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Abstract— In this paper are presented a novel modeling
approach and a passivity-based control scheme to solve the
output voltage regulation control problem of a class of Quasi-
resonant Converters. Instead of consider classical order reduc-
tion arguments, the proposed full order model recovers the
Port-Controlled Hamiltonian structure naturally exhibited by
the converters. This feature leads to the possibility to propose
the implementation of a passive PI control scheme which has
been widely recognized to achieve high performances while
proving in a formal way its stability properties. In addition,
the controller structure is complemented by the inclusion of
a static map to use both the frequency and the duty-cycle of
the square input signal as control input, guaranteeing a Zero
Current Switching operation mode which drastically improves
the efficiency of the circuit. The usefulness of the proposed
model and control are validated in a numerical setting.

I. INTRODUCTION

Electric energy management has experienced drastic
changes due to the appearance of new concerns like climate
change and sustainable development. In this context power
electronics plays a fundamental role owing to its capacity
to process electric energy with high efficiency and low cost
while taking into account technical and economic aspects.

In spite of the fact that power converters can be used in a
vast number of applications, a common challenge refers to
achieve a proper operation with a reduced number of compo-
nents, reducing conduction losses and featuring low-voltage
stress on the semiconductors. Thus, the introduction of high-
frequency-link power conversion systems has emerged as
a viable alternative to eliminate the use of bulky, heavy,
lossy, and noisy equipment. Moreover, resonant converters
establish a frequently implemented topology specially for
modern applications [1].

Resonant topologies achieve high power density, reduced
weight, and low noise without compromising efficiency, cost,
and reliability. These features come from the introduction of
inductors and capacitors as part of resonance circuits and
achieving Zero-Voltage Switching (ZVS) or Zero-Current
Switching (ZCS) operation modes, known as soft-switching
operation.

Resonant topologies has received a lot of attention from
the power electronics community and state a research topic of
current interest [2], [3], [4]. However, it is difficult to find the
proposition and analysis of model-based (nonlinear) control
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schemes derived from the control theory community. One
reason that explains this situation is that dynamical models
for this kind of converters are highly nonlinear steering the
efforts to the use of simplified approximations [5], [6], [7],
[8].

With the aim to reduce the gap between applied and
theoretical results for the control of resonant converters,
in this paper both the modeling and control design for
one kind of these systems are approached from a novel
perspective. The main characteristic of the contribution lies
in the fact that instead of trying to simplify the model of the
converters, the Hamiltonian structure [9] naturally exhibited
by them is recovered leading to the possibility to propose
control schemes from the nonlinear control theory that has
shown to be very effective to solve the stabilization problem
guaranteeing high performance operation. In particular, in
this paper the well-known Passivity-based Control (PBC)
methodology design is considered [9], [10], [11].

Although the results presented in this contribution can
be extended to several resonant topologies, with the aim
to present them in a clear way the particular class of res-
onant circuits considered in this paper is the DC-DC Quasi-
resonant Buck converters (QRBC). This kind of circuits
is widely implemented as voltage regulation modules to
provide energy to a DC distribution system or conditioning
the voltage as an intermediate stage of a DC–AC conversion
system, for example in electric vehicles chargers [12], [13]
or to fed light emitting diode (LED) loads [14], among other.

The importance of QRBC has been well recognized since
several years ago [15]. However, from the control point
of view, the proposition of novel control strategies is very
limited concentrating the efforts to the use of classical PI
schemes [16], [17]. One of the principal reasons that has
limited the development of model-based control laws is the
complexity of the current mathematical model reported in
the literature, known as Generalized State-Space Averaging
(GSSA) model [18]. This approach, in addition to the afore-
mentioned analysis problems, has led to the usual practice
of consider the use of fixed duty-cycle for the control input
which induces to the lost of soft-switching operation, the
essence of this kind of topologies.

On the other hand, PBC has provided solutions to control
problems related with power electronics exhibiting both
formally proved strong stability properties and high dynam-
ical performances. Actually, some topologies of resonant
converters, including QRBC, have been approached from
the passivity perspective [19], [20], [21]. Unfortunately, the
advantages offered by the PBC methodology design are
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only partially exploited since simplified models, basically the
GSSA model, are considered.

