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Abstract— In this paper, we present a compositional method-
ology for constructing symbolic models of nonlinear intercon-
nected impulsive systems. Our approach relies on the concept
of ”alternating simulation function” to establish a relation-
ship between concrete subsystems and their symbolic models.
Assuming some small-gain type conditions, we develop an
alternating simulation function between the symbolic models of
individual subsystems and those of the nonlinear interconnected
impulsive systems. To construct symbolic models of nonlinear
impulsive subsystems, we propose an approach that depends on
incremental input-to-state stability and forward completeness
properties. Finally, we demonstrate the advantages of our
framework through a case study.

I. INTRODUCTION

The symbolic model (a.k.a abstraction) of dynamical sys-
tems involves representing complex systems using finite sets
of states, inputs, and transition relations that capture the
essential dynamics of the concrete system. The resulting
abstract model must be formally included with the concrete
system via relations like simulation or alternating simulation
[1]. This enables model checking and controller design, e.g.,
through supervisory control and algorithmic game theory.
Abstraction-based controller synthesis, commonly used, han-
dles high-level specifications expressed as temporal logic
formulae [2]. However, these approaches depend on state
and input space discretization, leading to exponential com-
putational complexity as the concrete system’s state space
dimension increases. Thus, they face the curse of dimen-
sionality, particularly in high-dimensional systems.

When dealing with complex, interconnected systems, the
use of compositional abstraction becomes essential. In this
approach, the abstraction process is broken down into smaller
subsystem level construction of abstraction, allowing for a
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more manageable construction of the abstraction of the con-
crete system. A significant amount of research has been de-
voted to developing compositional abstractions for different
classes of large-scale interconnected dynamical systems. The
results include the construction of compositional abstraction
for acyclic interconnected linear [3] , nonlinear [4], and
discrete-time time-delay [5] systems, compositional frame-
works based on the notion of an (alternating) simulation
function and small-gain type conditions [6], compositional
frameworks based on dissipativity properties [7], composi-
tional abstraction for interconnected switched systems, [8],
[9], and compositional synthesis of abstraction for infinite
networks [10]. Authors in [11] propose a compositional
approach using the concept of assume-guarantee contracts
[12]. Finally, authors in [13], [14] proposed compositional
abstraction frameworks using the concept of approximate
composition.

However, none of the proposed approaches in the literature
makes it possible to compositionally construct abstractions
for the class of impulsive systems. Indeed, although [15]
addressed the abstraction of impulsive systems, it focuses
on providing a monolithic abstraction of impulsive systems,
which can result in a high computational burden when
applied to large-scale interconnected systems. Therefore,
this paper aims to address this gap in the literature by
developing novel results for the compositional abstraction
of interconnected impulsive systems.

This paper1 establishes a novel compositional scheme for
constructing symbolic models of interconnected impulsive
systems. In particular, we adapt the notion of alternating
approximate simulation functions in [16] to establish a rela-
tion between each subsystem and its symbolic model. Based
on some small gain-type conditions, we compositionally
construct an overall alternating simulation function as a
relation between an interconnection of symbolic models and
that of the original interconnected subsystems. Furthermore,
under certain stability and forward completeness properties,
we present the construction of symbolic models for each
subsystem of the original model. In our case study, we
demonstrate the effectiveness of our approach by comparing
the computational efficiency of compositional and monolithic
methods for constructing symbolic models of systems while
varying the number of interconnected subsystems.

II. NOTATIONS AND PRELIMINARIES

Notations: We denote by R, Z, and N the set of real
numbers, integers, and non-negative integers, respectively.

