
Nonlinear Data-Driven Predictive Control using
Deep Subspace Prediction Networks

Mircea Lazar and Mihai-Serban Popescu and Maarten Schoukens

Abstract— Indirect data-driven predictive control (DPC) al-
gorithms for nonlinear systems typically employ multi-step
predictors, which are identified from input-output data using
neural networks. In this paper we put forward a unifying multi-
step prediction network architecture, i.e., the deep subspace
prediction network (DSPN). We then prove that the DSPN
architecture specialized to multi-layer-perceptron neural net-
works recovers the linear predictor corresponding to subspace
predictive control for a sufficient number of hidden layer
neurons. Hence, we establish a well-posed generalization of
subspace predictive control for nonlinear systems. Moreover, we
develop a regularized DSPN architecture that embeds a linear
subspace predictor to improve extrapolation properties for non-
training data. Simulation results on a benchmark inverted
pendulum show that nonlinear DPC based on DSPN achieves
high control performance for both noiseless and noisy data.

I. INTRODUCTION

Model predictive control (MPC) has become the preferred
advanced control method in many emerging applications [1]
due to constraints handling, anticipating control actions and
optimal performance. Since reliable data becomes increas-
ingly available in smart engineering systems, it is of interest
to develop data-driven predictive control (DPC) algorithms.
An indirect data-driven approach to predictive control for
linear systems was already developed in [2], i.e., subspace
predictive control (SPC). Therein, instead of identifying
a system model, a multiple-input-multiple-output (MIMO)
multi-step linear subspace predictor was directly identified
using least squares.

Indirect approaches to data-driven predictive control for
nonlinear systems have also been developed as follows.
Initially, nonlinear autoregressive with exogeneous input
(NARX) models based on neural networks were used to
identify the system dynamics. Then, the resulting NARX
models were used recurrently to predict future outputs over
the prediction horizon, see, e.g., [3], [4], [5], [6], [7] and
the references therein. However, the one-step ahead NARX
predictors are not well suited for recurrent usage in prediction
over long horizons, as the prediction error is propagated [5].
As such, multi-model multi-step predictors were developed
in [8], [9], [5], which use different NARX models for
predicting the output at each future time instant up to the
prediction horizon. These papers use multi-layer-perceptron
(MLP) neural networks, while more recently, [10] developed
multi-model multi-step predictors using reproducing kernel

The authors are with the Department of Electrical Engineering,
Eindhoven University of Technology, The Netherlands, E-mails:
m.lazar@tue.nl, m.popescu@student.tue.nl,
m.schoukens@tue.nl.

functions. In [11], neural networks based multi-step predic-
tors with a specific, input affine structure, were developed
for nonlinear DPC. Therein, each predictor for a specific
future output was allowed to depend on the output of the
previous predictor, which yields a deep MIMO multi-step
predictor that can be trained sequentially or jointly. Such
a deep multi-step predictor combines measured output data
with simulated/predictive output data, leading to a hybrid
model, i.e., combining NARX with nonlinear output error
(NOE) modelling principles.

Multi-step ahead predictors have also been developed for
nonlinear system identification, i.e., not necessarily linked
with predictive control. For brevity we refer only to [12],
which uses reproducing kernel functions, and the comprehen-
sive survey [13]. In [12], multi-model multi-step predictors
[5] are referred to as multiple shallow prediction networks.
Therein, two other multi-step predictors are introduced:
iterated shallow prediction networks (ISPN), which optimize
the multi-step prediction error of a one-step predictor, and
deep prediction networks (DPN), which allow for a different
predictor at each time step. Since in [12] it was already
shown that DPN outperforms ISPN in terms of prediction
accuracy, in this work we will consider only DPN for usage
within nonlinear DPC.

Despite the many available formulations, a general cat-
egorisation of prediction networks (i.e., independent of the
chosen representation) for nonlinear data-driven predictive
control and an explicit link with the linear SPC predictor
[2] are not yet available, to the best of our knowledge.
These would be instrumental to better understand the relation
between existing prediction networks, which often share
similar features, despite using different representations, and
to arrive at a well-posed formulation of nonlinear DPC.