In this paper the output voltage regulation control problem
of QRBC is solved. The main features of the contribution are:

• It is developed a complete Port-Controlled Hamiltonian
(PCH) representation without omitting the states that
correspond to the resonant sub-circuit. Up to the best
of the authors knowledge, this is the first time that this
model is reported in the literature.

• Based on the PCH representation of the system, a pas-
sive Proportional-Integral (PI) controller is introduced
following ideas of [11] but solving the desired trajecto-
ries definition step from an efficiency perspective.

• In order to formally prove the stability properties of
the proposed control scheme, the input square signal
of the circuit is expressed in terms of its Taylor series
representation leading to the possibility to consider as
control inputs both the duty-cycle and the frequency of
this signal.

• A recently reported result [22] is considered to compute,
in terms of the current demanded by the load and the
frequency, the duty-cycle that guarantees ZCS opera-
tion.

The rest of the paper is organized as follows: In Section
II the operation of the QRBC and the proposed model are
presented together with the module that allows the use of
varying duty-cycle. The development of the PBC is included
in Section III while the numerical evaluation of both the
proposed model and the control scheme is carried out in
Section IV. Some concluding remarks are included in Section
V.

II. HAMILTONIAN MODELING OF QRBC

In this section one of the main contributions of the paper
is presented, namely, a novel approach for modeling a QRBC
which is based on identifying the natural PCH structure
exhibited by this circuit.

In Figure 1 is presented the considered topology of a
QRBC. It is composed by a voltage source Vg , a switch S1,
a resonant tank made up of Lr and Cr, a diode D0 and an
output L0, C0 filter. For the sake of clarity of presentation,
it is considered a linear load represented by R.

Fig. 1. Quasi-Resonant Buck Converter

The operation of the converter has been clearly described
since several years ago [18]. The purpose of the switching
elements S1, D0 is to shape both current and voltage of the
tank Lr, Cr into a quasi-sinusoidal signal with frequency

near the resonant frequency looking the output filter as a
constant current sink. This operation offers the advantage that
commutation can be carried out when the resonant current
crosses zero reducing drastically the switching losses and
increasing the efficiency, leading also to a high density power
operation.

From the usual modeling perspective, since the converter
is designed considering that L0 >> Lr, two types of
dynamical states are identified: fast (resonant) states and
slow (output filter) states. With this differentiation at hand,
the four sets of differential equations obtained for the four
operation stages that compose a full switching cycle can be
reduced to a system of only two differential equations by
explicitly solving those that correspond to the fast states and
substituting these solutions into the equations that describe
the behavior of the slow states. This procedure leads to
the well-known and widely accepted GSSA model of the
converter [18], [17], [8].

The apparent advantage of working with a reduced order
model like the GSSA model, is contradicted by the complex
structure of its input, in addition to the necessity to deal with
a highly unstructured nonlinear system, the impossibility to
identify the use of the duty cycle of the original square input
signal which is fundamental to achieve ZCS operation.

Instead of looking for a reduced order representation, in
this paper the purpose is to analyze the full order model
but putting attention to is natural PCH structure in order
to take advantage for a systematic design of a control law.
In this sense, the modeling procedure is divided into three
steps dedicated to obtain a dynamical representation of the
resonant tank, the diode D0 and the output filter.

Concerning the resonant tank, it can be obtained that its
dynamic behavior is described by

Lr i̇r + α1vr = α1Vg

Crv̇r − α1ir = −i1
(1)

where the value of signal α1 belongs to the discrete set
{0, 1} to recover the operation when the switch S1 is open
and closed, respectively. In addition, ir is the current across
inductor Lr, vc stands for the voltage at terminals of Cr, Vg

is the voltage of the input source and i1 is the output current
of the tank that is fed to the diode D0.

With respect the diode D0, this device can be viewed as
a power preserving connector with associated variables as
described in Figure 2. Thus, it operation can be written as[

vd
i1

]
=

[
0 −α2

α2 0

] [
i0
vr

]
(2)

where i0, vd are the port variables at the side of the output
filter, while the signal α2 equals to 1 when vr > 0 (reverse
bias polarization) or takes the value 0 when vr ≤ 0 (forward
bias polarization).

