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Abstract— This paper focuses on cyber-security issues of
networked control systems in closed-loop forms from the
perspective of quantized sampled-data systems. As sampling
can introduce non-minimum phase zeros in discretized systems,
we consider zero dynamics attacks, which is a class of false data
injection attacks. Quantization of control inputs disables such
attacks to be made exactly, resulting in certain errors in the
system output. Specifically, we characterize a trade-off relation
between attack performance and stealthiness, and then show
that the attacker can reduce the output error with a modified
approach by considering the quantization error of the attack
signal. We provide a numerical example to demonstrate the
effectiveness of the proposed approaches.

I. INTRODUCTION

Networked control systems play a central role in various
industries. By reducing wiring and maintenance costs and en-
hancing system flexibility and efficiency, they are critical in
large-scale control systems for power grid, mining facilities,
automation, and so on. In recent years, advances in electron-
ics and communications have increased the use of wireless
networks, enabling further connectivity and integration with
the Internet of Things (IoT). As a consequence, small and
medium size businesses also benefit from wider level of field
automation through digital transformation.

On the other hand, cyber-security issues arise together with
networked control (see, e.g., [8]). Well-known cyber-attack
incidents include Stuxnet attacks on nuclear facilities in Iran
and ransom attacks on the Colonial Pipeline [2]. Malicious
malwares like Triton can also disable control operations
running on industrial networks [1]. Devices connected to
the Internet require extensive studies on both possible attack
approaches and defensive countermeasures. Typical classes
of cyber-attacks are denial-of-services attacks, false data
injections, and replay attacks [13], [16].

This paper studies a type of false data injection attacks
known as zero-dynamics attacks, which require full knowl-
edge of plant models (see, e.g., [8], [16]). Such attack signals
are generated by a special dynamics based on unstable zeros
of the plant. They cause the plant state to converge to the
attack dynamics while maintaining the system output to
be normal at sampling instances. As the attack dynamics
diverge at the rate of unstable plant zeros, such attacks
can cause physical damages by forcing the plant state to
become large while remaining undetected by conventional
safety countermeasures.
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We focus on the effects of quantization in a sampled-data
control systems. Such a system comprises a continuous-time
plant and a digital controller whose output is quantized and
transmitted via a network, which can be compromised by an
attacker. We aim to formulate a feasible approach from the
attacker’s perspective on this type of systems.

In sampled-data control systems, sampling can introduce
unstable zeros known as sampling zeros [3], [19]. Even if the
continuous-time plant is minimum phase, sampling zeros can
be unstable if the relative degree of the plant is larger than
or equal to 3 [19]. As a result, zero-dynamics attacks can be
a threat to real systems and require our research attention.
A new version of quantized zero-dynamics attacks called
ϵ-stealthy attacks has been introduced in [10]. This attack
method shares a concept similar to dynamical quantization
from [4] to compensate quantization errors. Such an error
and system output variation can be designed based on the
attacker’s needs, and thus may be more difficult to detect.

We however must note that the study in [10] is limited to
open-loop systems, and quantized zero-dynamics attacks to
closed-loop sampled-data systems still lack research. We will
analyze how quantization error in attack signals can affect the
control loop. Since such attacks are visible from the system
output, a certain modification will be employed in a closed-
loop environment.

This paper is organized as follows. Section II describes
the sample-data control system and zero-dynamics attacks.
In Section III, we evaluate the plant output to characterize the
effects of quantization on attack signals. Section IV explores
a new variation of zero-dynamics attacks called ϵ-stealthy
attacks. Section V presents a numerical example illustrating
the effectiveness of the proposed attack approaches. In Sec-
tion VI, we provide some concluding remarks.

Notation: We denote by R, Z, and Z+ the sets of real
numbers, integers, and nonnegative integers, respectively, and
Rn×m is the set of n × m matrices. Let dZ be the set of
numbers which can be written as dz with z ∈ Z. The absolute
value and 2-norm are given by |·| and ∥·∥, respectively.
Moreover, for a given matrix A = [aij ], let abs(A) := [|aij |].
The null space of matrix C is written as ker C.

