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Abstract— This paper studies the sampled-data distributed
control problem for mixed traffic flow described by the Aw-
Rascle-Zhang (ARZ) model, which consists of both manual and
adaptive cruise control-equipped (ACC-equipped) vehicles. A
group of stationary sensing devices provides spatially averaged
state measurements over the sampling spatial intervals, and
then the sampled-data distributed controller is designed as
the time-gap setting of ACC-equipped vehicles based on the
state measurements sampled in space and time. The closed-
loop system is re-organized into an equivalent system containing
a continuous time control loop and spatio-temporal sampling
errors. Then sufficient conditions for ensuring exponential
stability of the mixed traffic flow system are developed in terms
of matrix inequalities, by employing the Lyapunov function
method along with Wirtinger’s and Jensen’s inequalities in
H1-norm. Finally, the effectiveness of the proposed method is
verified by numerical simulations.

I. INTRODUCTION

The evolution of macroscopic traffic state can usually be
described by hyperbolic partial differential equation (PDE)
systems [1], [2], and extensive studies have been devoted to
the boundary control of hyperbolic PDE-based traffic flow
models [3], [4], [5]. With the emergence of automated and
connected vehicles, the approach to regulating the dynamic
of traffic flow by designing the real-time setting of ACC-
equipped vehicles is attracting more attention. It has been
proven that properly manipulating ACC-equipped vehicles
is effective for stabilizing traffic flow dynamics [6], [7].
For instance, the exponential and convective stability were
guaranteed for a freeway traffic flow by designing the time-
gap of ACC-equipped vehicles in [8].

As another relevant subject of this paper, sampled-data
control has been extensively applied in modern control
systems since the controller can be implemented by dig-
ital technology. Although sampled-data control problems
of ODE systems have been widely investigated [9], there
are few counterpart studies on PDE systems [10], [11].
An event-based boundary controller was presented for a
linear hyperbolic system of conservation laws by defining
two event-triggering conditions in [12], and then the global
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exponential stability and well-posedness of the closed-system
were proved. In [13], the sampled-data control problem was
considered for a class of linear hyperbolic systems with state
measurements sampled in space and time via the Lyapunov-
Razumikhin approach.

To the best of authors’ knowledge, the sampled-data
distributed control for hyperbolic PDEs in mixed traffic flow
based on ARZ model has not been addressed yet. Motivated
by the aforementioned discussion, we consider the problem
of sampled-data distributed control for the mixed traffic
flow in this paper. The ARZ model is utilized to describe
the mixed traffic flow which consists of both manual and
ACC-equipped vehicles. Considering the connected feature
of the ACC-equipped vehicles, the time-gap setting of ACC-
equipped vehicles is designed based on the state measure-
ments sampled both in time and space provided by a group of
stationary sensing devices. The exponential stability analysis
in H1-norm is presented by using the Lyapunov function
method with the application of Wirtinger’s and Jensen’s
inequalities.

Notation: R, Rn and Rn×m denote the set of real
numbers, n-order vectors and n × m-order matrices,
respectively. For a matrix A, A> denotes the transpose
matrix of A, and trace(A) denotes the trace of A.
A > (<) 0 denotes that A is a positive (negative)
definite matrix. diag{a1, ..., an} is the diagonal matrix
with ai ∈ R, i = 1, ..., n. N is the set of nonnegative
integers from 0 to infinity. For a partitioned symmetric
matrix, symbol ∗ stands for the symmetric blocks. Given
a function g : [0, L] → Rn, we define its H1-norm as

‖g‖H1((0,L);Rn) =
√∫ L

0
(|g|2 + |gx|2)dx, where | · | is the

Euclidean norm in Rn.

II. MIXED TRAFFIC FLOW WITH ACC-EQUIPPED
VEHICLES

A. Mixed traffic flow model

Consider the mixed traffic flow consisting of manual
and ACC-equipped vehicles as shown in Fig. 1, where the
percentage of ACC-equipped vehicles with respect to total
vehicles is α ∈ [0, 1]. τacc, τm > 0 denote the time constants
of ACC-equipped and manual vehicles, respectively. Let
ρ(x, t) and v(x, t) represent the traffic density and the
average speed, respectively, which are defined in x ∈ [0, L]
for position and t ∈ [0,+∞) for time. L is the length of
the road. The macroscopic mixed traffic flow dynamic is
described by the ARZ model, i.e., the following second-order
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Fig. 1. Time-gap manipulation of ACC-equipped vehicles for the mixed
traffic flow.

hyperbolic PDE system of balance law:{
∂tρ+ ∂x(vρ) = 0,

∂tv +
(
v + ρ∂Vmix(ρ,hacc(x,t))∂ρ

)
∂xv = Vmix(ρ,hacc(x,t))−v

τmix
,

(1)

with τmix = 1
α
τacc

+ 1−α
τm

.