Regarding the output filter behavior, it is clear that it can
be represented by

L0i̇0 + v0 = vd

C0v̇0 − i0 = −il
(3)
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Fig. 2. Diode D0 as power preserving connector

where i0 is the current crossing inductor L0, v0 is the voltage
at terminals of C0, and il is the load current which takes the
form il =

1
Rv0 for the considered linear load.

In order to complete the analysis to obtain the proposed
model, it is necessary to recall the relationship between cur-
rent and voltage variables with the fundamental hamiltonian
variables. This is done by noting that the flux linkage of the
inductors is given λr = Lrir and λ0 = L0i0 while the charge
of the capacitors take the form qr = Crvr and q0 = C0v0.

Considering the dynamic behavior of the components of
a QRBC, it is possible to formulate a PCH representation
of the complete circuit. For this purpose, define as state
variables x1 = λr, x2 = qr, x3 = λ0 y x4 = q0. Under these
conditions, the total storage energy function of the system
takes the form

H(x) =
1

2
xTPx (4)

with

x =


x1

x2

x3

x4

 P =


1
Lr

0 0 0

0 1
Cr

0 0

0 0 1
L0

0

0 0 0 1
C0


Hence, combining (1), (2) and (3), the complete dynamical

model of the QRBC is given by

ẋ = J(α2)∇H(x) +G(x)α1 + ξ, (5)

where

J(α2) =


0 0 0 0
0 0 −α2 0
0 α2 0 −1
0 0 1 0


while G(x) = J1∇H(x) +G1 with

J1 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


and

G1 =


Vg

0
0
0

 ; ξ =


0
0
0
−il


It must be noticed that model (5) exhibits the characteristic

that signals α1 and α2 are discontinuous. While the latter
does not impose a problem to carry out analysis and control

design since it appears in the skew-symmetric interconnec-
tion matrix, the former requires a different treatment since it
corresponds to the control input. This situation is approached
in the next section.

A. Continuous approximation of control input α1

With the aim to have a compatible input signal for model
(5) that could be used for analysis and control design pur-
poses, the effect of α1 must be represented by a continuous
signal. To do this, it is convenient to recognize that this
signal, during a complete operation cycle, takes the form
described in Figure 3.

Fig. 3. Discontinuous control input α1

It is clear that the shape of α1 is determined by both the
duty cycle D and the frequency fs = 1

Ts
. The amplitude

A could be also considered as a degree of freedom, but in
practice this parameter is considered fixed. Indeed, both D
and fs constitute the control inputs in a practical setting
since there exist integrated circuits whose function is the
transformation of continuous values of these signals into a
square signal like the described in Figure 3.

Under an operation cycle, fs determines the operation
frequency of the resonant tank while D must be adjusted
depending on the value of the resonant current ir in order to
achieve ZCS. It is interesting to notice at this point that, due
to the fact that in the GSSA model the effect of D is hidden,
a common practice is to fix D leading to the impossibility
to guarantee ZCS when load perturbations appear.

To obtain the desired continuous representation, consider
that

α1(t) =

{
A if δ ≤ t ≤ δ + TsD
0 if δ + TsD < t < δ + Ts

(6)

where δ ≥ 0 is the initial time of the cycle.
The idea followed in this paper is to consider the complex

Fourier expansion of α1 given by

α1(t) =

∞∑
n=−∞

Cne
jnωst (7)

where
Cn =

1

Ts

∫
Ts

α1(t)e
−jnωstdt (8)

Considering (6), it is obtained

Cn =
1

2jπn

(
1− e−2jπnD

)
(9)

where, without loss of generality, it has been considered δ =
0, A = 1 and ωs =

2π
Ts

. Hence, expression (7) is written as

α1(t) = D + 2

∞∑
n=1

Re
[
Cne

jnωst
]

(10)
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since the terms of order −n correspond to the complex
conjugate of the terms of order n.

The advantage of the representation (10) is that it clearly
recovers the effect of both the duty cycle D and the frequency
fs. Of course, the approximation of the square signal α1 will
depend on how many terms n are considered.

B. Relationship between fs and D.

In this section the problem of using the duty cycle D as
a control input instead of consider it with a fixed value is
approached. In this sense, a novel result reported in [22] is
included in the modeling of the QRBC.