Therefore, in this paper we introduce a unifying prediction
network architecture, i.e., the deep subspace prediction net-
work (DSPN). We prove that the DSPN architecture special-
ized to MLP neural networks recovers the linear predictor of
SPC for a sufficient number of hidden layer neurons. Hence,
we establish a well-posed generalization of SPC for nonlinear
systems. Moreover, we develop a regularized DSPN predictor
that embeds a linear SPC predictor to improve extrapolation
properties for non-training data. Training methods for DSPN
predictors are also briefly discussed. Simulation results on
a benchmark inverted pendulum show that both DSPN and
regularized DSPN predictors based on MLP neural networks
achieve high tracking control performance in the presence of
noisy data, while outperforming multi-step NARX [5], [10]
and DPN [12] architectures.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3770

II. PRELIMINARIES

This section provides the basis for indirect nonlinear
DPC and reviews the state-of-the-art in design of multi-
step predictors. For any finite number q ∈ N≥1 of vectors
{ξ1, . . . , ξq} ∈ Rn1 × . . . × Rnq we will make use of the
operator col(ξ1, . . . , ξq) := [ξ⊤1 , . . . , ξ⊤q]⊤.

We consider MIMO nonlinear systems with inputs u ∈
Rm and measured noisy outputs y ∈ Rp that can be modeled
by a discrete-time NARX model, i.e.,

ŷ(k + 1) = f(uini(k),yini(k), u(k)) (1)

where k ∈ N, f : R(nb−1)m × Rnap × Rm → Rp,

uini(k) := col(u(k − nb + 1), . . . , u(k − 1)) ∈ R(nb−1)m,

yini(k) := col(y(k − na + 1), . . . , y(k)) ∈ Rnap,

and where na, nb ∈ N define the order of the dynamics.
In what follows we will use y(i|k) to denote future outputs
predicted by model (1) based on measurements at time k, as
typically done in MPC, i.e., ŷ(k + 1) = y(1|k).

Next, we define a generic nonlinear predictive control
problem for NARX models. Let N denote the prediction
horizon and, for any positive definite matrix L, let L

1
2 denote

its Cholesky factorization. For positive definite matrices Q,R
of compatible dimensions, define the cost function:

J(uini(k),yini(k),u(k)) := ∥Q 1
2 y(N |k)∥22+

N−1∑
i=0

∥Q 1
2 y(i|k)∥22 + ∥R 1

2u(i|k)∥22.

(2)

Above, u(k) := col(u(0|k), . . . , u(N−1|k)) is the sequence
of predicted inputs at time k.

Problem II.1 At time k, given the measured input-output
data uini(k),yini(k) solve the optimization problem:

min
u(k)

J(uini(k),yini(k),u(k)) (3a)

subject to
y(i+ 1|k) = f(uini(i|k),yini(i|k), u(i|k)),
i = 0, . . . , N − 1, (3b)
(u(i|k), y(i+ 1|k)) ∈ U× Y, i = 0, . . . , N − 1, (3c)

where uini(0|k) := uini(k), yini(0|k) := yini(k) and assum-
ing N > max(nb, na) + 1, the initial input-output data for
each remaining predictor are constructed as:

uini(1|k) = col(u(k − nb + 1), . . . , u(k − 1), u(0|k)),
uini(2|k) = col(u(k − nb + 2), . . . , u(0|k), u(1|k)),

...
uini(N − 1|k) = col(u(N − nb|k), . . . , u(N − 2|k)),

and similarly for yini(i|k), by replacing nb with na:

yini(1|k) = col(y(k − na + 2), . . . , y(0|k), y(1|k)),
yini(2|k) = col(y(k − na + 3), . . . , y(1|k), y(2|k)),

...
yini(N − 1|k) = col(y(N − na|k), . . . , y(N − 1|k)).