1The proofs are omitted due to space limitations.
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These symbols are annotated with subscripts to restrict them
in an obvious way, e.g., R>0 denotes the positive real num-
bers. We denote the closed, open, and half-open intervals in
R by [a, b], (a, b), [a, b), and (a, b], respectively. For a, b ∈ N

and a 6 b, we use [a; b], (a; b), [a; b), and (a; b] to denote the
corresponding intervals in N. Given any a ∈ R, |a| denotes
the absolute value of a. Given any u = [u1; . . . ;un] ∈ Rn,
the infinity norm of u is defined by ‖u‖ = maxi∈[1;n] ‖ui‖.
Given a function ν : R≥0 → Rn, the supremum of ν is
denoted by ‖ν‖∞; we recall that ‖ν‖∞ := supt∈R≥0

‖ν(t)‖.
Given x : R>0 → Rn,∀t, s ∈ R>0 with t > s, we define
x(−t) = lims→t x(s) as the left limit operator. For a given
constant τ ∈ R≥0 and a set W := {x : R>0 → Rn}, we
denote the restriction ofW to the interval [0, τ ] byW|[0,τ ] :=
{x : [0, τ ] → Rn}. We denote by C(·) the cardinality of a
given set and by ∅ the empty set. Given sets U and S ⊂ U ,
the complement of S with respect to U is defined as U\S =
{x : x ∈ U, x /∈ S}. Given a family of finite or countable
sets Si, i ∈ N ⊂ N, the jth element of the set Si is denoted
by sij . For any set S ⊆ Rn of the form S =

⋃M
j=1 Sj

for some M ∈ N>0, where Sj =
∏n
i=1[cji , d

j
i ] ⊆ Rn with

cji < dji , and non-negative constant η 6 η̃, where η̃ =
minj=1,...,M ηSj and ηSj = min{|dj1 − c

j
1|, . . . , |djn − cjn|},

we define [S]η = {a ∈ S | ai = kiη, ki ∈ Z, i = 1, . . . , n}
if η 6= 0, and [S]η = S if η = 0. The set [S]η will be used as
a finite approximation of the set S with precision η 6= 0. Note
that [S]η 6= ∅ for any η 6 η̃. We use notations K and K∞ to
denote different classes of comparison functions, as follows:
K = {α : R>0 → R>0| α is continuous, strictly increasing,
and α(0) = 0}; K∞ = {α ∈ K| lim

s→∞
α(s) = ∞}. For

α, γ ∈ K∞ we write α ≤ γ if α(r) ≤ γ(r), ∀r ∈ R>0, and,
by abuse of notation, α = c if α(r) = cr for all c, r > 0.
Finally, we denote by id the identity function over R≥0, i.e.
id(r) = r, ∀r ∈ R≥0.

A. Interconnected Impulsive System

1) Characterization of Impulsive Subsystems: We con-
sider a set of impulsive subsystems indexed by i ∈ N ,
where N = [1;N ] and N ∈ N>1. The ith subsystem can
be formally defined by,

Definition 2.1: A nonlinear impulsive subsystem
Σi, i ∈ N , is defined by the tuple Σi =
(Rnii ,Wi,Wi,Ui,Ui, fi, gi,Yi, hi,Ωi), where
• Rnii is the state set;
• Wi ⊆ Rqi is the internal input set;
• Wi is the set of all measurable bounded internal input

functions ωi : R>0 → Wi;
• Ui ⊆ Rmi is the external input set;
• Ui is the set of all measurable bounded external input

functions νi : R>0 → Ui;
• fi, gi : Rni × Wi × Ui → Rni are locally Lipschitz

functions;
• Yi ⊆ Rpi is the output set;
• hi : Ri → Yi is the output map;
• Ωi = {tki }k∈N is a set of strictly increasing sequence

of impulsive times in R≥0 comes with tk+1
i − tki ∈

{ziτi, . . . , ziτi} for fixed jump parameters τi ∈ R>0

and zi, zi ∈ N≥1, zi ≤ zi.
The non-linear flow and jump dynamics, fi and gi are

described by differential and difference equations of the
form,

Σi :


