·) = arg inf
hk∈Hb

Nb∑
n=1

(
hk (X

n
k , I

n
k )−B∗,n

k

)2
. (18)

To fit B̂k we rely on GPR with a Matérn-3/2 kernel.
Once trained, we use the control emulators {B̂k(·)}K−1

k=0 to
evaluate the pathwise vnk+1’s and the final value function in
(16), avoiding the need for further numerical optimization.
The full procedure is detailed in Algorithm 1.

The stability of Algorithm 1 depends on how well the
GPR emulates the optimal control. Figure 2 compares the
control map surface from the GP B̂k and the direct L-BFGS
optimizer B∗ under the L2 criterion f2(·). We observe that
the latter can be quite non-smooth across (X, I), witness
the “cracks” in the bottom-left and top-right (presumably
due to some high-order instability in Q̂k that leads to local
optima). The GPR helps to smooth out and remove such
numerical artifacts.

IV. NUMERICAL EXPERIMENTS

A. Toy stationary example

As our first demonstration, we consider a time-stationary
generation profile with a matching constant dispatch target,
mk = Mk ≡ 5 MW for k = 0, . . . , 95 and terminal

Algorithm 1 RMC for dispatching hybrid renewable-BESS
resources

1: Input: K steps, Nloc sites, Nrep replications
2: Set Q̂K−1(XK−1, IK) = g(IT ) (No emulation)
3: Generate Design DK−1 = (Xi,j

K−2, I
i,j
K−1) for i =

1, 2, . . . , Nloc and j = 1, 2, . . . , Nrep

4: Generate one-step paths: Xi,j
K−2 → Xi,j

K−1for i =
1, 2, . . . , Nloc and j = 1, 2, . . . , Nrep

5: Optimize B∗,i,1
K−1 in (7) for (Xi,1

K−1, I
j,1
K−1) respectively,

i = 1, 2, . . . , Nloc.
6: Fit control GP B̂K−1(·) by regressing B∗,i,1

K−1 against
(Xi,1

K−1, I
j,1
K−1).

7: for k = K − 1 to 1 do
8: Evaluate B∗,i,j

k using control GP B̂k(·) for i =
1, 2, . . . , Nloc and j = 1, 2, . . . , Nrep

9: Evaluate vi,jk in (9) for i = 1, 2, . . . , Nloc and j =
1, 2, . . . , Nrep

10: Average over replicates: v̄ik = 1
Nrep

∑Nrep

l=1 vi,lk for
i = 1, 2, . . . , Nloc

11: Fit continuation value GP Q̂k−1(·) by regressing v̄ik
against (Xi,1

k−1, I
i,1
k ) for i = 1, 2, . . . , Nloc.

12: Generate design Dk−1 = (Xi,j
k−2, I

i,j
k−1) for i =

1, 2, . . . , Nloc and j = 1, 2, . . . , Nrep

13: Generate one-step paths: Xi,j
k−2 → Xi,j

k−1 for i =
1, 2, . . . , Nloc and j = 1, 2, . . . , Nrep

14: Optimize B∗,i,1
k−1 in (7) for each sample (Xi,1

k−1, I
i,1
k−1)

for i = 1, 2, . . . , Nloc.
15: Fit control GP B̂k−1(·) by regressing B∗,i,1

k−1 against
(Xi,1

k−1, I
i,1
k−1) for i = 1, 2, . . . , Nloc.

16: end for
Output: {B̂k(·), Q̂k(·)}K−1

k=0 .

condition on (Ik) at k = 96, representing 24 hours at 15
min frequency. The other parameters are in Table I. The
BESS starts with 10% SoC and has the matching terminal
condition g(IT ) = λ · (0.1Icap − IT )+.

To train the GP emulators Q̂ we use a training design of
size N = Nloc ×Nrep = 3 · 104 at each time step tk, with
Nloc = 600 unique sites and batch size Nrep = 50. The
implementation via the Python scikit library is run on a
laptop; training all the GPs takes under 18 minutes.

Figure 3 visualizes the resulting policy B̂k based on
the quadratic f2 criterion. Observe that when SoC is far
from being empty or full, B̂k(X, I) ≃ X − Mk is almost
linear in the middle of the policy surface. However, when
both the SoC I and renewable generation are high, the
optimal controller decreases the charging rate B̂k(X, I) <
X − Mk to maintain some SoC headroom. Similarly, the
controller throttles discharging when the SoC and renewable
generation are low. As a result, I∗k tends to stay in a “safe
zone” and away from the SoC limits, demonstrating the
precautionary risk-mitigating behavior emerging from DPP.