This approach yields a NARX model based nonlinear predic-
tive controller. Typically, neural networks are used to identify
the NARX model f , see, e.g., [4], [5] and the references
therein. As mentioned in the Introduction, recurrent usage
of NARX one-step ahead predictors propagates prediction
errors, which is why multi-step predictors are preferred.

A. Multi-step predictors overview

Multi-model multi-step predictors based on neural net-
works were developed in [8], [9], [5], where for each
predicted output y(i|k), a different predictor fi is used, i.e.,

y(i+ 1|k) = fi+1(uini(0|k),yini(0|k),u(i|k)), (4)

where i = 0, . . . , N − 1 and for any such i,

u(i|k) := col(u(0|k), . . . , u(i|k)).

Notice that f1 recovers the predictor f in (3b), but the
predictors f2, f3, . . . can be different. Since all predictors
depend on the measured system output and there is no
coupling, they are NARX models. However, since they are
not used recurrently, there is no propagation of prediction
errors. A similar NARX multi-model multi-step predictor
structure based on reproducing kernel functions was recently
used in [10] where additionally, each predictor fi is allowed
to depend on the full input sequence u(k), i.e.

y(i+ 1|k) = fi+1(uini(0|k),yini(0|k),u(k)). (5)

In [11], the predictors fi where parameterized using an input
affine structure and coupling with the output of the previous
predictor was introduced, i.e.,

y(i+ 1|k) =f1
i+1(uini(0|k),yini(0|k))+
f2
i+1(uini(0|k),yini(0|k))u(i|k) + ciy(i|k),

(6)

where i = 0, . . . , N − 1, c0 = 0, ci = 1 for any other i
and each f1

i , f
2
i mapping is modeled using a different MLP

neural network.
In [12] ISPN and DPN architectures specialized to repro-

ducing kernel functions are used. The ISPN predictor is

y(i+ 1|k) = f(uini(i|k),yini(i|k), u(i|k)), (7)

and the DPN predictor is given by

y(i+ 1|k) = fi+1(uini(i|k),yini(i|k), u(i|k)), (8)

where i = 0, . . . , N − 1.
Another approach to multi-step predictors design has been

recently developed in [14], [15]. Therein, and ISPN-like
structure is used, which employs batch training of the same
one-step predictor f . The difference in these works is that

3771

recurrent neural networks (RNNs) are used to model f and
an additional neural network is used to model an encoder
that estimates the state x(i|k) of the RNN from input-output
data uini(i|k),yini(i|k).

III. DEEP SUBSPACE PREDICTION NETWORKS

The multi-step predictors presented in the previous section
can be unified/generalized by the following deep subspace
prediction network (DSPN) architecture:

y(i+ 1|k) = fi+1(uini(0|k),yini(0|k),u(k), ciy(i|k)), (9)

where i = 0, . . . , N − 1, c0 = 0, ci = 1 for all other i, and

y(i|k) := col(y(i|k), . . . , y(i− (na − 1)|k)), i ≥ na,

y(i|k) := col(y(i|k), . . . , y(1|k)), 1 ≤ i < na.

Above, each mapping fi can be modeled using any model
class, including MLP neural networks, RNNs and reproduc-
ing kernel functions. We observe that in the DSPN architec-
ture, each predictor fi (except for i = 1) has access to both
measured and simulated/predicted output data and that each
predictor fi has access to the combined data/information
available to the predictors (5) and (8). This yields a richer
prediction network class, which combines NARX and NOE
modeling principles. The DSPN archictecture can be readily
employed in nonlinear DPC algorithms as in Problem II.1,
with (3b) replaced by (9).

Next, we provide an explicit link between the DSPN and
the linear predictor of SPC [2]. To this end, define the
agregated DSPN architecture:

y(k) := F(uini(0|k),yini(0|k),u(k)), (10)

y(k) = col(y(1|k), . . . , y(N |k)) and F := col(f1, . . . , fN).
Note that since each fi is a MIMO predictor, it is
the aggregation of several MISO predictors, i.e., fi =
col(fi,1, . . . , fi,p) where each fi,j predicts the j-th output,
i.e., for i = 0, . . . , N − 1

yj(i+ 1|k) = fi+1,j(uini(0|k),yini(0|k),u(k), ciy(i|k)),
y(i+ 1|k) = col(y1(i+ 1|k), . . . , yp(i+ 1|k)),

where j = 1, . . . , p and p is the number of outputs.
The multi-step NARX predictors (5) can be recovered as a

special case of the DSPN architecture, where the predictors
for each time instant are decoupled. We call the mapping
F consisting of fi-s defined as in (5) a Subspace Prediction
Network (SPN), to distinguish it from the DSPN architecture.