We utilize the following fundamental diagram relation [8]

Vmix(ρ, hacc) = τmix

( α

τacc
Vacc(ρ, hacc) +

1− α
τm

Vm(ρ)
)
,

(2)

with

Vacc(ρ, hacc) =
1

hacc

(1

ρ
−D

)
, ρmin < ρ <

1

D
, (3)

Vm(ρ) =
1

hm

(1

ρ
−D

)
, ρmin < ρ <

1

D
, (4)

where D > 0 is the average effective vehicle length and
ρmin > 0 is the lowest density value for which the model
is accurate. hm > 0 is the time gap of manual vehicles, and
hacc > 0 is the time gap of ACC-equipped vehicles, which
is the control input to be designed later.

Substituting (3)-(4) into (2), the fundamental diagram of
mixed traffic flow model can be rewritten as

Vmix(ρ, hacc) =
1

hmix(hacc)

(1

ρ
−D

)
, (5)

where the mixed time gap is

hmix(hacc) =
α+ (1− α) τaccτm

α+ (1− α) τaccτm
hacc
hm

hacc. (6)

At the downstream boundary, a variable speed limit (VSL)
device is applied to regulate the traffic dynamic. the driving-
out speed v(L, t) could be adjusted based on the density
information ρ(L, t) at the downstream boundary, that is,

v(L, t) = v∗ + kv(ρ(L, t)− ρ∗), (7)

where ρ∗, v∗ are the steady states of system (1), and kv ∈ R
is boundary tuning gain.

Assumption 1: For the mixed traffic flow model (1), we
assume that the flux at the upstream boundary is constant,
i.e., ρ(0, t)v(0, t) = qin, where qin = ρ∗v∗ is a constant
external inflow.

B. Linearization and diagonalization

Denote h∗acc as steady-state time gap for ACC-equipped
vehicles, which results in the following steady-state mixed
time gap

h∗mix =
α+ (1− α) τaccτm

α+ (1− α) τaccτm
h∗
acc

hm

h∗acc (8)

satisfying 1
ρ∗−D=h∗mixv

∗.
Define the deviations of the variables ρ, v, hacc from the

steady states ρ∗, v∗, h∗acc by ρ̃ = ρ− ρ∗, ṽ = v− v∗, h̃acc =
hacc − h∗acc, and then the linearized system (ρ̃, ṽ, h̃acc)
around the steady states is deduced as{

∂tρ̃+ v∗∂xρ̃+ ρ∗∂xṽ = 0,

∂tṽ − c4∂xṽ = −c1ρ̃− c2ṽ − c3h̃acc,
(9)

where c1 = 1/(ρ∗2h∗mixτmix), c2 = 1/τmix, c3 =
(α/τacch

∗2
acc)(1/ρ∗ −D), c4 = D/h∗mix.

Based on Assumption 1, we have (ρ̃(0, t) + ρ∗)(ṽ(0, t) +
v∗) = qin at the left boundary x = 0. Subtracting the steady
condition ρ∗v∗ = qin, then we obtain

ρ̃(0, t) = −ρ
∗

v∗
ṽ(0, t). (10)

Defining the Riemann coordinate as z̃ = ṽ, ω̃ = ρ̃ +
h∗mixρ

∗2ṽ, then systems (9) could be rewritten in the follow-
ing diagonal form{

∂tω̃ + v∗∂xω̃ = −c2ω̃ − h∗mixρ∗
2c3h̃acc,

∂tz̃ − c4∂xz̃ = −c1ω̃ − c3h̃acc,
(11)

with the boundary conditions{
ω̃(0, t) = (h∗mixρ

∗2 − ρ∗

v∗ )z̃(0, t),

z̃(L, t) = kv
1+kvh∗

mixρ
∗2 ω̃(L, t).