ẋi(t) = fi(xi(t), ωi(t), νi(t)), t ∈ R>0\Ωi,
xi(t) = gi(xi(

−t), ωi(
−t), νi(t)), t ∈ Ωi,

yi(t) = hi(xi(t)), t ∈ R>0,

(II.1)

where xi : R>0 → Rni and ωi : R>0 → Wi are the state
and internal input signals, respectively, and assumed to be
right-continuous for all t ∈ R>0. Function νi : R>0 → Ui is
the external input signal. We will use xxi,ωi,νi(t) to denote
a point reached at time t ∈ R>0 from initial state xi under
input signals ωi ∈ Wi and νi ∈ Ui. We denote by Σci and
Σdi the continuous and discrete dynamics of subsystem Σi,
i.e., Σci : ẋi(t) = fi(xi(t), ωi(t), νi(t)), and Σdi : xi(t) =
gi(xi(

−t), ωi(
−t), νi(t)).

2) Interconnections among Impulsive Subsystems: We
assume that the input-output structure of each impulsive
subsystem Σi, i ∈ N, is general and formally given by,

ωi = [ωi1; . . . ;ωi(i−1);ωi(i+1); . . . ;ωiN ],Wi=
∏N
j=1,
j 6=i

Wij , (II.2)

yi = [yi1; . . . ; yiN ], Yi =

N∏
j=1

Yij , (II.3)

where ωij ∈ Wij , yij = hij(xi) ∈ Yij , and output function,

hi(xi)=[hi1(xi); . . . ;hiN (xi)], (II.4)

and xi denotes the state vector of the ith subsystem. The
outputs yii are considered as external, while yij with i 6= j
are internal and are used to define the connections between
the subsystems. In fact, we consider that the dimension of
the vector ωi is equal to that of the vector yi. If there is no
connection between the subsystems Σi and Σj , hij is fixed
as zero, i.e. hij ≡ 0.

Assumption 2.2: The interconnections are constrained by
ωij = yji, Yji ⊆ Wij , ∀i, j ∈ N , i 6= j.

3) Interconnected Impulsive Systems: The formal defini-
tion of the interconnected impulsive system is given by,

Definition 2.3: Consider N ∈ N>1 impulsive subsystems,

Σi = (Rni ,Wi,Wi,Ui,Ui, fi, gi,Yi, hi,Ωi)

with input-output structure given by (II.2)-(II.4). The inter-
connected impulsive system is a tuple Σ = (X,U, f,G,Ω),
denoted by I(Σ1, . . . ,ΣN ) and described by the differential,
difference equation of the form,

Σ :

{
ẋ(t) = f(x(t), ν(t)), ∀t ∈ R>0\Ω
x(t) = G(x(−t), ν(t)) ∀t ∈ Ω

(II.5)

with x ∈X=
∏N
i=1 R

ni , ν∈U=
∏N
i=1 Ui, Ω=

⋃N
i=1 Ωi and

f(x(t), ν(t)) = [f1(x1(t), ω1(t), v1(t)), . . . , fn(xn(t), ωn(t), vn(t))]

G(x(−t), ν(t)) = [β1(x1(−t), ω1(−t), v1(t)), . . . , βn(xn(−t), ωn(−t), vn(t))]

where,

βi(xi(
−t), ωi(

−t), vi(t)) =

{
xi(
−t) if t /∈ Ωi

gi(xi(
−t), ωi(

−t), vi(t)) if t ∈ Ωi
.
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B. Transition systems

1) Transition Subsystems: Now, we will introduce the
class of transition subsystems [17], which will be later
interconnected to form an interconnected transition system.
Indeed, the concept of transition subsystems permits to
model impulsive subsystems and their symbolic models in
a common framework.

Definition 2.4: A transition subsystem is a tuple Ti =
(Xi, X0i ,Wi,Wi, Ui,Ui,Fi, Yi,Hi), i ∈ N , consisting of:
• a set of states Xi;
• a set of initial states X0i ⊆ Xi;
• a set of internal inputs values Wi;
• a set of internal inputs signals Wi:={ωi : R≥0 →Wi};
• a set of external inputs values Ui;
• a set of external inputs signals Ui := {ui : R≥0 → Ui};
• transition function Fi : Xi ×Wi × Ui ⇒ Xi;
• an output set Yi;
• an output map Hi : Xi → Yi.