II. PROBLEM FORMULATION

A. System Setup

Consider the networked control system shown in Fig. 1.
The plant is a single-input single-output linear time-invariant
(LTI) system. The controller receives the plant output yb and
the reference input r, estimates the plant state as x̂p, and
calculates the control input u by a certain control law. This
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Fig. 1: Closed-loop Networked Control Systems

input u is quantized to v by the quantizer, which outputs a
value from a discrete set for transmission over a digital chan-
nel. However, this channel is subject to cyber-attacks that
falsify the transmitted input with an additive attack signal a.
Note that this attack signal is also quantized, resulting in a
quantized attack signal denoted by b. Throughout this paper,
the subscripts a and b indicate signals and systems affected
by the original and the quantized attack signals, respectively.

More specifically, the plant P is assumed to be a dis-
cretized system of a continuous-time n-dimensional LTI
system. Its state-space equation is expressed as

P :

{
x(k + 1) = Apx(k) +Bp (u(k) + a(k)) ,

y(k) = Cpx(k),
(1)

where x(k) ∈ Rn is the plant state, u(k) ∈ R is the control
input from the controller, a(k) ∈ R is the attack signal, and
y(k) ∈ R is the output at time k ∈ Z+. The system matrices
are Ap ∈ Rn×n, Bp ∈ Rn×1, and Cp ∈ R1×n. Here, we
assume that the plant is controllable and CpBp ̸= 0.

As of the controller C, we estimate the plant state by the
plant output and calculate control input u(k) based on the
estimated state as

C :

{
x̂(k + 1) = AK x̂(k) +B1Kr(k) +B2Ky(k),

u(k) = CK x̂(k) +D1Kr(k),
(2)

where AK ∈ Rn×n, B1K and B2K ∈ Rn×1, CK ∈ R1×n,
and D1K ∈ R. We design the observer gain B2K such
that x̂(k) asymptotically converges to x(k), and the state
feedback gain CK to make Ap +BpCK stable.

For the quantizer, we utilize the static uniform quantizer
q : R → dZ with the step d > 0. We follow the nearest
neighbor quantization towards −∞: For any value µ, the
quantized value q(µ) satisfies |q(µ)− µ| ≤ d

2 . This is
a round-to-nearest-d quantizer in real implementation. The
controller output u(k) is quantized into v(k):

v(k) = q(u(k)). (3)

This will be applied to the plant in (1) instead of u(k).

B. Zero-Dynamics Attacks

We now look at how the control system can be attacked
by zero-dynamics attacks [16]. It is well known that when
discretizing a linear system, if the sampling period is small
enough, unstable sampling zeros might appear [3]. To this
end, we assume that the plant (1) is non-minimum phase,
i.e., it has unstable sampling zeros. In a sampled-data
controller, the plant output during the intervals between
sampling instances is not measured nor processed, which can
be exploited by attackers. Generally, under zero-dynamics

attacks, the plant state may diverge in both discrete time
and continuous time, but the plant output at each sampling
instance remains as if only the original input u(k) is applied.
So it is difficult to detect such attacks from the plant output.

Zero-dynamics attacks are a kind of false injection attacks
to the signals in control systems. Here, we consider the case,
where the control input v(k) is attacked via the attack signal
a(k). However, since v(k) takes a quantized value, the attack
signal must be quantized to the same value set dZ as well.
The effects of quantization have been studied in an open-loop
system setting in [10]. In our paper, we extend the analysis
to the closed-loop case. This is not straightforward as in
the non-quantized case [16] since the error introduced by
quantization in the attack signal will remain inside the system
in the closed-loop case.

We employ the class of quantized attacks from [10]. This
can be generated by the system given by

h(k + 1) =

(
Ap −

BpCpAp

CpBp

)
h(k),

a(k) = −CpAp

CpBp
h(k),

(4)

where h(k) ∈ Rn and h(0) ∈ ker Cp is small enough.
The matrix Ap − BpCpAp

CpBp
is unstable as it has the plant

zeros as its eigenvalues. If the attack signal a(k) is added
to the control input u(k) in the plant (1), it will force the
plant state to converge to h(k) asymptotically. Note that
Cp

(
Ap − BpCpAp

CpBp

)
= 0, so h(k) stays in ker Cp and thus

is undetectable from the plant output.
Since the control input is quantized, the attack signal a(k)

must also quantized by q to b(k) as

b(k) = q(a(k)) (5)

and then applied to the plant (1). This means that the attack
may not be as effective as in the original unquantized case
because the attack signals are modified by quantization.
To quantify the effectiveness of the attacks, we follow the
definition in [10] as follows:

Definition 2.1: For a given ϵ > 0, the attack signal is said
to be ϵ-stealthy if the following condition is satisfied:

|yb(k)− y(k)|≤ ϵ, (6)

where yb(k) denotes the system output excited by the quan-
tized attack signal b(k), and y(k) is the system output from
the attack-free system.