The aforementioned result refers to the establishment of a
relationship between the resonant frequency fs and the duty
cycle D that guarantees that voltage regulation is achieved,
even in presence of load variations, assuring at the same time
that ZCS operation is not lost.

The result is based on the approximation of the behavior
of the resonant current ir during the time period when switch
S1 is closed, i.e, when α1 = 1. This behavior is shown in
Figure 4 and corresponds to the described by (1).

Fig. 4. Resonant variables behavior

It can be noticed that during the time period T1 − T0, the
current ir grows in a linear way satisfying

T1 − T0 =
Lr

Vg
i0

On the other hand, for the time period T2−T1 the current
ir and the voltage vr evolve in a resonant way. In particular,
from time T1 to T ′

1 this behavior is given by

vr = Vg (1− cosωrt)

ir = io +
Vg

Zr
sinωrt

with Zr =
√

Lr

Ce
and ωr = 1√

LrCr
. Hence, it holds that

T ′
1 − T1 = π

√
LrCr

Although during the time period T2 − T ′
1 the system still

operates in resonant mode, it is possible to linearize the
current behavior in such way that the following expression
is obtained

T2 − T ′
1 =

Lr

Vg
i0

From the results presented above and Figure 3, the duty
cycle takes the form

D = fs

[
2Lr

Vg
i0 + π

√
LrCr

]
(11)

The importance of this equation lies in the fact that if D
is computed in this way, then the switch S1 will be opened
when the current ir crosses zero even when the frequency
fs varies.

C. Complete continuous model of QRBC

Once the practical operation of the approached converter
has been taken into account, it is possible to formulate a
dynamical model that satisfy the mathematical conditions
necessary to carry out model-based analysis and control
design.

In this sense, notice that from a mathematical perspective
equation (10) and (11) can be viewed as a static map
from the signal fs to the variable α1(D, fs) which can be
considered linear with respect fs and that neither influence
the stability properties nor modify the PCH structure of
system (5). Actually, any closed-loop control system will
take the structure depicted in Figure 5. Thus, for the rest
of the paper it will be considered that the control input of
system (5) is fs for all practical purposes.

Fig. 5. Generic closed-loop system

III. PASSIVITY-BASED CONTROL OF QRBC

In this section the second main result of the contribution
is presented, namely, the formal proof that the use of
passivity-based arguments can be used to solve the output
voltage regulation control problem of QRBC. This part of
the proposed results is based in well-known properties of the
control of PCH systems. In particular, the passivity properties
of model (5) are identified to later on propose the use of a
passive PI control like the considered in [11].

In order to solve the considered control problem, it is
first necessary to define what in the PBC literature is known
as the admissible trajectories. This term corresponds to the
achievable behavior of the controlled system, denoted as
x⋆, and therefore these trajectories must be solution of the
equations given by

ẋ⋆ = J(α2)∇H(x⋆) +G(x⋆)α1(D
⋆, f⋆

s ) + ξ (12)
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On the other hand, it can be straightforwardly proved that
the PCH system given by (5) defines a passive map of the
form

Σ : α1(D, fs) → y

with y = G⊤
1 Px.

As will be clear below, for the controller implementation
it is necessary to compute from (12) the value of f⋆

s that
corresponds to a prescribed x⋆. This is done by noting
that this system enjoys the same aforementioned passivity
property that comes from the power balance

Ḣ(x⋆) = − 1

C0
x⋆
4il + (y⋆)⊤α1(D

⋆, f⋆
s )

It is well-known [18] that the desired solution corresponds
to the voltage conversion ratio of the converter that takes the
next form

f⋆
s =

v⋆0
Vg

(
1

T3(i⋆0)−
T1(i⋆0)

2

)
(13)

where it is considered T0 = 0. With these elements at
hand, it is possible to formulate the next proposition where
the considered control law is presented.

