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Abstract— We study the problem of designing incentives
to induce desired equilibrium in taxi repositioning problems.
In this scenario, self-interested idle drivers will update their
repositioning strategies with observed payoff. Meanwhile, the
platform will adaptively design incentives to induce a better
Nash equilibrium for global efficiency. We formulate the prob-
lem as a bi-level optimization problem where the incentive
designer and idle drivers simultaneously update their decision
variables. We prove that drivers’ strategies will reach Nash
equilibrium, and the incentive designer’s objective function
will reach optimality under Polyak Lojasiewicz (PL) condition.
Furthermore, we derive a sufficient condition for the PL
condition to hold for the upper-level objective function and
lower-level agents’ payoff function. Finally, we demonstrate the
efficiency of the proposed method by numerical results.

I. INTRODUCTION

In recent years, e-hailing taxis have become increasingly
popular in cities, providing a convenient way for people to
travel. However, as more and more drivers join the service,
global efficiency becomes a significant concern. Since drivers
are self-interested agents who optimize their payoff function,
they may not act in the best interest in a global perspective
[1]. For example, when there is high demand for taxis
in certain areas, drivers may flock to these areas even if
there are still unserved orders elsewhere. This motivates
using incentives to induce desired behavior and balance
distributions between drivers and demands.

The incentive design problem has been extensively stud-
ied in [2]–[7]. The effect of incentives is typically only
observable after the agents’ strategies reach an equilibrium.
Reference [8] uses a double-loop algorithm that updates the
incentive policy after the convergence of drivers’ strategies.
However, since an equilibrium in taxi repositioning setting
does not admit a closed-form solution and is time-consuming
to compute for iterative methods, the papers [9]–[11] update
incentive policies simultaneously with drivers’ strategies.
They fall into the bi-level optimization setting, where the
upper and lower agents update their decision variables in a
single loop.
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Since the update occurs simultaneously, the impact of
incentives on agents’ strategies is hard to analyse. The
algorithm in [9] applies Bayesian optimization, a black-
box optimization method, to the taxi repositioning prob-
lem. While in [10], the authors use a heuristic method to
approximate the incentive effect. However, both algorithms
lack convergence proof. The paper [11] examines the setting
in that the incentive designer uses sensitivity theory to
approximately capture the impact of incentives and provides
the convergence result, while it assumes that the objective
function is strongly convex, which is less realistic in practice.

In the taxi-repositioning problem, we divide the city map
into several regions and group drivers at the same region
as a collective agent, instead of modeling each driver as a
single agent in [9]. This formulation enables us to deal with
large-scale problems more effectively. Our paper has two
main contributions. First, we introduce a new formulation
for the driver repositioning problem. Second, we prove that
the upper-level objective function converges to an optimal
value under the Polyak Lojasiewicz (PL) condition, and we
propose a sufficient condition for PL condition to hold.

The proposed method differs from [11] in that our problem
does not conform to its assumption on the upper-level
objective function being strongly convex. In the taxi reposi-
tioning setting, the objective function f∗(θ) := f (x∗(θ)) is a
composition function of f (·) and x∗(·), where f (·) is a global
criterion on drivers’ repositioning strategies, and x∗(θ) is the
Nash equilibrium given an incentive θ . Since the equilibrium
mapping x∗(·) is complicated, the function f∗(·) is possibly
non-convex.

The article is organized as follows. In section II, we
describe the basic setup of the taxi repositioning problem,
and also introduce the update rule of both the drivers’
strategies and the incentive policy. In section III, we derive
the convergence result. We then apply the algorithm in a taxi
repositioning simulation in Section IV and demonstrate its
effectiveness. Finally, we conclude our work in Section V.

