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Abstract— Unmanned autonomous vehicles (UAVs) rely on
effective path planning and tracking control to accomplish
complex tasks in various domains. Reinforcement Learning
(RL) methods are becoming increasingly popular in control
applications, as they can learn from data and deal with
unmodelled dynamics. Cyber-physical systems (CPSs), such as
UAVs, integrate sensing, network communication, control, and
computation to solve challenging problems. In this context,
Software Rejuvenation (SR) is a protection mechanism that
refreshes the control software to mitigate cyber-attacks, but
it can affect the tracking controller’s performance due to
discrepancies between the control software and the physical
system state. Traditional approaches to mitigate this effect
are conservative, hindering the overall system performance.
In this paper, we propose a novel approach that incorporates
Deep Reinforcement Learning (Deep RL) into SR to design a
safe and high-performing tracking controller. Our approach
optimizes safety and performance, and we demonstrate its
effectiveness during UAV simulations. We compare our ap-
proach with traditional methods and show that it improves
the system’s performance while maintaining safety constraints.
Our approach takes 10 seconds less to reach the goal and we
interpret this enhancement through a p-norm analysis.

I. INTRODUCTION

Path planning and tracking control are key elements
for unmanned autonomous vehicles (UAVs). Reinforcement
Learning [1] is gaining more attention in control applications
[2] since it is able to deal with unmodelled dynamics by
learning them from data. UAVs are applications of cyber-
physical systems (CPSs) that integrate sensing, network
communication, control, and computational methods to solve
complex applications in applications such as transportation,
healthcare, power supply, etc [3]. In general, the controller
design considers only the physical dynamics of a CPS
because it is assumed that the inertia of the physical system
is slower than any operation performed in the cyber part. Due
to the complexity of a CPS, that assumption is getting more
and more unrealistic, particularly when solutions to protect
the CPS from cyber-attacks are implemented [4], [5], [6].
This is the case of software rejuvenation (SR) [7], [8] which
is a mechanism of protection that refreshes the run-time
control software in order to mitigate the possible negative
effects of a cyber-attack on it. This mechanism of protection
imposes constraints to be satisfied, for example in [9], the
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trajectory setpoints must be updated only under specific
conditions that involve time and system dynamics. Despite
its effectiveness, in terms of safety and mission liveness [10],
the overall control performance can be very poor in terms of
trajectory tracking. One of the main issues is that there is a
discrepancy between the state of the control software and the
actual state of the system. In fact, at each software refresh a
previous uncorrupted image of the control software is loaded.
This discrepancy becomes more evident in the case of the
controller making use of the state estimation. Modeling this
aspect into the physical system dynamics in order to develop
a tracking controller that mitigates this effect can be very
challenging. In the SR framework, the trajectory tracking
controller generates a sequence of setpoints that takes into
account safety accordingly to Lyapunov’s theory [11]. In real
applications, the effects of the software rejuvenation on the
state estimation error make it difficult to be modeled and find
the optimal trajectory tracking algorithm that can improve the
overall system performance. In fact, the proposed solutions
are quite conservative which is good from the safety view-
point, but this can be very limiting in terms of the application
viewpoint.

In this paper, we involve Deep RL in the SR problem for
the design of a safe tracking controller that also considers
the system’s performance during the mission. Our objective
is to show the applicability and effectiveness of Deep RL
in this context tracing the way of future research directions
that combines control theory and Deep RL for safe-critical
applications.

Deep RL algorithms learn optimal control policies by
iteratively optimizing a reward function that measures the
success of the control policy. While this approach have been
successfully applied to many control problems, in this work
we do not intend to replace traditional control methods.
Rather, the objective is to integrate it into existing control
frameworks to improve their performance and safety. In this
paper, we apply it to the SR problem in control theory
and demonstrate its potential to enhance the safety and
performance of UAVs. Specifcially, we show that our appo-
rach mitigates the effect of SR on the tracking controller’s
performance compared to traditional approaches. Our work
contributes to the growing body of research that combines
control theory and Deep RL to address critical safety issues
in cyber-physical systems.

II. PRELIMINARIES

Let us consider a positive definite matrix M > 0 with
M ∈ Rn, and a vector v ∈ Rn, the norm of v w.r.t P ,
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P−norm is
∥v∥P =

√
vTPv. (1)

The ellipsoid of size ρ centered in c ∈ Rn

E(ρ, c) =
{
v ∈ Rn | ∥v − c∥2P ≤ ρ

}
.