In this paper, we study the problem of quantized zero-
dynamics attacks in the closed-loop setting, which can be
stated as follow: Consider the quantized networked system
in Fig. 1. Given a positive scalar ϵ, design the quantized
attack signal b(k) which causes the state x(k) of the plant
to diverge while the ϵ-stealthy condition in (6) is satisfied.
Note that without quantization, the original attack a(k) from
(4) can achieve 0-stealthiness.

At this point, we write the closed-loop system under
quantized attacks as follows. The subscript b in the state, the
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Fig. 2: Error system for Σ and Σb

input, and the output refers to the presence of the attacks.

Gb :



x(k + 1) = Ax(k) +B1r(k) +B2vb(k) +B3b(k),

ub(k) = C2x(k) +D2r(k),

vb(k) = q(ub(k)),

b(k) = q(a(k)),

yb(k) = C1x(k).

Here x(k) :=
[
xT (k) x̂T (k)

]T
is the combined state of the

plant and the controller. The matrices A, B1, B2, B3, C1,
and C2 are given by

A :=

[
Ap 0
B2K AK

]
, B1 :=

[
0

B1K

]
, B2 = B3 :=

[
Bp

0

]
,

C1 :=
[
Cp 0

]
, C2 :=

[
0 CK

]
, D2 := D1K ,

with the closed-loop system matrix Ã := A+B2C2.

III. QUANTIZED ZERO-DYNAMICS ATTACKS

Although zero-dynamics attacks are known to be 0-
stealthy for non-quantized systems in the closed-loop setting
of Fig. 1, when quantization is introduced in the control sig-
nals, concerns about the effectiveness of such attacks arise.
In this section, we characterize the effects of quantization in
attack signals by utilizing the approach from [6].

A. Dynamic Quantization and Its Effect on Attacks

We use the symbol y(k, x0, r, b) to denote the plant output
at sample time k under the reference input sequence r :=
{r(0), r(1), . . .} of arbitrary finite values, the initial state
x(0) = x0, and the attack signal b. For the attack-free
system, the output can be expressed as y(k, x0, r, 0). To
characterize the quantization effects in the attacks, we define
the performance index to measure the difference:

E(b) := sup
k,r

|y(k, x0, r, 0)− y(k, x0, r, b)|. (7)

Now, we introduce the approach of dynamic quantization
[6]. Such quantization is used for the control input and is
represented by the dynamical system with the internal state
ξu(k) ∈ R2n whose output is quantized as

Qu :

{
ξu(k + 1) = Fuξu(k) + Ju1u(k) + Ju2v(k),

v(k) = q (Huξu(k) + u(k)) ,
(8)

where q is the quantizer in (3) with quantization step d.
The optimal quantizer to minimize E(b) is Fu = A, Ju1 =

−Ju2 = −B2 and Hu = − C1A
C1B2

, according to [6]. In this
case, let the error due to quantization in u(k) be

eu(k) := v(k)− (Huξu(k) + u(k)) .

This is bounded as eu(k) ∈ (−d/2, d/2]. The purpose
of dynamic quantization is to minimize the system output
variation due to quantization by recording such errors in
the internal dynamics ξu and adjusting the quantized control
input v(k) accordingly. Furthermore, the static quantizer can
be regarded as a special case with Hu = 0. We must note
that dynamic quantization is useful to reduce the impact of
quantization in the system.

In this paper, we extend dynamic quantization for the
attack signal. In particular, from the perspective of the
attacker, we would like to analyze the effectiveness of such
quantization in decreasing the error in the plant output so as
to reduce the chance to be detected. To this end, the dynamic
quantizer Qa for a(k) is given in the same form and matrices
as the one in (8) for the control input as

Qa :

{
ξa(k + 1) = Faξa(k) + Ja1a(k) + Ja2b(k),

b(k) = q (Haξa(k) + a(k)) .
(9)

Here, let the quantization error be ea(k) := b(k) −
(Haξa(k) + a(k)). Clearly, we have ea(k) ∈ (−d/2, d/2].
Then, we can combine the closed-loop system G with Qu

and Qa together as Σb (see Fig. 2). We define

eu,b(k) := vb(k)− (Huξu,b(k) + ub(k))

as the quantization error of ub(k) in the attacked system Σb.