II. BASIC SETUP OF TAXI REPOSITIONING PROBLEM

We divide a city into several regions and denote each
region as a node. Then, we construct edges based on dis-
tances between regions. The graph contains self-loops since
drivers can stay in the current region. Consider a graph with
N = {1,2, · · · ,n} nodes, where the ith node has vi number
of idle drivers and di number of demands. We examine
a single period problem within a specific time interval in
a day, e.g., the peak hour, and formulate the problem as
a non-cooperative game [9]. An extension to a sequential
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decision game is left for future work. Drivers will choose
the probability of driving to a neighbor node and update
their strategies with the observed payoff. We assume drivers
can only reposition to one-hop neighbor nodes. Furthermore,
since the distribution of drivers after repositioning may not
conform to the distribution of demands, an incentive θ ∈Rn

is introduced to induce the desired distribution of idle drivers.
Drivers repositioned to node i will receive a bonus θ i for
compensation or penalty. We formulate the problem as a bi-
level optimization problem [11]:

min
θ

f (x∗(θ)) := f∗(θ)

s.t. xi
∗(θ) ∈ arg min

xi∈A i

{
ui(xi,x−i

∗ (θ);θ)
}

∀i ∈ N
(1)

where f∗(·) is the upper-level objective function, and ui(·)
is agent i’s payoff function. We denote drivers’ actions as
strategies and incentive designer’s actions as policy in this
paper. Besides, we use the terms drivers, nodes, and agents
interchangeably in the rest of the paper.

A. Drivers’ Game at Lower Level

We assume that drivers are homogeneous and they share
an identical strategy. Thus we group drivers at each region
as a single agent and define the strategy as the distribution of
idle drivers. From a macro perspective, agents’ strategies are
the distribution of drivers. From a micro perspective, drivers’
strategies are the probability for him/her to drive to a specific
neighboring node in the next time episode.

We denote the set of ith node’s neighboring nodes as
Ni, and thus the strategy set A i = ∆(Ni) is a simplex.
Drivers will update their strategies

{
xi
}

i∈N
while observing

the payoff experienced at each episode. The ith agent’s
strategy is denoted as xi := [xi j] j∈N , where xi j denotes the
distribution of drivers reposition from node i to node j. We
denote the payoff function of agent i as ui(xi,x−i;θ) where
xi ∈A i is the reposition distribution of drivers at node i, x−i

is the strategy of other nodes, and θ ∈ Rn is the incentives
applied to nodes. In specific, we assume the payoff function
has the following quadratic form:

ui(xi,x−i;θ) = (xi)⊤Qixi +∑
j ̸=i

(x j)⊤R jixi +(bi)⊤xi −θ
⊤xi

(2)
where Qi is a positive semi-definite matrix and Ri j is certain
payoff related matrix. With fixed incentive θ , we can ob-
tain the gradient ∇xiui(xi,x−i;θ) of payoff function ui with
respect to the decision variable xi. We denote the stacked
gradient as vθk(xk) := [∇xiui(xi

k,x
−i
k ;θk)]i∈N . In practice, the

gradient is hard to obtain, and thus we use an estimate v̂i
k of

the gradient from samples. we adopt a mirror descent update
rule to update the drivers’ strategies as

xi
k+1 = arg min

xi∈A i

{
⟨v̂i

k,x
i⟩+ 1

βk,i
Dψ

(
xi,xi

k
)}

where βk,i is the step size at iteration k for agent i, Dψ (x,x′)
is a Bregman divergence induced by a strictly convex func-
tion ψ(·), which can be interpreted as a distance between

strategy x and x′. Since the strategy space is a simplex
∆(Ni), we take the Kullback-Leibler (KL) divergence as the
Bregman divergence, i.e.,

Dψ(xi,xi′) := ψ(xi)−ψ(xi′)−⟨∇ψ(xi′),xi − xi′⟩
= (xi)T log(xi/xi′)

(3)

with ψ(x) := x⊤ log(x). Besides, to avoid reaching a bound-
ary value, we add a mixing step, which adds γk/|Ni| to
strategy xi

k at each iteration:

x̃i
k+1 = (1− γk)xi

k+1 + γk/|Ni|1|Ni|,

where γk > 0 is the mixing step size, Ni is the set of
neighbour nodes of ith node.