A linear time-invariant (LTI) continuous-time system is
described by

ẋ = Ax+Bu, (2)

where x ∈ Rn represents the state of the system, u ∈ Rp

is the input vector, the matrix A ∈ Rn×n, and the matrix
B ∈ Rn×p. The output vector is y = Cx with y ∈ Rq

and C ∈ Rq×n. Let us consider a state feedback controller
u = −Kx that defines the closed-loop system

ẋ = (A−BK)x, (3)

where matrix A − BK is Hurwitz. Since the controlled
system is asymptotically stable there exists a positive definite
matrix P > 0 with P ∈ Rn×n that satisfies the Lyapunov
equation

(A−BK)TP + P (A−BK) = −Q, (4)

where Q ∈ Rn×n and Q > 0. The ellipsoid centered at the
origin E(ρ, 0) is a Lyapunov level set which is positively
invariant. Moving the system to another equilibrium point
(or setpoint) xsp the new control law is u = −K(x− xsp),
then the closed-loop system can be rewritten as

ẋ = (A−BK)(x− xsp). (5)

The Lyapunov analysis remains the same except for the
origin of the system which is translated as the ellipsoid
E(ρ, xsp). In case the state of the system is not measurable,
and only the measurements y are available, a state estimation
x̂ ∈ Rn can be used to close the loop. If the system is
observable, thanks to the separation principle it is possible
to design a deterministic observer

˙̂x = Ax̂+Bu+ L (Cx̂− y) . (6)

By defining the estimation error e ≜ x− x̂, and substituting
y with Cx, the dynamics of the estimation error is

ė = (A− LC)e. (7)

Thanks to the observability property of the system it is
possible to design L that makes the matrix (A − LC)
Hurwitz. The new control input is now

u = −K(x̂(t)− xsp). (8)

III. SOFTWARE REJUVENATION

Fig. 1 describes the SR approach over time. At the begin-
ning of the mission the drone is in secure control (SC) mode
which means that the control software is not vulnerable to
attacks (e.g. not connected to the communication network).
Before switching to mission control (MC) mode an image
of the run-time software can be saved in a protected memory
location, checkpoint (CP ) since the system is assumed to be
clean. During MC the drone can communicate through the
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Fig. 1: Software Rejuvenation timeline.

communication network and then be vulnerable to cyber-
attacks. To avoid possible catastrophic consequences of a
worst-case attack, a protected timer triggers the software
refresh before it is too late for preventing any irreversible
damage to the system. The amount of time the system is
in MC mode is indicated by TMC . During software refresh,
the saved clean image of the run-time software is rolled back
(RB), and the time needed for this operation is indicated
with TRB . During RB, the control input is kept constant
and equal to the last provided. The total time the system
is under unknown control is TUC = TMC + TRB . Fig. (2)
shows the mode-switching graph and it offers more details
in particular for the recovery and setpoint update. For the

RB SCMCCP

update

xsp := xstart

‖x(t)− xsp‖2P ≤ ρs

TMC TRB

Fig. 2: SR mode-transition graph. Unlabeled transitions occur
immediately after the operations for the preceding mode are
completed, or when the time indicated for the mode has
elapsed.

moment we consider that x(t) is available and it is used to
compute the control law, hence the time spent by the system
in SC mode depends on the following condition

∥x(t)− xsp∥2P ≤ ρs (9)

that determines that the system has been fully recovered, and
0 < ρs < 1. Since after RB, the software is clean and the
system is in SC mode, and xsp is the same saved during the
previous CP , all the information used in (9) is not corrupted.
If there is no attack, the time spent in SC mode can last only
the period to check (9).

A. Safety and Setpoint Update

For a given setpoint xsp, the safety set is provided by the
ellipsoid E(1, xsp) which is an invariant set for the controlled
system (5). Considering a ρm such that 0 < ρs < ρm < 1,
we compute TMC as the time that ∀x(t) ∈ E(ρm, xsp), x(t)
is always recoverable into E(ρs, xsp) [11]. For the trajectory
tracking, we assume that the setpoints xsp are generated
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along the line that joins two waypoints wi, and wi+1. The
safety condition for the setpoint transition is

∥x(t)− xsp∥2P ≤ ρm ⇒ ∥x(t)− x′
sp∥2P ≤ ρm, (10)

where x′
sp is the new setpoint [10]. Fig.3 shows the Assum-

ing that the state is available, the above condition is verified
if xsp is updated as

x′
sp = xsp + (

√
ρm −√

ρs)v, (11)

where v is the unitary vector along the trajectory.

wi
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x′sp

E(ρs, xsp) E(ρs, x′sp)
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x

(
√
ρm −√ρs)v

Fig. 3: Safe setpoint transition scheme.