B. Quantized Attacks via Static Quantization

We first present the result for the case of static quantizers
in both Qu and Qa.

Theorem 3.1: For the quantized system G under zero-
dynamics attacks, suppose that the control input and attack
signals are quantized as (3) and (5). Then, the performance
index in (7) is upper bounded by

Eb(Q) ≤ 3

∥∥∥∥∥
∞∑
i=0

abs
(
C1A

i
B2

)∥∥∥∥∥ d

2
. (10)

Proof: Detailed proof is omitted to save space.
When we compare the closed-loop system under attack to

the attack-free one, the term eu,b(k) cannot be canceled with
eu(k) because they are independent. The control input vb(k)
is perturbed by ea(k) and can take a value different from
v(k). Hence, the worst-case upper bound of the plant output
difference is influenced by both eu,b(k) and eu(k), and then
added up with the influence of ea(k). We will illustrate such
an effect in the next section.

For the attack-free system case, when only the control
input is quantized, the performance index becomes

E(Q) =

∥∥∥∥ ∞∑
i=0

abs
(
C1A

i
B2

)∥∥∥∥d2 (11)
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by [6]. This implies that detection of zero-dynamics attacks
may be possible by observing the closed-loop system output.

C. Quantized Attacks via Dynamic Quantization

Our next objective is to reduce the output error of a
system by utilizing a dynamic quantizer for the attack signal
a(k), while keeping the quantizer for the control input
u(k) static. We consider the system G, which is identical
to Gb but without attack signal b(k). For non-minimum
phase plants, we employ the serial decomposition approach
proposed by [12]. This involves decomposing plant P in
(1) into P = Ps · Pu, where Ps represents the minimum
phase component and Pu contains the unstable zeros. The
realization of Ps is given by (As, Bs, Cs, 0) and CsBs ̸= 0.
The matrices for the optimal Qa in (9) are Fa = As,
Ja1 = −Ja2 = −Bs, and Ha = −CsAs

CsBs
, which are shown in

[10]. Also, let ∥Pu∥i∞ be the induced l∞-norm of Pu given
by ∥Pu∥i∞ := supu∈l∞,u̸=0

∥Puu∥∞
∥u∥∞

. We characterize Eb(Q)
for the case of dynamic quantization for the attack signal as
a corollary of Theorem 3.1.

Corollary 3.1: For the quantized system Σ under zero-
dynamics attacks, suppose that the control input and attack
signals are quantized, respectively, by (3) and (9) based on
the above choice of matrices. Then, the performance index
in (7) is upper bounded by

Eb(Q) ≤ 2

∥∥∥∥ ∞∑
i=0

abs
(
C1A

i
B2

)∥∥∥∥d2
+

∥∥∥∥ 1

1 + PC

∥∥∥∥
i∞

∥Pu∥i∞ |CsBs|
d

2
.

For a plant with a single unstable zero, the optimal
decomposition is to take Pu in its transfer function form
as Pu(z) = z−z0

z , where z0 is the unstable zero [12]. In
such a case, the l∞-norm of Pu is ∥Pu∥i∞= 1 + |z0|. The
performance index of the optimal dynamic quantizer for a(k)
of the closed-loop system is worse than that of the open-loop
case obtained in [10]. We also note that a countermeasure
based on dynamic quantization in the control input is possible
but omitted from this paper for space reason.

Finally, we discuss the selection of h(0). By [17], h(0)
should be a vector small enough in ker Cp. For an LTI system
under attacks, we can separate it into attack-free system
G excited by r(k) and the same system under attack with
r(k) = 0 and zero initial state as

G̃b :

{
x(k + 1) = Ax(k) +B3b(k),

yb(k) = C1x(k).

Then we augment h(k) into ha(k) to have the same dimen-
sion as x. The augmented zero-dynamics attacks are

ha(k + 1) =

(
A− B3C1A

C1B3

)
ha(k),

a(k) = − C1A

C1B3
ha(k).

Let the error between x(k) and ha(k) be eb(k) = x(k)−
ha(k). We have

eb(k + 1) = x(k + 1)− hb(k + 1) = Aeb(k)−B3ea(k).

This indicates that the convergence rate of eb(k) depends
on the closed-loop system matrix A. So we need to select a
small x(0) to make eb(0) invisible from yb(0). Otherwise,
there will be a transient response from x(0), which will
reveal the attack at the system output side.