(12)

Let ξ = [ω̃, z̃]T , and then the linearized mixed traffic flow
model (11) can be rewritten as

∂tξ + Γ∂xξ = Mξ −Hh̃acc, t ∈ [tk, tk+1), (13)

with Γ = diag{v∗,−c4} and

M =

[
−c2 0
−c1 0

]
, H =

[
h∗mixρ

∗2c3
c3

]
.

The input and output of system (13) on the right and the
left boundaries can be denoted as ξin = [ω̃(0, t), z̃(L, t)]>

and ξout = [ω̃(L, t), z̃(0, t)]>. Then the boundary condition
of system (13) can be rewritten as

ξin = Gξout, (14)

with

G =

[
0 h∗mixρ

∗2− ρ∗

v∗
kv

1+kvh∗
mixρ

∗2 0

]
.

Further, we denote the initial condition of system (13) as

ξ0 =

[
ω̃(x, 0)
z̃(x, 0)

]
. (15)
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C. Time-gap setting of ACC-equipped vehicles

To regulate the dynamic of mixed traffic flow, we design
the time gap of ACC-equipped vehicles based on the spa-
tially averaged state measurements provided by a group of
stationary sensing devices.

Following [10], we assume that there are N sensors uni-
formly distributed over the interval [0, L]. x̄i, i ∈ {0, ..., N−
1} denotes the location of sensors, such that x̄0 = 0, x̄i =
x̄i−1 + b̄, where b̄ = L/(N − 1), i ∈ {1, ..., N − 1}. Each
sensor i provides the measurements of state at discrete time
instant tk and at position x̄i. The time sequence {tk}, k ∈ N
represents the sampling time instants with 0 = t0 < t1 <
· · · < tk. The sampling time intervals are bounded, i.e.,
tk+1 − tk ∈ (0, h], where h > 0 is the upper bound.

Based on the spatially sampled state measurements provid-
ed by these sensors, the sampling state (ω̃(x̄i, tk), z̃(x̄i, tk))
can be transferred to the controller, and the resulting feed-
back is implemented to the mixed traffic flow model system
through a zero-order holder (ZOH). We then design the time-
gap manipulation of ACC-equipped vehicles as

hacc(x, t) =h∗acc +

N−1∑
i=0

di(x)
[
kωω̃(x̄i, tk)

+ kz z̃(x̄i, tk)
]
, t ∈ [tk, tk+1), (16)

where kω, kz ∈ R are control gains. The shape function
di(x), which can obtain a linear combination of controllers
responsible for each region, is defined as{

di(x) = 1, x ∈ Ψi, i ∈ {0, ..., N − 1},
di(x) = 0, otherwise,

(17)

with Ψi = [xi, xi+1) denoting the interval each sensor
charged for and{

xi = x̄i−1+x̄i
2 , i ∈ {1, ..., N − 1},

x0 = 0, xN = L.
(18)

The well-posedness and the existence of the classical
maximal solutions of H1((0, L);R2) of the Cauchy problem
(13)-(15) are easily adapted from [13]. The definition of
the exponential stability for system (13) under the boundary
condition (14) is given hereinafter.

Definition 1: The system (13)-(14) under the time-gap
setting of ACC-equipped vehicles (16) is exponentially stable
for H1-norm, if there exist scalars ε > 0 and χ > 0 such that,
for every ξ0 ∈ H1((0, L);R2), the solution to the Cauchy
problem (13) and (14) satisfies

‖ξ(·, t)‖H1((0,L);R2) ≤ χe−εt‖ξ0‖H1((0,L);R2) (19)

for all t ∈ [0,∞).
In this paper, we aim to derive sufficient conditions

for ensuring the exponential stability of the mixed traffic
flow system (13)-(14) under time-gap manipulation of ACC-
equipped vehicles (16). We then state the main results of this
paper in next section.

III. MAIN RESULTS

In this section, we analyze the exponential stability of
the mixed traffic flow system (13)-(14) under the time-gap
setting of ACC-equipped vehicles (16) in H1-norm, by re-
organizing the closed-loop system into an equivalent system
with spatio-temporal sampling errors as well as employing
the Lyapunov function method.