In order to define the MLS predictor [2] we need to
introduce some notation. For any k ≥ 0 (starting time instant
in the data vector) and j ≥ 1 (length of the data vector),
define

ū(k, j) := col(u(k), . . . , u(k + j − 1)),

ȳ(k, j) := col(y(k), . . . , y(k + j − 1)).

Then we can define the Hankel data matrices:
Up :=

[
ū(0, Tini) . . . ū(T − 1, Tini)

]
,

Yp :=
[
ȳ(1, Tini) . . . ȳ(T, Tini)

]
,

Uf :=
[
ū(Tini, N) . . . ū(Tini + T − 1, N)

]
,

Yf :=
[
ȳ(Tini + 1, N) . . . ȳ(Tini + T,N)

]
.

(11)

Next, by defining the matrix

Θ := Yf

Up

Yp

Uf

†

∈ R(pN)×(mna+pnb+mN), (12)

we obtain the linear predictor used in SPC [2] as:

yLIN(k) = Θ

uini(0|k)
yini(0|k)
u(k)

 . (13)

Next, define the input to the i-th predictor as UPN(i|k) =
col(uini(0|k),yini(0|k),u(k), ciy(i|k)) and define every pre-
dictor fi,j part of F using a MLP neural network with a
single hidden layer, i.e.,

fi,j(UPN(i|k)) := w̄T
i,jσnn (Wi,jUPN(i|k) + bi,j) + b̄i,j ,

(14)

where Wi,j , bi,j are a matrix and a vector which contain
the weights and the biases of the hidden layer, respectively,
w̄i,j is a vector with the weights of the output layer and b̄i,j
is the bias of the output layer. Also, above σnn denotes a
typical neural network activation function which is applied
to the vector in between the round parentheses element wise.

Lemma III.1 Consider the DSPN archictecture defined in
(10) with fi,j defined as in (14) with the number of neurons
in the hidden larger than or equal to mna + pnb +mN . Then
there exists an activation function σnn and a set of weights
and biases such that the DSPN architecture recovers the linear
predictor defined in (12)-(13).

Proof: For brevity, we provide the proof for the number
of neurons in the hidden layer equal to mna+pnb+mN . Let
σnn be a linear activation function, i.e., for any real number
s, σnn(s) = s. Define

Wi,j :=
[
Imna+pnb+mN 0(mna+pnb+mN)×qi

]
where

qi := nap, i ≥ na,

qi := ip, i < na.

Let bi,j = 0, b̄i,j = 0. Furthermore, for any i = 1, . . . , N
and j = 1, . . . , p define w̄i,j := ΘT

[j+(i−1)p, :], where
Θ[j+(i−1)p, :] is the j + (i − 1)p line in the matrix Θ.
Then by substitution in (14) and the col(f1, . . . , fN) operator
definition we obtain that

F(uini(0|k),yini(0|k),u(k)) = Θ

uini(0|k)
yini(0|k)
u(k)

 .

For more than mna + pnb + mN hidden neurons, a zero
matrix of suitable dimensions must be included in Wi,j .

From the proof we observe that the DSPN architecture
can recover the linear SPC predictor even if the predictors
fi do not depend on the output of previous predictors, i.e.,
the SPN architecture suffices. However, a reason to allow for
this dependency is that it is likely to require a less complex
MLP neural network for learning/identifying fi, as it uses
the outputs of previous predictors.