IV. QUANTIZED ϵ-STEALTHY ATTACKS TO THE
CLOSED-LOOP SYSTEM

In this section, we extend the ϵ-stealthy attacks proposed
in [10] for open-loop systems to closed-loop systems. Com-
pared to the traditional zero-dynamics attacks, ϵ-stealthy
attacks take a small modification with the design parameter
ϵ:

h(k + 1) =

(
Ap −

BpCpAp

CpBp

)
h(k) +

Bp

CpBp
ϵ,

a(k) = −CpAp

CpBp
h(k) +

ϵ

CpBp

(12)

with h(0) = 0. When applied to an open-loop system, it is
straightforward that the plant state at sample time k = 1
differs from the attacked case by xb(1)− x(1) = h(0) = ϵ.
Moreover, we can show by induction that xb(k) − x(k) =
h(k) holds at every sample time k.

The quantized version of ϵ-stealthy attacks is

h(k + 1) = Aph(k) +Bpb(k),

b(k) = q

(
−CpAp

CpBp
h(k) +

sgn(CpBp)ϵ

CpBp
− d

2

)
.

(13)

Now, let

g(k) =
d

2
+ ea(k) = −CpAp

CpBp
h(k) +

sgn(CpBp)ϵ

CpBp
− b(k).

Clearly, we have g(k) ∈ (0, d]. The quantized ϵ-stealthy
attacks dynamics becomes

h(k + 1) =

(
Ap −

BpCpAp

CpBp

)
h(k)

+Bp

(
sgn(CpBp)ϵ

CpBp
− g(k)

)
,

b(k) =− CpAp

CpBp
h(k) +

sgn(CpBp)ϵ

CpBp
− g(k).

(14)

In contrast to the traditional zero-dynamics attacks, when
ϵ-stealthy attacks are applied to the closed-loop system, any
error at the plant output side will be fed into the controller.
At a certain time, this difference may become visible from
the output side. In our study, we focus on the plant state xb

under attacks. Its dynamics is given by

x(k) = Ak
px

b(0) +

k−1∑
i=0

Ak−1−i
p Bpvb(i) + h(k). (15)
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We can establish this expression by induction. Since h(0) =
0, we have Bpb(0) = h(1). Then

xb(1) = Apx
b(0) +Bpv(0) + h(1).

Assume (15) holds for k. It is easy to verify that it also holds
for k+ 1. The first two terms in (15) are the same as in the
attack-free case. Therefore, the output difference at time k
can be expressed as

yb(k)− y(k) = Cph(k) = sgn(CpBp)ϵ− CpBpg(k).

Let x̂b(k) be the estimator state for the attacked system.
The estimator state under such output difference is

x̂b(k + 1) = AK x̂b(k) +B1Kr(k) +B2KCpx
b(k)

= AK x̂b(k) +B1Kr(k) +B2K

(
CpA

k
px

b(0)

+ sgn(CpBp)ϵ− CpBpg(k) +

k−1∑
i=0

CpA
k−1−i
p Bpv(i)

)
.

The above equation demonstrates that the estimated plant
state x̂b(k) will deviate from the attack-free one x̂(k) due
to the quantization error of a(k). Once this difference accu-
mulates sufficiently, the quantized control input vb(k) will
land on a neighboring quantization level. This introduces a
step input of amplitude d, causing a transient state in the
plant output. Depending on the control system, such transient
might be visible and reveal the attack.

To avoid this transient states, we propose a compensation
method for ϵ-stealthy attacks. This method requires the
knowledge of the initial value of both the plant and the
controller, the controller matrices, and the reference r(k) to
predict the quantized control input v̂b(k) for the attacked
system and v̂(k) for the attack-free one:

x̂(k + 1) = Ax̂(k) +B1r(k) +B2v̂(k),

v̂(k) = q (C2x̂(k) +D1r(k)) ,

x̂b(k + 1) = Ax̂b(k) +B1r(k) +B2v̂b(k) +B3b(k),

v̂b(k) = q (C2x̂b(k) +D1r(k)) ,

∆v(k) = v̂b(k)− v̂(k).

(16)

Moreover, the control input difference ∆v(k) will be com-
pensated at the attack signal side as

b(k) =− CpAp

CpBp
h(k) +

sgn(CpBp)ϵ

CpBp
− g(k) + ∆v(k).