Defining the time sampling error η(x, t) and the space
discretization error δ(x, tk) as η(x, t) = ξ(x, t)−ξ(x, tk), t ∈
[tk, tk+1), and δ(x, tk) = ξ(x, tk) −

∑N−1
i=0 di(x)ξ(x̄i, tk),

respectively.
According to the above spatio-temporal sampling errors,

for t ∈ [tk, tk+1), the time-gap setting of ACC-equipped
vehicles (16) equals to

h̃acc(x, t)=Kξ(x, t)−Kη(x, t)−Kδ(x, tk), (20)

with K =
[
kω kz

]
. Then the closed-loop system (13)-(14)

can be written as

∂tξ + Γ∂xξ = Uξ + Fη + Fδ(x, tk), (21)

ξin = Gξout, ∀t ∈ [tk, tk+1), k ∈ N, (22)

with U = M −HK, F = HK.
Before giving the main result of this paper, we define some

matrices that will be used.

M1 =

[
−c2 0

0 0

]
, H1 =

[
h∗mixρ

∗2c3kw 0
0 c3kz

]
,

M2 =

[
0 0
−c1 0

]
, H2 =

[
0 h∗mixρ

∗2c3kz
c3kw 0

]
.

For diagonal positive matrices P1 ∈ R2×2 and P2 ∈ R2×2,
we define Ω(x) = col{P1(x), 08×2}, and

Θ(x)=


Θ11 Θ12 −rhU>F rhU>Γ 0
∗ Θ22 −rhF>F rhF>Γ 0
∗ ∗ βI rhF>Γ 0
∗ ∗ ∗ Θ44 0
∗ ∗ ∗ ∗ Θ55

, (23)

Ξ(x)=


Ξ11 − P1(x)(F + κI) 0 0 0
∗ re−2µhI + κP1(x) 0 0 0
∗ ∗ βI 0 0
∗ ∗ ∗ Ξ44 0
∗ ∗ ∗ ∗ Ξ55

 , (24)

with

Θ11 = (µ|Γ|−2σI−κ(λ−1)−U>)P1(x)−(P1(x)+rhU>)U,

Θ12 = −(P1(x) + rhU>)F − κP1(x),

Θ22 = (1− 2σh)re−2µhI − rhF>F + κP1(x),

Θ44 = (µ|Γ|−(κλ+ 2σ)I−M>)P2(x)−P2(x)M−rhΓΓ,

Θ55 = −γ((rh+ 1)F>F + βI) + κP2(x),

Ξ11 = Θ11 + rhU>U,

Ξ44 = Θ44 + rhΓΓ,

Ξ55 = Θ55 + γrhF>F,
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where P1(x) = diag{eµ(L−x), eµx}P1, P2(x) = diag{
eµ(L−x), eµx}P2, γ = b̄2/π2, λ > 1, σ < 1

2h , µ, β, r, κ are
positive scalars.

We then have the following main result.
Theorem 1: The mixed traffic flow system (13)-(14)

under the time-gap setting of ACC-equipped vehicles (16)
is exponentially stable for any sampling sequence satisfying
tk+1− tk ∈ (0, h] in H1-norm, if there exist positive scalars
r, µ, β, κ and diagonal positive matrices P1 ∈ R2×2 and
P2 ∈ R2×2 such that the following inequalities hold:

(i) ∆ = eµLG>|Γ|P1G−|Γ|P1 ≤ 0, (25)

z=

 z11 ΓG>|Γ−1|P2A ΓG>|Γ−1|P2B
∗ A>|Γ−1|P2A A>|Γ−1|P2B
∗ ∗ B>|Γ−1|P2B

≤0, (26)

with z11 =ΓG>|Γ−1|P2GΓ−e−µL|Γ|P2, A = M1G+M2−
GM1 −GM2G, B = GH1+GH2G−H1G−H2;

(ii) Υ(0) ≥ 0, Υ(L) ≥ 0, (27)

with Υ(x) defined for all x ∈ [0, L] as

Υ(x) =

[
Θ(x) Ω(x)
∗ I

]
;

(iii) Φ(0) ≥ 0, Φ(L) ≥ 0, (28)

with Φ(x) defined for all x ∈ [0, L] as

Φ(x) =

[
Ξ(x) Ω(x)
∗ I

]
.