B. State Estimation

In a real application, only the state estimation x̂ is avail-
able. This information is stored in the run-time software and
during RB the state estimation is computed starting from
the initial conditions saved during CP . Since x̂ is used to
compute u (8), after each RB there is the effect of the
estimation error e that may increase after each SR cycle
making the system unstable. Moreover, x̂ is now used for
evaluating (9), and large estimation can make the SR scheme
switch when the system cannot be exposed to possible
attacks. In this situation, the safety conditions for TMC and
setpoint generation, can be the same by just replacing x(t)
with x̂(t) if Test is introduced [12]. Test is the minimum
time for the system to be in SC mode after software refresh
in order to reduce the estimation error to keep the system
stable and safe against attacks.

C. Problem Statement

In this paper, we consider a UAV whose nonlinear dynam-
ics can be reduced into the form of (2) and stabilized around
a setpoint xsp by a linear controller (3). We also assume that
the state x is not directly accessible and a state observer (6)
is needed to compute u as in (8) and for evaluating the SR
condition (9). We assume that E(ρs, xsp), E(ρm, xsp), TMC ,
and Test given and they ensure safety against cyber-attacks
[9].

In this paper, we are interested in the improvement of the
performance of the system protected via SR when the system
is not under attack. Specifically, we redesign (11) as

x′
sp = xsp + αv (12)

with
α = f(x̂, xsp; θ), (13)

where f is a neural network with parameters θ optimized
with RL. This formulation aligns with reference governor
(RG) [13], [14] and explicit reference governor (ERG) [15]
frameworks. The safe-trajectory controller for SR can be
regarded as an ERG, albeit with distinct operating conditions.
With our method we aim to show that the effects of the
SR scheme can be captured by a learning technique which
it would be difficult to model with the traditional control
tools as shown in [9]. The goal is to demonstrate that the
efficacy of RL approach improves performance in terms of
reducing the time of the mission, while the safety conditions
are satisfied. Finally, we also consider the presence of noise
in the measurements.

IV. LEARNING SETPOINT GENERATION

We consider a task where a UAV is required to navigate
from a starting location A to a goal location B within a
bounded 3D space free of obstacles. The UAV is controlled
by (8), and we assume that an RL agent must effectively
learn to modulate the displacement of a setpoint at discrete
timesteps, based on input information related to the UAV’s
state. To accomplish this, the agent must select an appropriate
value for the parameter α, which determines the magnitude
of the displacement modulation. Between two consecutive
decision-making points in simulation, disturbances SR affect
the UAV, including state estimation errors that depend on the
agent’s choice of α. Generally, a higher value of α leads to
a greater degree of disturbance experienced by the UAV. The
main objective of the learning agent is to identify an optimal
value of α that can modulate the UAV’s displacement in a
way that respects the safety constraints - discussed in Section
III-A - while simultaneously improving the speed of the UAV.

In contrast to (11), which employs a more conservative
approach that prioritizes safety but overlooks performance,
our proposed approach seeks to optimize both safety and
performance. Specifically, by using a learning agent that can
dynamically adjust the value of α in response to the UAV’s
state, we can achieve a better balance between safety and
performance, leading to improved task outcomes.

A. Reinforcement Learning

We formulate this task as a Markov Decision Process [16]
(MDP) which is defined as a tuple ⟨S,A, T,R, γ⟩ where:

• S denotes the continuous state space; in our case the
state at decision timestep k is sk = x̂− xsp,

• A the continuous action space; in our case the action
at timestep k is ak = α ∈ [0, 1],

• T is the transition probability for arriving into state
sk+1 when executing action ak from state sk,
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• R is the reward function that defines the reward received
by the agent for transitioning from state sk to state sk+1

when taking action ak,
• and γ is the discount factor that determines the impor-

tance of future rewards relative to immediate rewards. In
this case, it can be used to model the trade-off between
short-term and long-term objectives.

The objective of the agent is to maximize the expected
return Gk =

∑∞
l=0 γ

lrk+l+1 from each state sk, where rk
denotes a specific instance of the reward function, obtained
at evaluating it at a specific state-action pair. The reward
function in our case is defined in section V-A.

A solution to an MDP is obtained by finding an optimal
policy π (. | sk), that maps a state sk to a distribution over
possible actions that lead the agent to higher sums of rewards.
The probability of performing action ak in state sk is denoted
by ak ∼ π (a | sk).