B. Incentive Designer at Upper Level

The incentive designer uses incentives to affect agents’
game strategies and indirectly optimize the criterion. We
denote the optimization problem at the upper level as:

min
θ

f (x∗(θ)) := f∗(θ)

As in most optimization methods, we require the gradient
∇θ f∗(θ) to update the incentive policy. By definition of f∗(·),
we have ∇θ f∗(θ) = ∇θ x∗(θ)∇x f (x)|x=x∗(θ). To account for
the effect of incentives on agents’ Nash equilibrium, we
apply Lemma 4 in Section III-B, which derives a closed-form
solution of ∇θ x∗(θ) as a function of the strategies x∗(θ) and
incentive θ .

In an ideal case, we require the convergence of drivers’
strategies x to a Nash equilibrium x∗(θ) to evaluate the effect
of incentive policy and calculate the gradient ∇θ f∗(θ). Since
the calculation of a Nash equilibrium strategy is prohibitively
expensive, we apply a single loop algorithm as in [11],
which uses current strategies rather than an exact Nash
equilibrium x∗ to calculate an approximate for ∇θ x∗(θ) and
∇x f (x)|x=x∗(θ) and thus obtain an approximate gradient of
the incentive designer’s objective function ∇̃ f (θ ,x). Note
that when drivers’ strategies are the Nash equilibrium, we
have ∇̃ f (θ ,x∗(θ)) = ∇ f∗(θ).

Similar to the lower-level game, we also assume that the
algorithm can only obtain an estimate ∇̂ fk from samples of
the approximate gradient ∇̃ f (θk, x̃k+1)). The update rule of
incentive policy is as follows:

θk+1 = θk −αk∇̂ fk

where αk is the step size. Putting these together, we obtain a
two-timescale algorithm for lower-level agents and the upper-
level incentive designer as is illustrated in Algorithm 1.

III. MAIN RESULTS

We make following assumptions for the lower-level agents.
Assumption 1: The lower-level game between the drivers

satisfies the following:
(1). The gradient is bounded, i.e., there exists Vu > 0 such

that for all i ∈ N,

∥∇xiui(xi,x−i;θ)∥∞ ≤Vu

8070



Algorithm 1 Incentive policy update
1: Input: Step size αk (upper-level), {βk,i}i∈N (lower level),

mixing step size γk
2: Output: Incentive policy θ

3: Initialization: Set {xi
0}i∈N to average distribution and θ

to 0|N|
4: for episode k = 0, · · · ,T −1 do
5: Each agent choose actions {xi

k}i∈N and observe pay-
off

6: Lower Level Agents Update
7: for i ∈ N do
8: Update parameters:

xi
k+1 = arg min

xi∈A i

{
⟨v̂i

k,x
i⟩+ 1

βk,i
Dψ

(
xi,xi

k
)}

9: Mixing strategies:

x̃i
k+1 = (1− γk)xi

k+1 + γk/|Ni|1|Ni|

10: end for
11: Incentive Designer Update
12: Update incentive policy: θk+1 = θk −αk∇̂ fk
13: end for

(2). We define function vθ (x) := [∇xiui(xi,x−i;θ)]i∈N , then
vθ (x) is strongly monotone with respect to x with fixed
θ , i.e., there exists µv > 0 such that

⟨vθ (x)− vθ (x′),x− x′⟩ ≥ µv∥x− x′∥2

(3). For each i ∈ N, the gradient ∇xiui(xi,x−i;θ) is Lipschitz
continuous with respect to Dψ , i.e., there exists Hu > 0
such that for i ∈ N

∥∇xiui(xi,x−i;θ)−∇xiui(xi′,x−i′;θ)∥2
2 ≤ H2

u Dψ(x,x′)

(4). There exist constants ρθ ,ρx > 0 such that

∥∇θ vθ (x)∥2 ≤ ρθ , ∥ [∇xvθ (x)]
−1 ∥2 ≤ 1/ρx

The strongly monotonicity of vθ (·) ensures existence and
uniqueness of the Nash equilibrium [16]. Then we make the
following assumption for the upper-level objective function.