Proof: Select the Lyapunov function candidate as

V = V1(ξ) + V2(ξx) + V3 (29)

with V1(ξ) =
∫ L

0
ξ>P1(x)ξdx, V2(ξx) =

∫ L
0
ξ>x P2(x)ξxdx,

V3 =
∫ L

0
r(tk+1 − t)

∫ t
tk
e2µ(s−t)ξ>s ξsdsdx, where ξt = ∂tξ

and ξx = ∂xξ for simplicity.
Here V1(ξ) is used to bound ξ, and V2(ξx) is used to

limit the term ξx(tk) obtained by processing the space
discretization error δ(x, tk). V3 is used to handle the time
sampling error η(x, t). The proof of Theorem 1 mainly relies
on the analysis of estimates for the time derivatives of Vi, i =
1, 2, 3, along solutions of system (21)-(22), by expanding
the analysis to the dynamics of ξt with the assumption that
solutions ξ are of class C1.
• Analysis of the first term V1(ξ).
Utilizing the integration by parts, the time-derivative of

V1(ξ) for ∀t ∈ [tk, tk+1), along the solutions of equations
(21)-(14) is calculated as

V̇1(ξ) = (ξout)>∆ξout+

∫ L

0

[
ξ>(U>P1(x)+P1(x)U−µ

|Γ|P1(x))ξ+(δ>+η>)F>P1(x)ξ + ξ>P1(x)F

(δ + η)
]
dx. (30)

• Analysis of the second term V2(ξx).
Under the assumption that ξ is the class of C1, we can

obtain the dynamic of ξx as

ξtx + Γξxx = Mξx, ∀t ∈ [tk, tk+1), (31)

with the boundary condition for t ∈ [tk, tk+1),

ξinx =Γ−1(GΓξoutx +Aξout+Bξout(tk)). (32)

Taking the time derivative of V2(ξx) along the solutions
of system (31)-(32), ∀t ∈ [tk, tk+1), we get

V̇2(ξx) = eµLθ>zθ +

∫ L

0

ξ>x (M>P2(x) + P2(x)M

− µ|Γ|P2(x))ξxdx, (33)

where θ = col{ξoutx , ξout, ξout(tk)}.

• Analysis of the third term V3.

Computing the time derivative of V3, ∀t ∈ [tk, tk+1), it
yields that

V̇3 =r(tk+1 − t)
∫ L

0

[Uξ − Γξx + F (η + δ)]>[Uξ − Γξx

+ F (η + δ)]dx− r
∫ L

0

∫ t

tk

e2µ(s−t)ξ>s ξsdsdx. (34)

For t ∈ [tk, tk+1), it follows from (30), (33) and (34) that

V̇ + 2σV = V̇1(ξ) + V̇2(ξx) + 2σ(V1 + V2) + r(tk+1 − t)∫ L

0

ξ>t ξtdx+ (2σ(tk+1 − t)− 1)r

∫ L

0

∫ t

tk

e2µ(s−t)ξ>s ξsdsdx. (35)

Considering σ < 1
2h and applying Jensen’s inequality [14],

the last term on the right-hand side of the above equation
satisfies

(2σ(tk+1 − t)− 1)r

∫ L

0

∫ t

tk

e2µ(s−t)ξ>s ξsdsdx

≤ (2σ(tk+1 − t)− 1)re−2µh

∫ L

0

η>ηdx. (36)

By using Young’s inequality and Wirtinger’s inequality [15],
it can be obtained that∫ L

0

δ>F>P1(x)ξdx ≤ γ

2

∫ L

0

ξ>x (tk)F>Fξx(tk)dx

+
1

2

∫ L

0

ξ>P1(x)P1(x)ξdx, (37)∫ L

0

δ>(r(tk+1−t)F>F+βI)δdx ≤ γ
∫ L

0

ξ>x (tk)(r(tk+1

− t)F>F + βI)ξx(tk)dx. (38)

Substitute (36)-(38) into (35), and then we have

V̇ + 2σV ≤ eµLθ>zθ+(ξout)>∆ξout+

∫ L

0

φ>W(x)φdx,

(39)

where φ = col{ξ, η, δ, ξx, ξx(tk)} and
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W(x)=


W11 W12 W13 − r(tk+1−t)U>Γ 0
∗ W22 W23 − r(tk+1−t)F>Γ 0
∗ ∗ −βI − r(tk+1−t)F>Γ 0
∗ ∗ ∗ W44 0
∗ ∗ ∗ ∗ W55

 ,
(40)

with

W11 =(2σI−µ|Γ|+P1(x)+U>)P1(x)+(P1(x) + r(tk+1

− t)U>)U,

W12 =(P1(x) + r(tk+1 − t)U>)F,

W13 =r(tk+1 − t)U>F,
W22 =(2σ(tk+1−t)−1)re−2µhI+r(tk+1−t)F>F,
W23 =r(tk+1 − t)F>F,
W44 =(2σI−µ|Γ|+M>)P2(x)+P2(x)M+r(tk+1−t)ΓΓ,

W55 =γ((r(tk+1 − t) + 1)F>F + βI).