One way to obtain an optimal policy is to use value-based
RL methods. The action value Qπ(s, a) = E [Gk | sk = s, a]
is the expected return for selecting action a in state s and
following policy π. The optimal value function Q∗(s, a) =
maxπ Q

π(s, a) gives the maximum action value for state s
and action a achievable by any policy. Similarly, the value of
state s under policy π is defined as V π(k) = E [Gt | sk = s]
and is simply the expected return for following policy π
from state s. The optimal state value function is given by
V ∗(s) = maxa∈A Qπ∗

(s, a). Value functions can be used
to define a policy (e.g. ϵ-greedy). RL methods that estimate
value functions are usually called critic methods.

In many real-world scenarios, the state and action spaces
of an MDP are so large that it is impractical to enumerate
all possible combinations. For an agent to learn a successful
policy it is necessary to be able to estimate value functions of
unseen states. The action value function could be represented
using a function approximator, such as a neural network.
Let Q(s, a; θ) be an approximate action-value function with
parameters θ. The updates to θ can be derived from a variety
of reinforcement learning algorithms which aim to directly
approximate the optimal action value function: Q∗(s, a) ≈
Q(s, a; θ).

In contrast to value-based methods, policy-based model-
free methods directly parameterize the policy π(a | s; θ)
and update the parameters θ by performing, typically ap-
proximate, gradient ascent on E [Gk] . One example of such
a method is the REINFORCE family of algorithms [17]
which updates the policy parameters θ in the direction
∇θ log π (ak | sk; θ)Gk. Such types of methods are called
actor methods. As discussed, we can introduce an estimation
of the return in the form of a critic which results in Actor-
Critic methods.

In this work we employ the Soft Actor Critic [18] (SAC)
algorithm to demonstrate the importance of learning methods
in improving performance and ensuring safety in control
applications. SAC is an entropy-regularized RL method that
changes the RL problem (i.e obtain an optimal policy π∗)

to:

π∗ = argmax
π

E

[
K∑

k=0

γk (R (sk, ak) + βH (π (· | sk)))
]
,

(14)

where the temperature parameter β controls the stochasticity
of the optimal policy as it determines the relative importance
of the entropy H of the policy term against the reward. SAC
incorporates a modified action and state value functions that
offer the agent a bonus proportionate to the policy’s entropy.
This approach renders policies optimized for maximum en-
tropy ([19], [20]) more robust, allowing for a greater ability
to respond successfully to unexpected perturbations during
testing. Additionally, optimizing for maximum entropy dur-
ing training can improve both the algorithm’s robustness to
hyperparameters and its sample efficiency, making SAC a
useful tool for control problems [21].

V. EXPERIMENTAL SETUP AND SIMULATION RESULTS

A. Simulation Environment

To simulate the interaction between the RL agent and the
UAV system, we developed a customized OpenAI gym en-
vironment. The environment models the nonlinear dynamics
of the UAV system [9], along with the effects of the software
rejuvenation and recovery periods. The state estimation x̂(t),
computed as (6), is evaluated after each cycle of the SR
scheme of Fig. 2, with TMC = 200 ms, TRB = 10 ms,
and Test = 1.7 s. Those numbers have been computed
accordingly to [9]. The total time needed for one cycle of
SR is at least 1.910s. At approximately every 2s interval,
the RL agent receives the current state sk of the system and
selects an action ak = α, indicating its displacement from the
current location as depicted in 3. Based on (11), the α value
is bounded as 0 ≤ α ≤ √

ρm−√
ρs for safety considerations,

and we set the size of the outer ellipsoid ρm = 0.01 and the
inner ellipsoid ρs = 0.0012. In this experiment, the drone
starts from (1,1,1) and stops when it reaches (5,5,5).

Reward Function: The reward function considers the
effect of the action, generated by the agent, to the SR period
and how far from the goal the UAV is:

R(sk, ak) = −rmpn − ∥xk − xgoal∥2P , (15)

where rmpn is the maximum p-norm of all ∥x(t) − xsp∥2P
evaluated during the entire SR cycle. The groundtruth state
when the SR cycle has been completed is indicated by xk.
At any point in time if the system was becoming unstable
(∥x(t) − xsp∥2P > 10) we terminated the simulation with
rmpn = 10. Since the policy gradient method aims to
maximize the total expected return and our reward function
penalizes the agent if it stagnates at non-goal points, our
proposed approach ensures a consistent trajectory towards
the goal along the specified path.