3772

A. DSPN architectures with a linear part

In what follows we present a variant of all above presented
prediction networks that includes a linear predictor, which
we call regularized prediction networks. This is beneficial
because the embedded linear predictor reduces extrapolation
errors to non-training data, compared to black-box neural
networks. Also, many nonlinear systems consist of a known
linear part that is dominant at steady-state and some un-
known, nonlinear dynamics active under certain operating
conditions, e.g., interconnected oscillators with sinusoidal
coupling.

To define the regularized DSPN prediction, let Θi be real
matrices of suitable dimensions and define:

yr(i+ 1|k) = y(i+ 1|k) + yLIN(i+ 1|k)
= y(i+ 1|k) + Θi+1UPN(i|k), i = 0, . . . N − 1,

(15)

where for DSPN,

UPN(i|k) = col(uini(0|k),yini(0|k),u(k), ciy(i|k)),

for SPN UPN(i|k) = col(uini(0|k),yini(0|k),u(k)) and for
DPN UPN(i|k) = col(uini(i|k),yini(i|k), u(i|k)). The above
regularized prediction networks can be regarded as a multi-
step extension of the linear (ARX model based) regular-
ization for NARX models introduced in [16] for modeling
inverse dynamics in the context of feedforward control.

IV. TRAINING OF VARIOUS PREDICTION NETWORKS

The first step of the training is to generate persistently
exciting input-output data from the system of interest. This
can be achieved by applying a white noise or PRBS signal
to the system and measuring the output or by designing a
rich multisine input signal [17].

The problem of learning the coefficients of all predictors
fi+1 part of any of the discussed prediction networks (DPN,
SPN, DSPN) can be posed as the optimization problem

Ω∗ = argmin
Ω

ksim−N∑
k=max{na,nb}

L(Yk, Ŷk)

subject to:

y(i+ 1|k) = fi+1(Ω
i+1, UPN(i|k))

Ω = col(Ω1, . . . ,ΩN)

Ŷk = col(y(1|k), . . . , y(N |k))
Yk = col(y(k + 1), . . . , y(k +N))

i = 0, . . . , N − 1,

(16)

where L(Yk, Ŷk) =
1

Np∥Yk− Ŷk∥22 is the mean squared error
(MSE). Ωi contains all weights and biases of the i-th neural
network predictor, whose size varies with the number of
hidden layers and number of neurons per layer. Note that
for the different prediction networks, the training procedure
remains similar, however, the size of Ωi must be adjusted
accordingly. In general, either sequential or batch training
can be performed, but sequential training scales better with
the prediction horizon. In this case, for DPN and DSPN,

u(i|k) will be replaced by u(k+i) and outputs of previously
trained predictors will be used in UPN(i|k). For SPN, since
the predictors are not coupled, sequential or separate training
in parallel can be performed.

In the case of regularized prediction networks with a linear
part, we first identify Θ∗

i using least squares on the same data
set, for each i-th predictor. Then we leave Θi as a free matrix
variable and add the squared Frobenius norm regularization
cost to the data fit error, i.e.

L(Yk, Ŷk) =
1

Np
∥Yk − Ŷk∥22 + λ

N∑
i=1

∥Θi −Θ∗
i ∥2F. (17)

This regularized training procedure prevents competition
among the nonlinear and linear predictors, as originally
shown in [16].

V. SIMULATION RESULTS

In order to compare different multi-step predictors, we
consider the following inverted pendulum model [12]:[

x1(k + 1)
x2(k + 1)

]
=

[
1− bTs

J 0
Ts 1

] [
x1(k)
x2(k)

]
+

[
Ts

J
0

]
u(k)

−
[
MLgTs

2J sin(x2(k))
0

]
y(k) = x2(k) + e(k),

(18)

where u(k) and y(k) are the system input torque and
pendulum angle at time instant k, while J = ML2

3 , M =
1kg and L = 1m are the moment of inertia, mass and
length of the pendulum. Moreover, g = 9.81m/s2 is the
gravitational acceleration, b = 0.1 is the friction coefficient
and the sampling time Ts = 0.033s. The performance of the
presented predictors is evaluated over a horizon N = 40. To
do so, a training data set D of 20000 samples is collected
by exciting (18) with a multisine signal [17]. For the noise
scenario, white Gaussian measurement noise was added to
the output with a standard deviation of 0.005 [rad] which
ensures a SNR of 40 dB. The testing data set consists of 400
samples collected from a sinusoidal input whose frequency
was not excited in the training data set.