Since conditions (27)-(28) hold, it follows from Lemma 1
in the Appendix I that M(0) ≥ 0 and M(L) ≥ 0. Then, by
using Lemma 2 in the Appendix I, we get∫ L

0

φ>(W(x) + κN (x))φdx ≤ 0, (41)

where N (x) is defined in (A.4).
Considering t ∈ [tk, tk+1), we have λ(V1(ξ(tk, ·)) + V2(

ξx(tk, ·)))−(V1(ξ(t, ·))+V2(ξx(t, ·))) ≥ 0 with some λ > 1.
Based on the definition of V1(ξ) and V2(ξx), it holds that∫ L

0
φ>N (x))φdx ≥ 0. According to (41), we then have∫ L

0
φ>W(x)φdx ≤ 0. Hence, it follows from inequalities

(25)-(26) that

V̇ ≤ −2σV. (42)

Based on the definition of the Lyapunov function of (29),
there exists a sufficiently large constant % > 0 such that the
following inequalities hold:

1

%

∫ L

0

(|ξ|2 + |ξx|2)dx ≤ V ≤ %
∫ L

0

(|ξ|2 + |ξx|2)dx. (43)

Using (42) and (43) for all t ∈ [0,∞), we obtain that

‖ξ(·, t)‖H1((0,L);R2) ≤ %e−σt‖ξ0‖H1((0,L);R2).

Consequently, if inequalities (25)-(28) are satisfied, system
(13)-(14) under the time-gap setting of ACC-equipped vehi-
cles (16) is exponentially stable in H1-norm. This completes
the proof of Theorem 1. �

IV. NUMERICAL SIMULATIONS

The purpose of this section is to validate the exponential
stability conditions proposed in Theorem 1 through the
numerical simulation.

We consider a road segment with length of L = 1
kilometer in congested regime. The traffic parameters of the
mixed traffic flow model are given as qin = 3500 veh./hr,

(a) (b)
Fig. 2. The evolutions of traffic dynamic of the mixed traffic flow system
(13)-(14) under the time-gap setting of ACC-equipped vehicles (16). (a) The
evolution of traffic density ρ; (b) The evolution of average speed v.

ρmin = 50 veh./km, D = 5 m, hm = 1 s, τacc = 100 s,
τm = 200 s, α = 0.15, h = 0.002, b̄ = 0.1 km. We expect
that the traffic dynamics reach to the desired values ρ∗ = 70
veh./km, v∗ = 50 km/hr within steady-state time gap for
ACC-equipped vehicles h∗acc = 1.5 s.

Choose the sampled-data distributed control gains in (16)
as kω = 0.2, kz = 0.13. The parameters are selected as
kv = 0.2, µ = 0.01, λ = 1.3, σ = 0.3, κ = 0.01, β = 0.2.
By solving the conditions (25)-(28) in Theorem 1, we obtain
r = 0.0057 and the diagonal matrices

P1 =

[
3.8626 0

0 0.1039

]
, P2 =

[
0.5578 0

0 0.0792

]
.

To compute the solutions of system (13), we discretize
them by using the two-step variant of Lax-Wendroff method
in [16]. The initial state associated with the steady state (ρ∗,
v∗) is given as{

ρ(x, 0) = ρ∗ + 1.6cos(2πx),

v(x, 0) = v∗ + 2.4cos(2πx).
(44)

Fig. 2(a) and 2(b) show the evolutions of the traffic density
ρ(x, t) and the average speed v(x, t) of the mixed traffic
flow system (13)-(14) under the time-gap setting of ACC-
equipped vehicles (16), respectively. It can be observed that
both the traffic density and the average speed converge to
the steady states ρ∗ = 70 veh./km, v∗ = 50 km/hr within
the time-gap setting of ACC-equipped vehicles h∗acc = 1.5
s. As revealed in the above results, the inequality conditions
provided in Theorem 1 are validated for ensuring the expo-
nential convergence of the mixed traffic flow.