Assumption 2: The upper-level objective function satis-
fies the following:
(1). The objective function f∗(θ) satisfies the PL condition

with µ f > 0, i.e., for all θ :

∥∇ f∗(θ)∥2 ≥ µ f [ f∗(θ)−min{ f∗(θ)}]

(2). The objective function f∗(θ) satisfies the L f smooth-
ness, i.e., for all θ and θ ′

∥∇ f∗(θ)−∇ f∗(θ ′)∥2 ≤ L f ∥θ −θ
′∥2

(3). There exists M > 0 such that for all θ it holds that
∥∇ f∗(θ)∥2 ≤ M

(4). The approximated gradient ∇̃ f (θ ,x) is Lipschitz con-
tinuous with respect to Dψ , i.e., there exists H̃ > 0 such
that for all x,x′ ∈ A := {[xi]i∈N |xi ∈ A i} and all θ ,

∥∇̃ f (θ ,x)− ∇̃ f (θ ,x′)∥2
2 ≤ H̃2Dψ(x,x′)

The PL condition ensures that we can obtain global
convergence result in non-convex optimization setting [17].
We also give an example in section IV that objective function
in taxi-reposition problem could be designed to satisfy this
assumption.

Since the gradient may be inaccurate, we take account
of potential error in estimation. We make the following
assumption on the gradient estimate v̂i

k and ∇̂ fk , assuming
that the estimates are unbiased and have bounded mean
squared errors.

Assumption 3: Define the filtration by F θ
0 = {θ0},F x

0 =
/0 and

F θ
k = F θ

k−1

⋃
{xk−1,θk},F x

k = F x
k−1

⋃
{θk,xk}

then the filtration satisfy:

(1). The gradient estimate v̂i
k and ∇̂ fk are unbiased esti-

mates, i.e.,

E
[
∇̂ fk|F θ

k

]
= ∇̃ f (θk, x̃k+1)

E
[
v̂i

k|F x
k
]
= ∇xiui(x̃i

k, x̃
−i
k ;θk) ∀i ∈ N

(2). The estimates have bounded mean squared estimation
error, i.e., there exist δ f ,δu > 0 such that ∀i ∈ N:

E
[
∥∇̂ fk − ∇̃ f (θk, x̃k+1)∥2

2|F θ
k

]
≤ δ

2
f

E
[
∥v̂i

k −∇xiui(x̃i
k, x̃

−i
k ;θk)∥2

2|F x
k
]
≤ δ

2
u

A. Convergence Result

Under the above assumptions, we establish the conver-
gence result of the lower-level game and the upper-level
objective function. We define the optimality criterion as:

ε
x
k : = Dψ(x̃∗(θk−1), x̃k) = ∑

i∈N
Dψ(x̃i

∗(θk−1), x̃i
k)

ε
θ
k : = E [ f∗(θk)]−min

θ
{ f∗(θ)}

(4)

where x̃∗(θk−1) := (1− γk)x∗(θk−1)+ γk1|Ni|/|Ni|. When εx
k

converge to zero, all drivers’ mixed strategies have converged
to the mixed Nash equilibrium strategies x̃∗(θk−1), which
means that xk = x∗(θk−1). Note that agents’ strategies are
influenced directly by θk−1 but not θk (as is shown by Al-
gorithm 1), thus the Bregman divergence is defined between
x̃∗(θk−1) and x̃k. Similarly, when εθ

k equals 0, the value of
the upper-level objective function reaches an optimal value.