The transition x+
i ∈ Fi(xi, ωi, ui) means that the system can

evolve from state xi to state x+
i under the input signals ωi

and ui. Thus, the transition function defines the dynamics of
the transition system. Let xxi,ωi,ui denotes an infinite state
run of Ti associated with external input signal ui, internal
input signal ωi, and initial state xi. Correspondingly, define
yxi,ωi,ui := Hi(xxi,ωi,ui) as an infinite output run of Ti. Sets
Xi,Wi, Ui, and Yi are assumed to be subsets of normed
vector spaces with appropriate finite dimensions. If for all
xi ∈ Xi, ωi ∈ Wi, ui ∈ Ui, C(Fi(xi, ωi, ui)) ≤ 1, we
say that Ti is deterministic, and non-deterministic otherwise.
Additionally, Ti is called finite if Xi, ωi, Ui are finite sets
and infinite otherwise. Furthermore, if for all xi ∈ Xi there
exists ωi ∈ Wi and ui ∈ Ui such that C(Fi(xi, ωi, ui)) 6= 0
we say that Ti is non-blocking.

2) Interconnections among transition subsystems: We as-
sume that the input-output structure of each transition sub-
system Ti, i ∈ N , is formally defined as the interconnection
structure for the impulsive subsystems in part II-A.2 and is
formally defined by,
ωi=[ωi1; . . . ;ωi(i−1);ωi(i+1); . . . ;ωiN ],Wi=

N∏
j=1,
j 6=i

Wij , (II.6)

yi = [yi1; . . . ; yiN ], Yi =

N∏
j=1

Yij , (II.7)

where ωij ∈Wij , yij = hij(xi) ∈ Yij , and the output map,

Hi(xi)=[Hi1(xi); . . . ;HiN (xi)]. (II.8)

Assumption 2.5: The input-output interconnection vari-
ables of transition systems are constrained by,

‖ωij −Hji(xj)‖ 6 Φij , Φij ∈ R≥0 (II.9)
3) Composed transition system: We define the composed

transition system by I(T1, . . . , TN ) and we define it formally
by,

Definition 2.6: Consider N ∈ N>1 transition subsystems

Ti = (Xi, X0i ,Wi,Wi, Ui,Ui,Fi, Yi,Hi)

with input-output structure given by (II.6)-(II.4).
The interconnected transition system is a tuple
T = (X,X0, U,F , Y,H), denoted by I(T1, . . . , TN ),
where X =

∏N
i=1Xi, X0 =

∏N
i=1X0i , U =

∏N
i=1 Ui,

Y =
∏N
i=1 Yi. Moreover, the transition relation F and the

output map H are defined by,

F(x, u) :={
[
x+

1 ; . . . ;x+
N

]
|x+
i ∈Fi(xi, ui, ωi) ∀i∈N},

(II.10)
H(x) :=[H11(x1); . . . ;HNN (xN )] (II.11)

where x = [x1; . . . ;xN ] ∈ X , u = [u1; . . . ;uN ] ∈ U .

C. Alternating Simulation Function

In this section, we recall the so-called notion of ε−
approximate alternating simulation function in [6].

Definition 2.7: Let T = (X,X0, U,F , Y,H) and T̂ =
(X̂, X̂0, Û , F̂ , Ŷ ,H) with Ŷ ⊆ Y . A function S̃ : X×X̂ →
R>0 is called an alternating simulation function from T̂ to
T̂ if there exist α̃ ∈ K∞, 0 < σ̃ < 1, ρ̃u ∈ K∞ ∪ {0}, and
some ε̃ ∈ R>0 so that the following hold:

1) For every x ∈ X, x̂ ∈ X̂ , we have,

α̃(‖H(x)− Ĥ(x̂)‖)6 S̃(x, x̂); (II.12)