Proposition. Consider the PCH model of the QRBC given by
(5). Assume that a prescribed x⋆ is given that corresponds
to the desired constant value for the output voltage of the
converter. Under these conditions, the control law

fs = −Kpy +KIζ + f⋆
s

ζ̇ = −y

y = G⊤
1 Px̃

(14)

with f⋆
s as in (13), the error variable x̃ = x − x⋆ and

Kp,KI > 0 guarantees that

lim
t→∞

x− x⋆ = 0 (15)

with internal stability.
Proof. The proof of the proposition follows standard

arguments by noting that the error variable dynamic takes
the form

˙̃x = J(α2)∇H(x̃) +G(x̃)α1(D̃, f̃s) (16)

where D̃ = D −D⋆, f̃s = fs − f⋆
s and

H(x̃) =
1

2
x̃⊤Px̃

Consider now the positive definite function

V (x̃, ζ) = H(x̃) +
1

2
ζ⊤KIζ

whose time derivative along the trajectories of the error
dynamic is given by

V̇ (x̃, ζ) = Ḣ(x̃) +
1

2
[ζ̇⊤KIζ + ζ⊤KI ζ̇] (17)

If the control structure (14) is considered, then it is
obtained that Ḣ(x̃, ζ) ≤ 0. Hence, the proof is concluded
by the application of standard arguments.

□□□

IV. NUMERICAL EVALUATION

The usefulness of the proposed modeling methodology and
the proposed control scheme are illustrated via numerical
simulations carried out under the MATLAB/Simulink com-
putational environment.

For this numerical evaluation there were considered ideal
inductors and capacitors with values as reported in [23]. In
addition, the following considerations were included:

• S1 was implemented using the Simulink ideal switch
considering Ron = .0001 Ω, Rs = .00001 Ω and Cs =
∞.

• D0 was implemented using the Simulink ideal diode
model considering Vf = 0.8V , Ron = .001 Ω, Lon =
0 H , Rs = 500 Ω y Cs = 250 pF .

• The signal α1 was approximated considering n = 5.
Concerning the proposed model validation, Figure 6 shows

the behavior of the resonant states x1 and x2 for both a
discontinuous version of α1 and its approximation. It is
clear that with the selected number of the Taylor series
components, the proposed model recovers the behavior of the
discontinuous system close enough from a control point of
view. Thus, this approximation was implemented to evaluate
the control scheme performance.
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Fig. 6. Numerical validation of approximate model for n = 5.

With the aim to evaluate the usefulness of the proposed
controller, the output voltage desired profile shown in Figure
7 (d) was considered. This behavior starts with a value
of 16V to change its value to a lower value of 13V .
Additionally, when the voltage reference remains at this last
value, a change in the load resistance (not considered by
the theoretical design) is included. For this evaluation it was
considered the values Kp = 900 and KI = 100.

As can be noticed from the results presented in Figure
7, the performance of the closed-loop system is remarkable.
This feature is illustrated, first, by noting that although the
considered initial value for the output voltage was set to zero,
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the convergence time was approximately 0.3ms. Second, the
transient response of the system under a load change exhibits
a smooth behavior. Finally, even in presence of an unknown
perturbation, the control objective is achieved.
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Fig. 7. Numerical evaluation of the passive PI controller.

V. CONCLUDING REMARKS

In this paper the modeling and control of QRBC is ap-
proached. Concerning the modeling objective, a novel PCH
representation was introduced. In addition that its validity
was illustrated in a numerical setting, its usefulness was
exhibited to identify structural properties of the converter that
are usually lost under classical representations like the widely
used GSSA model. Regarding the proposed controller, it was
shown that the PCH structure of the proposed model can be
exploited to implement well-known PBC schemes for which,
in addition to formally prove its stability properties, high
performance responses are achieved.

REFERENCES

[1] Biao Zhao, Qiang Song, Wenhua Liu, and Yandong Sun. Overview
of dual-active-bridge isolated bidirectional dc–dc converter for high-
frequency-link power-conversion system. IEEE Transactions on power
electronics, 29(8):4091–4106, 2013.

[2] Yueshi Guan, Carlo Cecati, J Marcos Alonso, and Zhe Zhang. Re-
view of high-frequency high-voltage-conversion-ratio dc–dc convert-
ers. IEEE Journal of Emerging and Selected Topics in Industrial
Electronics, 2(4):374–389, 2021.

[3] Hadi Tarzamni, Homayon Soltani Gohari, Mehran Sabahi, and Jorma
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