We first cite a lemma from [11] which state the conver-
gence of the lower-level agents. This lemma uses variation-
ally stable assumption, which can be derived by the strongly
monotone assumption [15].

Lemma 1 (Lemma C.1 [11]): Let the step sizes βk =
β/(k+1)2/7, γk = γ/(k+1)4/7, and αk = α/(k+1)1/2, with
α,β > 0 satisfying

β ≤ 1/(6N2H2
u ), α/β

3/2 ≤ 1/(7H̃H̃∗)

where H̃∗ := (1+d)ρθ/ρx and d := dim(ALA⊤), where dim
is the dimension of the rectangle matrix, A and L are defined
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in lemma 4. Then, for all k ≥ 0, we have

ε
x
k+1 ≤N

(
k

∑
l=0

(βlγl log(1/γl)+2γl+1 +2γ
2
l )

k

∏
j=l+1

(1−β j/8)

)
+
(
(δ 2

u +3V ∗)N +(δ 2
f +2M2 +6NH̃2)/8H̃2

)
·

(
k

∑
l=0

β
2
l

k

∏
j=l+1

(1−β j/8)

)
+ ε

x
0

k

∏
j=0

(1−β j/8).

Furthermore εx
k+1 ≤ c̃βk =O(k−2/7), where c̃= 8εx

0 +8(δ 2
u +

3V 2
u )N +(δ 2

f +2M2 +6NH̃2)/H̃2 +32N(1/β 2 +4/7β ).
Above lemma illustrates the convergence of lower level

agents’ strategies to the Nash equilibrium. In the following
lemma, we prove the convergence of the upper-level objec-
tive function

Lemma 2: For all k ≥ 0, we have

ε
θ
k+1 ≤ (1− µαk

2
)εθ

k +
α

3/2
k
2

δ
2
f +αkH̃2(εx

k+1 +2γk log(1/γk))

Proof : We start from the L f smoothness of f∗(θ):

f∗(θk+1)− f∗(θk)

≤⟨∇ f∗(θk),θk+1 −θk⟩+
L f

2
∥θk+1 −θk∥2

2

=⟨∇ f∗(θk),αk∇̂ fk⟩+
α2

k L f

2
∥∇̂ fk∥2

2

≤⟨∇ f∗(θk),αk∇̂ fk⟩+
α

3/2
k
2

∥∇̂ fk∥2
2

(5)

where the last line is due to the step size satisfying αk ≤
1/L2

f . Taking expectation over both sides, we have:

E[ f∗(θk+1)− f∗(θk)|F θ
k ]

≤αk⟨∇ f∗(θk), ∇̃ f (θk, x̃k+1)⟩+
α

3/2
k
2

E
[
∥∇̂ fk∥2

2|F θ
k

]
=αk⟨∇ f∗(θk), ∇̃ f (θk, x̃k+1)⟩+

α
3/2
k
2

∥∇̃ f (θk, x̃k+1)∥2
2

+E[
α

3/2
k
2

∥∇̂ fk − ∇̃ f (θk, x̃k+1)∥2
2|F θ

k ]

≤αk⟨∇ f∗(θk), ∇̃ f (θk, x̃k+1)⟩+
αk

2
∥∇̃ f (θk, x̃k+1)∥2

2 +
α

3/2
k
2

δ
2
f

=
αk

2
∥∇ f∗(θk)− ∇̃ f (θk, x̃k+1)∥2

2 −
αk

2
∥∇ f∗(θk)∥2

2 +
α

3/2
k
2

δ
2
f

≤αk

2
∥∇ f∗(θk)− ∇̃ f (θk, x̃k+1)∥2

2 +
α

3/2
k
2

δ
2
f

− µαk

2
[ f∗(θk)−min{ f∗(θ)}]