The orders of the input and output delays are chosen
as na = nb = 5 for all multi-step predictors, as in [12].
All compared multi-step predictors are modeled using MLP
neural networks with two hidden layers and tansig activation
function, followed by a linear output layer. The number of
neurons in the hidden layer varies per predictor as follows.
For DSPN and DSPN with linear part, the number of neurons
in each hidden layer is equal to the number of inputs of a
fully connected predictor in the prediction network, which
yields 54 neurons. For DPN and SPN, the number of neurons
is computed such that all prediction networks presented have
a similar complexity, which is given by the number of free
parameters. This yields 71 neurons per layer for DPN and
56 for SPN.

In what follows we will present results obtained by train-
ing sequentially DPN, SPN, DSPN and DSPN with linear
part predictors in Python using PyTorch [18] and ADAM.

3773

0 5 10 15 20 25 30 35 40

i-th step ahead predictor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

R
M

S
E

DPN

SPN

DSPN

DSPN+LIN

Fig. 1: NRMSE validation for all i-th step ahead predictors in
the multi-step prediction networks using noiseless data. For
SPN, the NRMSE grows above 2 after the 27th predictor.

To reduce the computational burden induced by the long
prediction horizon N = 40, all prediction networks were
trained in a sequential manner. Thus individual training
was performed for each predictor of the networks. In the
case where the predictors are interconnected, the outputs of
previous predictors are stored and used as inputs for the
next ones. For each training, the learning rate was chosen
as 0.0001 for 30000 epochs. For DSPN with linear part, λ
from (17) was set to 0.1. For DSPN with linear part, the
linear part is initialized with reference Θ∗

i values from (17),
while for the neural network, the output layer is initialized
to zero while the other layers are initialized randomly.

The performance of the identified prediction network on
the validation set was quantified via the normalized root
mean squared error (NRMSE) [15]. The NRMSE for all
prediction networks in the noiseless case is illustrated in
Fig. 1, where we can see that DSPN and DSPN with
linear part clearly outperform DPN and SPN. Moreover, the
NRMSE on the validation data set for certain chosen i-th step
ahead predictors is presented for all prediction networks for
both noiseless and noisy data in Table I and II.

We observe that DSPN and DSPN with linear part out-
perform DPN, while SPN performs very poorly for horizons
longer than 10. To ensure a fair comparison with the SPN
architecture, which uses the same input data UPN(i|k) for all
predictors i = 1, . . . , N , we have increased the number of
neurons in the hidden layers up to 80, but the performance
remained similar to the one reported in Fig. 1.

Prediction Network NRMSE results: blue - best; purple - second best
N = 5 N = 10 N = 20 N = 30 N = 40

DPN 0.042 0.096 0.165 0.189 0.371
SPN 0.023 0.042 0.297 1.624 1.578
DSPN 0.015 0.027 0.071 0.146 0.127
DSPN+LIN 0.036 0.085 0.023 0.114 0.188

TABLE I: NRMSE validation for chosen i-th step ahead
predictors for all prediction networks using noiseless data.

0 50 100 150 200 250 300 350

Simulation time instants

-1

-0.5

0

0.5

1

A
m

p
lit

u
d

e
[r

a
d

]

0 50 100 150 200 250 300 350

Simulation time instants

0

0.5

1

T
im

e
 [

s
]

DPN

SPN

DSPN

DSPN+LIN

Fig. 2: Sweep sine reference and CPU time during nonlinear
DPC simulation for all prediction networks for noiseless data
with N = 40.