2) For every x ∈ X, x̂ ∈ X̂, û ∈ Û there exists u ∈ U such
that for every x+ ∈ F(x, u) there exists x̂+ ∈ F̂(x̂, û)
so that,

S̃(x+, x̂+) 6 max{σ̃S̃(x, x̂), ρ̃u(‖û‖∞), ε̃}; (II.13)
It was shown in [6] that the existence of an approximate
alternating simulation function implies the existence of an
approximate alternating relation from T to T̂ . This relation
guarantees that for any output behavior of T there exists
one of T̂ such that the distance between these two outputs
is uniformly bounded by ε̂ = α̃−1(max{ρ̃u(r), ε̃}). For
local abstraction, the notion of ε-approximately alternating
simulation function from Ti to T̂i, ∀i ∈ N , is formally
defined by,

Definition 2.8: Let Ti = (Xi, X0i ,Wi, Ui,Fi, Yi,Hi) and
T̂i = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷi, Ĥi) be transition subsystems
with Ŷi ⊆ Yi, ω̂i ⊆Wi. A function Si : Xi × X̂i → R>0 is
called a local alternating simulation function from T̂i to Ti
if there exist αi, ρωi ∈ K∞, 0 < σi < 1, ρui ∈ K∞ ∪ {0},
and some εi ∈ R>0 so that the following hold:

1) For every xi ∈ Xi, x̂i ∈ X̂i, we have,

αi(‖Hi(xi)− Ĥi(x̂i)‖)6Si(xi, x̂i); (II.14)

2) For every xi ∈ Xi, x̂i ∈ X̂i, ûi ∈ Ûi there exists
ui ∈ Ui such that for every ωi ∈ Wi, ω̂i ∈ Ŵi, x

+
i ∈

Fi(xi, ωi, ui) there exists x̂+
i ∈F̂i(x̂i, ω̂i, ûi) so that,

Si(x+
i , x̂

+
i ) 6σ̄iSi(xi, x̂i) + ρ̄ωi(‖ωi−ω̂i‖)

+ ρ̄u(‖ûi‖∞) + ε̄i. (II.15)
The goal is to construct alternating simulation functions

for the compound transition systems T = I(T1, . . . , TN )
and T̂ = I(T̂1, . . . , T̂N ) from the local alternating simula-
tion functions of the subsystems. To achieve this goal, the
following lemmas are recalled.
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Lemma 2.9: [18, Theorem 1] Let Si : Xi × X̂i → R>0

be a local alternating simulation function from T̂i to Ti then,
for every xi∈Xi, x̂i∈ X̂i, ûi∈ Ûi there exists ui∈ Ui such
that for every ωi ∈ Wi, ω̂i ∈ Ŵi, x

+
i ∈ Fi(xi, ωi, ui) there

exists x̂+
i ∈F̂i(x̂i, ω̂i, ûi) so that,

Si(x+
i , x̂

+
i ) 6max {σiSi(xi, x̂i), ρωi(‖ωi−ω̂i‖),

ρui(‖ûi‖∞), εi} ; (II.16)

where σi = 1 − (1 − ψ)(1 − σ̄i), ρωi = 1
(1−σ̄)ψ ρ̄ωi ,

ρui = 1
(1−σ̄)ψ ρ̄ui , and εi = ε̄

(1−σ̄i)ψ , for an arbitrarily chosen
positive constant ψ < 1, and σ̄, ε̄, ρ̄w, ρ̄u are constants and
function appearing in Definition 2.8.

III. COMPOSITIONALITY RESULT

The goal of this section is to provide a method for the com-
positional construction of an alternating simulation function
for the interconnected transition system T = I(T1, . . . , TN )
to T̂ = I(T̂1, . . . , T̂N ) as defined in Definition 2.6. For the
functions σi, αi, and ρwi associated with Si, i ∈ N , given
in Lemma 2.9, we define ∀i, j ∈ N ,

γij :=

{
σi if i, j ∈ N|i = j,

ρωi ◦ α−1
j if i, j ∈ N|i 6= j,

(III.1)

and we set γij equal to zero if there is no connection from
Tj to Ti, i.e., ωij = 0.