In contrast, the L1 criterion f1 leads to undesirable greedy
behavior: the BESS charges and discharges to the fullest
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Fig. 2: Difference between the fitted GP control map B̂k

and original L-BFGS optimizers B∗,n
k at k = 0.

Parameter Section IV −A Section IV −B
α 1 5
σ 1 1
Icap 8 MWh 30 MWh
I0 0.1Icap 0.1Icap
Bmax 2 MW 10 MW
Bmin −2 MW −10 MW
λ $50/MWh $50/MWh
η 0.90 0.90
SoCmin 5% 5%
SoCmax 95% 95%
∆t 0.25 h 0.25 h
T 24 h 24 h

TABLE I: Parameters of the case studies in Section IV.

extent possible to firm the current renewable generation X ,
B̂k(X, I) = X −Mk up to the physical BESS constraints,
ignoring SoC. This is caused by the bang-bang feature of
the f1 criterion vis-a-vis the convex f2 criterion.

Figure 4 displays a 24-hour trajectory of wind power
generation (Xk) in the top, the corresponding SoC (I∗k)
in the middle and the resulting hybrid output (Ok) in the
bottom panel. Comparing the L1 and L2 controllers, (Ok) is
much smoother when working with f2. Of note, the greedy
behavior of the f1 criterion leads to empty SoC I∗k = 0
for several hours which greatly increases the overall target
mismatch.

Fig. 3: Left: Control emulator B̂k as a function of generation
X and SoC I . Right: Continuation value emulator (X, I) 7→
Q̂k(X, I). Both plots are for the f2 criterion at initial step
tk = 0.

Fig. 4: Top panel: A simulation of (Xk) following (1) with
constant mean E[Xk] = 5. Middle: Corresponding SoC
trajectories (I∗k) following the L1 and L2 controls. Bottom:
Firmed hybrid outputs (Ok).

B. Non-stationary renewable generation

Our second case-study is calibrated to realistic, time-
dependent wind generation. Specifically, we use NREL-
provided forecasts for renewable resources in ERCOT [29],
illustrating with the respective re-analyzed DA forecasts
for the Amazon Wind Farm in 2018. This forecast data is
hourly and we utilize cubic splines to upscale to intervals
of ∆t = 15 minutes yielding the smoothed mean-reversion
profile mk in (1). Unlike our first example, it is possible for
renewable generation to fall to 0. To make sure that (Xk)
stays non-negative, we consider the discrete counterpart of
the time-dependent square-root process:

Xk+1 = |Xk + α(mk −Xk)∆t+ σ
√
Xk · Zk|. (19)

Due to time-dependent (mk) and state-dependent
volatility, the variance of (Xk) now depends on
k. Accordingly we construct adaptive simulation
designs Dk for each k, covering the interval
[E[Xk]− 2StDev[Xk],E[Xk] + 2StDev[Xk]] (obtained
through pilot simulations of (Xk)). We use the same
simulation budget as our first example; the other parameters
are in Table I.

Figure 5 visualizes the resulting hybrid BESS behavior
for several representative days. The left panels consider
dispatch targets Mk = mk = E[Xk], while the right panels
use the original hourly forecasts with a piecewise linear
interpolation. The latter context highlights the common
possibility that Mk does not match the average Xk. We
observe that the BESS provides a significant firming, with
the variance of (Ok) an order of magnitude smaller than that
of the uncontrolled (Xk). We also observe that the variance
of (Ok) is time-dependent: it is higher in the morning due
to starting with a near-empty SoC I0 = 0.1Icap which
limits discharging ability in the morning. StDev(Ok) is also
higher when mk = E[Xk] rapidly changes which increases
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StDev(Xk), and when Mk is far from mk, see e.g. the
September panel.

Figure 5 also reports the improvement of the optimized
L2 policy against the greedy L1 policy. We report gains
from 30 to 90 percent.

Fig. 5: Firming for several representative days across the
listed months of the year. Outer yellow band is 95% CI
of renewable generation (Xk). Inner red band is 95% CI
of optimized hybrid output (Ok) and the black curve are
the dispatch target (Mk). Left panels: Mk = E[Xk]. Right
panels: piecewise linear Mk based on original DA forecast.
The printed values denote percent improvement against
greedy policy.