(6)

where the first equality is due to the unbiased property of
∇̂ fk, the second inequality is due to αk ≤ 1 and assumption
(3), the last line is due to the PL condition. Then we deal
with the first term in (6). Based on assumption 1, we have

∥∇ f∗(θk)− ∇̃ f (θk, x̃k+1)∥2
2

≤∥∇ f∗(θk)− ∇̃ f (θk, x̃∗(θk))∥2
2

+∥∇̃ f (θk, x̃∗(θk))− ∇̃ f (θk, x̃k+1)∥2
2

≤H̃2 [Dψ (x∗(θk), x̃∗(θk))+Dψ(x̃∗(θk), x̃k+1)
]

where the last line is due to the assumption (2). Further by
the definition of Dψ(x,x′) := ψ(x)−ψ(x′)−⟨∇ψ(x′),x−x′⟩
and ψ(x) := x⊤ log(x) we have

Dψ(xi
∗(θk), x̃i

∗(θk))

=ψ(xi
∗(θk))−ψ(x̃i

∗(θk))−⟨∇ψ(x̃i
∗(θk)),xi

∗(θk)− x̃i
∗(θk)⟩

=−Dψ(x̃i
∗(θk),xi

∗(θk))

+ ⟨∇ψ(x̃i
∗(θk))−∇ψ(x̃i

∗(θk)), x̃i
∗(θk)− xi

∗(θk)⟩
≤∥ log(xi

∗(θk)/x̃i
∗(θk))∥∞∥xi

∗(θk)− x̃i
∗(θk)∥1

≤2γk log(1/γk)

where the first inequality is due to the non-negativity of Dψ ,
the last inequality is due to that x̃i

∗(θk) := (1− γk)xi
∗(θk)+

γk1di/di. Combine above term and subtract min{ f∗(θ)} on
both sides of (6), we have:

E[ f∗(θk+1)|F θ
k ]−min

θ
{ f∗(θ)}

≤(1− µαk

2
)[ f∗(θk)−min

θ
{ f∗(θ)}]+

α
3/2
k
2

δ
2
f

+
αk

2
H̃2 [2Nγk log(1/γk)+Dψ(x̃∗(θk), x̃k+1)

] (7)

By definition of εθ
k and εx

k , we have

ε
θ
k+1 ≤ (1− µαk

2
)εθ

k +
α

3/2
k
2

δ
2
f +

αk

2
H̃2 [

ε
x
k+1 +2Nγk log(1/γk)

]
After both lemmas, we give the following convergence re-

sult of both the lower-level agents and the incentive designer
as follows:

Theorem 3: Let the stepsizes αk = α/(k + 1)1/2,βk =
β/(k+1)2/7 and γk = 1/(k+1)4/7. Suppose Assumption 1-3
hold. Then, we have

ε
x
k = O(k−2/7), ε

θ
k = O(k−1/4).

Proof : For the lower-level agents, invoking lemma 1 we have

ε
x
k+1 ≤ c̃βk = O(k−2/7)

As for the incentive designer, we take αk = α/(k+1)1/2

and assume that α ≤min
{

1,1/L2
f

}
. By recursively applying

the result of lemma 2, we have

ε
θ
k+1 ≤

k

∏
j=0

(1− µαk

2
)εθ

0 +
δ 2

f

2

k

∑
l=0

[
α

3/2
l

k

∏
j=l+1

(1−
µα j

2
)

]

+ H̃2/2
k

∑
l=0

[
αlε

x
l+1

k

∏
j=l+1

(1−
µα j

2
)

]

+NH̃2
k

∑
l=0

[
αlγl log(1/γl)

k

∏
j=l+1

(1−
µα j

2
)

]
(8)

For the second term, we have εx
l+1 = c̃βk. For the third term,

we have γl log(1/γl) ≤ 2
√

γl . Besides, using Lemma 10 in
Appendix E from [13], we have

k

∏
j=0

(1− µαk

2
)≤

k

∑
l=0

[
α

11/7
l

k

∏
j=l+1

(
1−

µα j

2

)]

≤
k

∑
l=0

[
α

3/2
l

k

∏
j=l+1

(
1−

µα j

2

)]
≤ 1

µ
α

1/2
k

(9)
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Therefore, we have:

ε
θ
k+1 ≤

1
µ

α
1/2
k

(
ε

θ
0 +δ

2
f /2+2H̃2

)
= O(k−1/4) (10)

This completes the overall proof.