Prediction Network NRMSE results: blue - best; purple - second best
N = 5 N = 10 N = 20 N = 30 N = 40

DPN 0.077 0.112 0.144 0.177 0.345
SPN 0.068 0.085 0.257 1.094 1.589
DSPN 0.062 0.082 0.130 0.196 0.213
DSPN+LIN 0.063 0.079 0.057 0.078 0.312

TABLE II: NRMSE validation for chosen i-th step ahead
predictors for all prediction networks using noisy data.

Next, the trained predictors are employed in a nonlinear
DPC algorithm that minimizes the cost function in (2)
and where various predictors are used to obtain the future
predicted outputs. The cost function weights are Q = 200,
R = 0.5 and N = 40. The chosen DPC trajectory is the
swept sine that is presented in the top part of Fig. 2. For
all predictors, the predictive control problem is solved in
MATLAB using fmincon with SQP as the nonlinear solver.
The simulations were conducted on a desktop computer with
the following specifications: Intel® Core™ i7-12700K Pro-
cessor 5.0 GHz, 64GB RAM, 64–bit OS. The performance
of different predictors in nonlinear predictive control are
evaluated via four metrics: the integral squared error JISE =∑Tend

k=1 ∥y(k) − r(k)∥22, the integral absolute error JIAE =∑Tend
k=1 ∥y(k) − r(k)∥1, the input cost Ju =

∑Tend
k=1 ∥u(k)∥1

and the DPC cost JDPC =
∑Tend

k=1 ∥Q 1
2 (y(k) − ry(k))∥22 +

∥R 1
2 (u(k)− ru(k))∥22.

The CPU during the simulation of nonlinear DPC with
various prediction networks and noiseless data is shown in
Fig. 2. Despite using a general purpose SQP solver and a
long prediction horizon, the corresponding nonlinear DPC
problem is solved on average under 10Ts = 0.33 seconds.
FPGA implementation of SQP solvers coupled with parallel
shooting SQP for nonlinear predictive control [19] is capable
of speeding up calculations 10 times, which is promising for
real-time implementation.

The performance of the prediction networks for noiseless
and noisy data is presented in Table III and IV. It can be

3774

Prediction Network JISE JIAE JU JDPC

DPN 1.39 13.29 481 771
SPN 1.75 15.71 520 914
DSPN 0.91 9.05 489 698
DSPN + LIN 0.48 7.79 487 628

TABLE III: Nonlinear DPC performance for noiseless data
(blue - best; purple - second best).

Prediction Network JISE JIAE JU JDPC

DPN 1.61 15.69 478 803
SPN 2.13 16.87 515 990
DSPN 1.12 10.49 486 741
DSPN + LIN 1.18 10.88 468 716

TABLE IV: Nonlinear DPC performance for noisy data (blue
- best; purple - second best).

noticed from these tables that DSPN and DSPN with a linear
part outperform the classical DPN and SPN in both noisy and
noise-free cases. The control performance was expected since
the identification results showed a significant improvement
during the model validation.

In order to illustrate the improved control performance
of DSPN, the MPC tracking error is presented in Fig. 3. It
can be seen that DSPN with a linear part outperforms the
other prediction networks. It is important to mention that
SPN resulted in inferior tracking performance, which is why
it was not included in the figure, as it would obscure the
other results.

0 50 100 150 200 250 300 350

Simulation time instants

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

DPN

DSPN

DSPN+LIN

Fig. 3: Nonlinear DPC tracking error.

VI. CONCLUSIONS

In this paper we introduced a novel, unifying multi-step
prediction network for indirect nonlinear data-driven predic-
tive control, called deep subspace prediction network. We
proved that DSPN predictors based on MLP neural networks
can recover the subspace predictive control predictor for
linear systems as a specific, linear network architecture.
Based on this insight, we have derived a new regularization
method for DSPN predictors. Simulation results on an in-
verted pendulum example showed that both DSPN and DSPN

with linear part predictors based on MLP neural networks
achieve high tracking control performance in the presence of
noisy data. Future work will deal with efficient solvers for
nonlinear DPC based on DSPN, formal analysis of training
and prediction accuracy in the presence of noisy data and
input-to-state closed-loop stability guarantees.