Bmax Icap Opt L2 Loss Greedy Loss % Impr
Impact of battery power rating Bmax

2.5 30 139.99 183.39 23.7%
5 30 58.18 99.39 41.5%
10 30 21.36 61.75 65.4%
15 30 18.24 58.57 68.9%

Impact of battery capacity Icap
10 20 22.92 53.39 51.6%
10 30 21.36 61.75 65.4%
10 40 20.48 72.23 71.6%
10 50 19.98 85.15 76.5%

TABLE II: Sensitivity of value functions for the case study
in Section IV-B to the BESS parameters Icap, Bmax for a
representative July day in ERCOT.

Sensitivity Analysis: Table II shows the impact of
battery power rating Bmax and capacity Icap on the
firming objective. In general, larger Bmax gives the BESS
more headroom to counteract deviations of (Xk) from the
dispatch target, while larger Icap allows to sustain longer
charging/discharging. When Bmax is small relative to the
fluctuations in (Xk), the constraint in (4) is frequently

binding and is the primary driver of accrued firming
losses. As a result, in Table II, optimal loss is roughly
inversely proportional to Bmax (e.g. doubling Bmax halves
V (X0, I0)). However, once Bmax ≫ maxk StDev(Xk), the
power rating is big enough to handle the vast majority of
deviations from the forecast and Bmax makes little impact,
compare Bmax = 10 MW vs Bmax = 15 MW. Comparing
to the greedy strategy, if the power rating binds often,
there is relatively less gain from dynamic control, while
improvements of up to 70% are possible when the primary
constraint is the BESS capacity.

To quantify the impact of capacity Icap we consider
BESS with durations of 2-hours (Icap = 2Bmax), 3-, 4-
and 5-hours. We observe diminishing returns from adding
capacity, with little improvement beyond a 3-hour duration.
Note that the greedy strategy performs worse for larger Icap
due to incurring larger terminal penalties.

C. Congestion Mitigation

Another important motivation for hybrid resources
is mitigating curtailment which leads to revenue
loss. Curtailment may arise during periods of over-
generation when there are limited regulation-down
reserves. Alternatively, curtailment may be triggered by
congestion in the transmission grid. As an initial illustration
of modeling such objectives, we introduce the loss function
fsh, which involves both upper and lower bound generation
thresholds. Denote the upper threshold as Mk and the
lower threshold as Mk, and set

fsh(Xk,Mk, Bk) := (Ok −Mk)
2 + P1 · (Ok −Mk)

2
+

+ P2 · (Mk −Ok)
2
+. (20)

The penalties P1, P2 control the relative importance of the
thresholds and can be used to create an asymmetric criterion.

Fig. 6: Firming on a July day with dispatch thresholds
Mk = 0.95Mk and Mk = 130 MW. Outer yellow band
is 95% CI of renewable generation (Xk). Inner red band
is 95% CI of hybrid output (Ok) after optimal dynamic
firming.

2187



In Figure 6 we consider a case study with a fixed upper
threshold Mk = 130 MW (with penalty P1 = 100 per
MW) that represents a limited transmission line capacity,
and a variable lower threshold Mk = 0.95Mk (with penalty
P2 = 50) i.e. avoiding under-generation of more than
5% below the DA dispatch target. The underlying dispatch
profile matches the July panel of Figure 5 and uses the
same parameters as in Section IV-B with power rating
Bmax = 15. The resulting output (Ok) can be seen to stay
completely below the curtailment threshold Mk. Also we
observe that the variance of Ok is minimal around noon
due to the binding lower threshold Mk, while it is relatively
larger after 8pm when neither threshold binds.

V. CONCLUSION AND FUTURE WORK

We developed an algorithm for dynamic real-time
dispatch of hybrid resources firming a given DA target
profile. As demonstrated, our algorithm can handle multiple
performance criteria, including L2-penalization, peak
shaving, and two-sided dispatch thresholds. Furthermore, it
is agnostic to the underlying dynamics, and can be adjusted
to work with nonlinear SDEs, non-Gaussian innovations, or
non-parametric scenario simulators.

Among avenues for further work, we highlight the
task of incorporating energy prices, both for the purpose
of augmenting firming with energy arbitrage, as well as
to have a stochastic cost of deviating from the target.
This would require to add a third state variable (Pk)
and to capture the joint behavior of (Pk, Xk). A related
task is to minimize curtailment viewed as a stochastic
process that can be zero (no curtailment) or in the
range [0, Xk]. By adding additional state variables, our
method could be extended to analyze hybrid resource
participation in ancillary service provision. From a control
standpoint, a significant extension would be analysis of
several distributed energy resources equipped with storage,
necessitating coordination of multiple BESS controls.
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