Baseline Method: This method refers to the setpoint
update (11). To make a fair comparison with the RL method,
we used the following computation

α(x̂, xsp) =
√
ρm − ∥x̂(t)− xsp∥p, (16)
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where x̂(t) is the current state estimation, xsp denotes the
current setpoint, and ρm is the size of the outer ellipsoid set.
The new formulation (16) provides less conservative values
than (11), because of (9) ∥x̂(t)− xsp∥p ≤ √

ρs.
Reinforcement Learning Method: The motivation for

combining RL with SR is to reduce oscillations and total
steps, thereby enabling the drone to maintain higher speeds
without the need for stopping and restarting at each setpoint.
While the conventional control baseline mandates a fixed step
size due to SR’s safety constraints, our hybrid data-driven
approach permits variable step sizes, facilitating a smoother
trajectory. The RL method operates under the Lyapunov
theory which guarantees safety. We adopt the Soft Actor-
Critic algorithm, with both Actor and Critic having two fully
connected hidden layers 256 hidden units each. The model
takes the difference between the state estimation and the
current setpoint x̂(t) − xsp as input and learns the optimal
α value to generate the next setpoint under the safety con-
straints. We train the model with 20,000 steps on an NVIDIA
GeForce RTX 3090, and the training takes approximately an
hour to converge. During training, the policy is stochastic
whereas during evaluation is deterministic.

B. Simulation Results

Under the baseline method, the drone completes the task in
around 116 s, and the drone’s 3D trajectory is shown in Fig.
4. The baseline method produces α based on equation (16)
and generates setpoints shown as red dots in the figure. Our
objective is to minimize the time required to reach the goal
while ensuring that the system satisfies the safety conditions.

Fig. 4: Drone trajectory with the baseline method. The drone
starts from (1,1,1) and ends at (5,5,5). The red dots are the
waypoints produced by the baseline method. The blue line
shows the actual trajectory of the drone.

Our RL method reduces the total time required to complete
the task, achieving the goal within 106 s, as demonstrated in
the last three plots of Fig. 5. In order to explain the benefit of
the RL approach we consider the behavior of ∥x(t)−xsp∥2P
over time. This function shows how far the system is from
the boundaries of the ellipsoids E(ρm, xsp) and E(ρs, xsp)
that guarantee the safety of the system under SR. Fig. 6
shows the first 5 s of the baseline method along with the
safety bounds.

The sequence (A, B, C, D, A) forms a complete SR cycle,
as shown in Fig. 2. At local minima A, the setpoint is
updated, and the system enters the MC mode from B to
C. To ensure safety, B points should be less than ρm, so
x ∈ E(ρm, xsp). At point C, the software refreshes to the
same value as the previous cycle’s point B. From C to A,
the system is in SC mode, and x can be outside E(ρm, xsp)
as in D, which should be kept small to avoid stability issues.

Fig. 5: Drone trajectories of baseline method (top three plots)
and RL method (bottom three plots). The baseline method
takes 116 seconds, and the RL method takes 106 seconds to
complete the same task.

From Fig. 7, we compare ∥x(t)−xsp∥2P value between the
baseline method and the RL method. The baseline method
has B points at around 0.0075 during MC, while the RL
method pushes B points up to 0.009, reducing the gap with
the upper safety bound.

VI. CONCLUSIONS

This work demonstrated the effectiveness of incorporating
Reinforcement Learning and optimal control methods in the
design of safe and efficient UAV navigation systems. Our
approach optimizes a reward function that balances safety
and performance and incorporates Software Rejuvenation
(SR) protection mechanisms to mitigate cyber-attacks. Re-
sults from simulations of UAVs show that our approach
improves the system’s performance while respecting the
safety bounds compared to traditional methods. This work
contributes to the growing body of research that combines
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Fig. 6: Example of p-norm analysis of the actual state w.r.t
the current xsp selected from the first 5 s of our simulation
with the baseline method. The red lines indicate the safety
bounds ρm = 0.01 and ρs = 0.0012. (A, B, C, D, A) is a
full checkpoint update cycle in Fig. 2.

Fig. 7: p-norm analysis of the actual state w.r.t the current
xsp. The top figure is ∥x(t) − xsp∥2P with the baseline
method, and the bottom one is for the RL method. The RL
method pushes the equilibrium points higher and closer to
the upper safety bound than the baseline method.

control theory and Reinforcement Learning to address critical
safety issues in cyber-physical systems. Future work can
explore the application of our approach in other domains
(e.g Bipedal walking) and investigate its impact on system
performance and safety.
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