Acknowledgements: The first author acknowledges the
NWO project PGN Mechatronics, project number 17973.

REFERENCES

[1] F. Lamnabhi-Lagarrigue, A. Annaswamy, S. Engell, A. Isaksson,
P. Khargonekar, R. M. Murray, H. Nijmeijer, T. Samad, D. Tilbury, and
P. Van den Hof, “Systems & Control for the future of humanity, re-
search agenda: Current and future roles, impact and grand challenges,”
Annual Reviews in Control, vol. 43, pp. 1–64, 2017.

[2] W. Favoreel, B. D. Moor, and M. Gevers, “SPC: Subspace predictive
control,” IFAC Proceedings Volumes, vol. 32, no. 2, pp. 4004–4009,
1999, 14th IFAC World Congress 1999, Beijing, Chia, 5-9 July.

[3] M. Nørregard, O. Ravn, N. K. Poulsen, and L. K. Hansen, Neural
Networks for modelling and control of dynamic systems. Springer,
London, 2000.

[4] M. Lazar and O. Pastravanu, “A neural predictive controller for non-
linear systems,” Mathematics and Computers in Simulation, vol. 60,
no. 3-5, pp. 315–324, 2002.

[5] M. Ławryńczuk, “Neural networks in model predictive control,” Intel-
ligent systems for knowledge management, pp. 31–63, 2009.

[6] S. Emami and A. Banazadeh, “Online identification of aircraft dynam-
ics in the presence of actuator faults,” Journal of Intelligent & Robotic
Systems, vol. 96, pp. 541–553, 2019.

[7] K. Patan, “Neural network-based model predictive control: Fault toler-
ance and stability,” IEEE Transactions on Control Systems Technology,
vol. 23, no. 3, pp. 1147–1155, 2015.

[8] C. Greco, G. Menga, E. Mosca, and G. Zappa, “Performance improve-
ments of self-tuning controllers by multistep horizons: The MUSMAR
approach,” Automatica, vol. 20, no. 5, pp. 681–699, 1984.

[9] D. Liu, S. L. Shah, and D. G. Fisher, “Multiple prediction models for
long range predictive control,” IFAC Proceedings Volumes, vol. 32,
no. 2, pp. 6775–6780, 1999.

[10] L. Huang, J. Lygeros, and F. Dörfler, “Robust and kernelized
data-enabled predictive control for nonlinear systems,” arXiv, p.
2206.01866, 2022.

[11] D. Masti, F. Smarra, A. D’Innocenzo, and A. Bemporad, “Learning
affine predictors for mpc of nonlinear systems via artificial neural
networks,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 5233–5238, 2020.

[12] A. Dalla Libera and G. Pillonetto, “Deep prediction networks,” Neu-
rocomputing, vol. 469, pp. 321–329, 2022.

[13] G. Pillonetto, A. Y. Aravkin, D. Gedon, L. Ljung, A. H. Ribeiro, and
T. Schon, “Deep networks for system identification: a survey,” ArXiv,
vol. abs/2301.12832, 2023.

[14] D. Masti and A. Bemporad, “Learning nonlinear state-space models
using deep autoencoders,” in 2018 IEEE Conference on Decision and
Control (CDC), 2018, pp. 3862–3867.

[15] G. I. Beintema, M. Schoukens, and R. Tóth, “Deep subspace encoders
for nonlinear system identification,” Automatica, vol. 156, p. 111210,
2023.

[16] M. Bolderman, M. Lazar, and H. Butler, “On feedforward control
using physics–guided neural networks: Training cost regularization
and optimized initialization,” in 2022 European Control Conference
(ECC), 2022, pp. 1403–1408.

[17] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-
oriented road map,” IEEE Control Systems Magazine, vol. 39, no. 6,
pp. 28–99, 2019.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[19] P. C. N. Verheijen, M. Haghi, M. Lazar, and D. Goswami, “Parallel
shooting sequential quadratic programming for nonlinear MPC prob-
lems,” arxiv.org/abs/2307.10868, 2023.

3775