(17)

Here we cannot use h(k + 1) =
(
Ap − BpCpAp

CpBp

)
h(k) +

Bpb(k) in the compensated attack dynamics as (13) since
if ∆v(k) is fed into h(k), Cph(k) will be greater than ϵ,
violating the definition of ϵ-stealthy attacks. We present our
second main result as the following theorem:

Theorem 4.1: For the quantized system G under zero-
dynamics attacks, suppose that the control input is quantized
as (3) and ϵ ≥ |CpBp|d. Then, the quantized attack signal
b(k) generated by (17) is ϵ-stealthy.
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Fig. 3: Output of the closed-loop system under static quan-
tized zero-dynamics attacks

To ensure h(1) > 0 and that the attack signal is not zero
for k ≥ 1, we need to have sgn(CpBp)ϵ

CpBp
> d. Since we

choose h(0) = 0, this condition implies that ϵ ≥ |CpBp|d.
Otherwise, h(k) will remain zero forever, and there will be
no attack signal.

V. NUMERICAL EXAMPLE

Consider the continuous-time plant with the transfer func-
tion given by

P (s) =
s2 + 5.12s+ 6.804

s4 + 1.868s3 + 0.645s2 + 2.22s+ 0.804
.

It has unstable poles 0.25±1.015i and stable zeros −2.56±
0.5i. By discretizing it with the sampling period of Ts =
0.5, an unstable zero −1.608 will appear, and this can be
the target of zero-dynamics attacks from (4) and (17). We
construct the controller based on a Luenberger observer and
estimated state feedback by designing CK and B2K to have
AK = Ap + BpCK − B2KCp. With this controller, the
estimated plant state error matrix Ap − B2KCp has poles
0.085, 0.14,−0.14±0.107i, and the estimated state feedback
matrix Ap +BpCK has poles 0.9, 0.51, 0.83± 0.35i.

The control reference signal is given by r(k) =
10 sin(0.1πk) + 15 cos(0.05πk). We select the initial state
as h(0) = [−11.7, 98.6,−6.97,−9.26]

T × 10−4, which is a
basis of ker Cp and the quantization level as d = 1.

First, we demonstrate the closed-loop system output under
zero-dynamics attacks with the static quantizer to both the
control input and the attack signal in Fig. 3. The solid line
represents the plant output under attacks in continuous time,
while the dashed line is the output of attack-free case. The
circles are the attacked output at sampling instances. The y-
axis on the left side is for the plant output y(k), while the
one on the right side is for the reference signal r(k). The
output of the dynamic quantized attack signal is very similar
to the static quantized case and is not shown here.

Next, we switch to ϵ-stealthy attacks with the same static
quantizer and show the result in Fig. 4. The design parameter
is selected as ϵ = 4×|CpBp|d = 0.767. Under such attacks,
the plant output is very close to the attack-free case, and we
can verify that such variation is bounded by ±ϵ.

Fig. 5 (a) shows the norm of the plant state ∥x(k)∥ under
zero-dynamics attacks and ϵ-stealthy attacks. Generally, the
plant state excited by ϵ-stealthy attacks is larger than that by
the zero-dynamics attacks. Fig. 5 (b) demonstrates the output
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Fig. 4: ϵ-stealthy attacks with ϵ = 0.767

difference between static/dynamical quantized traditional and
ϵ-stealthy methods with different ϵ. By (10), the upper bound
for the output variation caused by static quantization of the
attack signal is E(b) = 3 × 41.1 × d

2 = 61.6. That of the
dynamic quantized signal is (2× 41.1 + 0.52)× d

2 = 41.3.
A particular advantage of ϵ-stealthy attacks is that the plant

state can reach the physical safety threshold earlier than the
traditional zero-dynamics attacks. This is because the attack
signal at k = 0 is sgn(CpBp)

CpBp
ϵ − g(0), which scales with ϵ.

The norm of the plant states grows exponentially at the rate
determined by the unstable sampling zero. The traditional
attack approach needs some time for the plant states to
converge to zero dynamics. On the other hand, there is a
trade-off in selecting a larger ϵ, since the upper-bound on
the variation also becomes more visible.

VI. CONCLUSION

We have demonstrated the effectiveness of zero-dynamics
attacks in quantized closed-loop systems and presented
bounds on the effects of quantization in the attack signals
to the plant output. Moreover, we have explored ϵ-stealthy
attacks on closed-loop systems, which are more difficult to
detect from the output side. This approach requires extra
knowledge of the initial states of the plant and the controller.
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