V. CONCLUSIONS

This paper has addressed the sampled-data distributed
control problem for mixed traffic flow with ACC-equipped
vehicles in H1-norm. The time-gap setting of ACC-equipped
vehicles is designed based on the spatially sampled state
measurements provided by the sensors to drive the traffic
dynamic to the steady state. By re-modeling the closed-
loop system into an equivalent system with spatio-temporal
sampling errors and using the Lyapunov function approach,
we have derived sufficient conditions for ensuring the expo-
nential stability of the mixed traffic flow system.
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APPENDIX I
SOME USEFUL LEMMAS

Lemma 1: If the conditions (27) and (28) hold, then

M(0) ≥ 0, M(L) ≥ 0, (A.1)

with M(x) defined for all x ∈ [0, L] as

M(x) =

[
Q(x) Ω(x)
∗ I

]
, (A.2)

where

Q(x)=


Q11 Q12 Q13 r(tk+1−t)U>Γ 0
∗ Q22 Q23 r(tk+1 − t)F>Γ 0
∗ ∗ βI r(tk+1 − t)F>Γ 0
∗ ∗ ∗ Q44 0
∗ ∗ ∗ ∗ Q55

,
with

Q11 = (µ|Γ|−2σI−κ(λ−1)−U>)P1(x)−(P1(x) + r(tk+1

−t)U>)U,

Q12 = −(P1(x) + r(tk+1−t)U>)F − κP1(x),

Q13 = −r(tk+1−t)U>F,
Q22 = (1− 2σ(tk+1−t))re−2µhI−r(tk+1−t)F>F+κP1(x),

Q23 = −r(tk+1 − t)F>F,
Q44 = (µ|Γ|−(κλ+ 2σ)I−M>)P2(x)−P2(x)M−r(tk+1

− t)ΓΓ,

Q55 = −γ((r(tk+1−t) + 1)F>F + βI) + κP2(x).

Proof: According to the definitions of Υ(0) and Φ(0), it
yields that

ς(t)Υ(0)+
t− tk

tk+1 − tk
Φ(0)=

[
Π Ω(0)
∗ I

]
, (A.3)

where ς(t) = tk+1−t
tk+1−tk and

Π=


Π11 Π12 Π13 ς(t)rhU>Γ 0
∗ Π22 Π23 ς(t)rhF>Γ 0
∗ ∗ βI ς(t)rhF>Γ 0
∗ ∗ ∗ Π44 0
∗ ∗ ∗ ∗ Π55

,
with

Π11 = (µ|Γ|−2σI−κ(λ−1)−U>)P1(0)−(P1(0)+ς(t)rhU>)U,

Π12 = −(P1(0) + ς(t)rhU>)F − κP1(0),

Π13 = −ς(t)rhU>F,
Π22 = (1− 2σς(t)h)re−2µhI−ς(t)rhF>F + κP1(0),

Π23 = −ς(t)rhF>F,
Π44 = (µ|Γ|−(κλ+2σ)I−M>)P2(0)−P2(0)M−ς(t)rhΓΓ,

Π55 = −γ((ς(t)rh+ 1)F>F + βI) + κP2(0).

The feasibility of Υ(0) ≥ 0 and Φ(0) ≥ 0 guarantee
ς(t)Υ(0)+ t−tk

tk+1−tkΦ(0) ≥ 0. Since h
tk+1−tk ≥ 1, it can be

easily obtained that M(0) ≥ 0.
Following the similar arguments, we have that Υ(L) ≥ 0

and Φ(L) ≥ 0 ensure ς(t)Υ(L)+ t−tk
tk+1−tkΦ(L) ≥ 0, which

implies M(L) ≥ 0.
This concludes the proof of Lemma 1.
Lemma 2: If the conditions M(0) ≥ 0 and M(L) ≥ 0

hold, then W(x) + κN (x) ≤ 0, ∀x ∈ [0, L], where

N (x)=


(λ−1)P1(x) P1(x) 0 0 0

∗ −P1(x) 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ λP2(x) 0
∗ ∗ ∗ ∗ −P2(x)

 .
(A.4)

Proof: If M(0) ≥ 0 and M(L) ≥ 0 hold, we have
M(x) ≥ 0 for x ∈ [0, L]. According to the Schur
complement [17] and the definition of M(x) in (A.2), it
can be obtained that Q(x) − Ω(x)IΩ>(x) ≥ 0, which is
equivalent to Q(x) − Ω̄(x)IΩ̄>(x) ≥ 0, where Ω̄(x) =
[ Ω(x) 010×8 ]. The above inequality can be re-expressed
as W(x) + κN (x) ≤ 0, for all x ∈ [0, L].

This concludes the proof of Lemma 2.
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