B. Sufficiency for PL condition

We first refer to a game-sensitivity lemma that describes
the relationship between an external parameter and the Nash
equilibrium. We use this lemma to approximately evaluate
the effect of incentives and calculate ∇̃ f (θ ,x).

Lemma 4 (Theorem 1 [12]): Let A i = ∆(|Ni|) be the
strategy set, ∇xvθ (x) be non-singular and ∇θ x∗(θ) be the
Jacobian of x∗(θ). Then, we have

∇θ x∗(θ) =−Jθ ∇θ vθ (x∗(θ)),

where Jθ = L−LA⊤[ALA⊤]−1AL, L = [∇xvθ (x∗(θ))]
−1 with

A := blckdiag{[1|Ni|]i∈N} representing the constraint Ax = 1n.
Using the above lemma and combined with the quadratic

payoff function formula ui(xi,x−i;θ), we obtain that the
sensitivity matrix is a constant matrix. Recall that with the
definition of the payoff function

ui(xi,x−i;θ) = (xi)⊤Qixi +∑
j ̸=i

(x j)⊤R jixi +(bi)⊤xi −θ
⊤xi

and the definition of vθ (x∗(θ)) :=
[
∇xiui(xi,x−i;θ)

]
i∈N . We

can obtain that the matrix L is a constant matrix. Moreover,
since incentives influence drivers’ strategies by term θ⊤xi in
the payoff function, thus the matrix ∇θ vθ (x∗(θ)) is also a
constant matrix. Thus the sensitivity matrix ∇θ x∗(θ), which
is the multiplication of two constant matrices mentioned
above, is also a constant matrix. We denote this constant
sensitivity matrix as S.

The assumption on the objective function f∗(θ) satisfying
PL condition is usually hard to verify since it is a com-
position function involving f (·) and x∗(θ). The equilibrium
mapping x∗(·) does not admit a closed-form solution and
thus makes the assumption hard to verify. Here we derive a
sufficient condition for f∗(·) to satisfies the PL condition.

Lemma 5: Consider the quadratic payoff function in
(2). Suppose the upper-level objective function f∗(θ) =
g(Bx∗(θ)), where g(·) is a µg strongly convex function and
B is certain constant matrix. Then, we have

∥∇θ f∗(θ)∥2
2 ≥ µ f [ f∗(θ)− f∗(θp)] ,

where θp is the projection of θ to the optimality set Θ∗.
Proof : By the µg strongly convexity of g(·), we have, for
any y,y′:

g(y′)≥ g(y)+ ⟨∇g(y),y′− y⟩+
µg

2
∥y− y′∥2

2

By taking y = Bx∗(θ),y′ = Bx∗(θp), we have:

g(Bx∗(θp))≥g(Bx∗(θ))+ ⟨∇yg(y)|y=Bx∗(θ),B(x∗(θ)− x∗(θp))⟩

+
µg

2
∥B(x∗(θ)− x∗(θp))∥2

2

≥g(Bx∗(θ))+ ⟨∇xg(Bx)|x=x∗(θ),x∗(θ)− x∗(θp)⟩

+
µg

2
σ(B)2∥x∗(θ)− x∗(θp)∥2

2

≥g(Bx∗(θ))−
1

2µgσ(B)2 ∥∇xg(Bx)|x=x∗(θ)∥
2
2

where the second inequality is due to ∇xg(Bx) =
B⊤∇yg(y)|y=Ax, and σ(B) is the smallest non-zero absolute
singular value of B. Reorganizing the inequality, we have:

∥∇xg(Bx)|x=x∗(θ)∥
2
2 ≥ 2µgσ(B)2 [ f∗(θ)− f∗(θp)]

By lemma 4 and due to the definition of quadratic payoff
function, we have derived above that ∇θ x∗(θ) is a constant
matrix and denote it by S. With the chain rule, we have

∥∇θ f∗(θ)∥2
2 = ∥∇θ x∗(θ)∇xg(Bx)|x=x∗(θ)∥

2
2

= ∥S∇xg(Bx)|x=x∗(θ)∥
2
2

≥ 2µgσ(B)2
σ(S)[ f∗(θ)− f∗(θp)]

This completes the proof with µ f = 2µgσ(B)2σ(S).

IV. SIMULATION

In this section, we apply our algorithm to a simple
simulation setting. We show numerically that the upper-
level objective function would eventually reach an optimal
value and induce the desired distribution of idle drivers. We
construct a graph consisting of five nodes, where ith node
has vi number of idle drivers and di number of demands. The
topology is shown in Fig. 1.

 0 1

3 2

4

Fig. 1. Topology of the simulation settings

We exemplify the payoff function in (2) takes form as
follows:

ui(xi,x−i;θ) := ∑
j∈N i

xi j ∑k∈N j
xk jvk

d j
+ ∑

j∈N i

xi j ti j − tmin

tmax − tmin
− ∑

j∈N i

θ jxi j

The first term in the payoff function penalize driving to
nodes which have high drivers-demands ratio, the second
term is the travelling time cost, and the third term is the
received incentives. Drivers would update their strategies xi

to minimize the payoff function.
We also define the upper-level objective function f (·) to be

the mean-squared error between the idle drivers distribution
and the demand distribution, i.e.,

f∗(θ) := ∑
i∈N

(
∑ j∈Ni x ji

∗ (θ)v j

vsum
− di

dsum
)2
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where vsum := ∑i∈N vi is the summation of all idle drivers,
and dsum := ∑i∈N di is the summation of demands.

Note that the distribution of idle drivers after repositioning
can be represented as:

v =

[
∑
j∈Ni

x ji
∗ (θ)v j

]
i∈N

could be represented by an affine function, i.e., Cx∗ with
some constant matrix C, of strategies x∗. Therefore, the
upper-level objective function can be represented as ∥Ax−
d∥2

2 where d := [di/dsum]i∈N is the demands distribution. Note
that the objective function is a L2-norm and is obviously a
strongly convex function with respect to Ax. We also add
a zero mean Gaussian noise with 0.001 variance to the
gradient of both lower-level payoff function and the upper-
level objective function.

We randomly generate the number of idle drivers and
demands at each node with the sum of drivers equals to
the sum of demands. Therefore, the optimal distribution
of repositioned idle drivers equals to the distribution of
demands. In other words, the ratio of drivers and demands
at each node is 1.

Fig. 2. Top figure shows the evolution of incentive policy. The middle
figure shows the ratio of each nodes. Last figure shows the trajectory of
upper-level objective function.

The simulation results are presented as in Fig 2. Note with
increasing iteration, the ratio at each node all converge to the
optimal ratio 1.0. Besides, the upper-level objective function
decreases to 0. This demonstrate our result and prove that the
upper-level objective function converge to the optimal value.

V. CONCLUSIONS

We have applied and analyzed a two time-scale bi-level
optimization algorithm in solving the taxi repositioning
problem. We proved that the incentive designer’s objec-
tive function will converge to the optimal value under PL
condition, implying that the social optimality is attained.
Furthermore, under the setting of this work, we derive a
sufficient condition for the PL condition to hold for both the
upper-level objective function and lower-level agents’ payoff
function. Finally, we validated the convergence result of the
algorithm with a numerical example.
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