To establish the compositionality results of the paper, we
make the following scaled small-gain assumption.

Assumption 3.1: Assume that functions γij defined in
(III.1) satisfy,

γi1i2 ◦ γi2i3 ◦ · · · ◦ γir−1ir ◦ γiri1 < id, (III.2)

∀(i1, . . . , ir) ∈ {1, . . . , N}r, where r ∈ {1, . . . , N}.

The next theorem provides a compositional approach to
construct an alternating simulation function from T̂ =
(T̂1, . . . , T̂N ) to T = (T1, . . . , TN ) via local alternating
simulation functions from T̂i to Ti, i ∈ N .

Theorem 3.2: Consider the interconnected transition sys-
tem T = I(T1, . . . , TN ). Assume that each Ti and its
abstraction T̂i admit a local alternating simulation function
Si as in Lemma 2.9. Suppose Assumption 3.1 holds. Then,
function S̃ : X × X̂ → R≥0 defined as,

S̃(x, x̂) := max
i∈N
{ψ−1

i (Si(xi, x̂i))} (III.3)

is an alternating simulation function from T =
I(T1, . . . , TN ) to T̂ = I(T̂1, . . . , T̂N ).

IV. CONSTRUCTION OF SYMBOLIC MODELS

In the previous section, we showed how to construct an ab-
straction of a system from the abstractions of its subsystems.
In this section, our focus is on constructing a symbolic model
for an impulsive subsystem using an approximate alternating
simulation. To ease readability, in the sequel, the index i ∈ N
is omitted.

Consider an impulsive subsystem Σ =
(Rn,W,W,U,Uτ , f, g,Y , h,Ω), as defined in Definition
2.1. We restrict our attention to sampled-data impulsive
systems, where the input curves belong to Uτ containing
only curves of constant duration τ , i.e.,

Uτ = {ν : R≥0 → U|ν(t) = ν((k − 1)τ), (IV.1)
t ∈ [(k − 1)τ, kτ), k ∈ N>1}.

Moreover, we assume that there exist constant ϕ such that
for all ω ∈W the following holds,

‖ω(t)− ω((k − 1)τ)‖ 6 ϕ,∀t ∈ [(k − 1)τ, kτ), k ∈ N>1.
(IV.2)

We also have the following Lipschitz continuity assump-
tion on the output map h.

Assumption 4.1: There exist positive constant L, such that
the output maps h satisfy the following Lipschitz assumption
is satisfied,

‖h(x)−h(y)‖6L‖x−y‖ ∀x, y ∈ Rn. (IV.3)
Next, we define sampled-data impulsive systems as tran-

sition subsystems. Such transition subsystems would be
the bridge that relates impulsive systems to their symbolic
models.

Definition 4.2: Given an impulsive system Σ =
(Rn,W,W,U,Uτ , f, g,Y , h,Ω), we define the associated
transition system Tτ (Σ) = (X,X0,W,W, U,U ,F , Y,H)
where:
• X = Rn × {0, . . . , z};
• X0 = Rn × {0};
• U = U;
• U = Uτ ;
• W = W;
• W = W;
• (x+, c+) ∈ F((x, c), ω, u) if and only if one of the

following scenarios hold:
– Flow scenario: 0 ≤ c ≤ z−1, x+ = xx,ω,u(−τ), and
c+ = c+ 1;

– Jump scenario: z ≤ c ≤ z, x+ = g(x, ω(0), u(0)),
and c+ = 0;

• Y = Y ;
• H : X → Y , defined as H(x, c) = h(x).

For later use, define Wτ as,

Wτ = {ω : R≥0 →W |ω(t) = ω((k − 1)τ), (IV.4)
t ∈ [(k − 1)τ, kτ), k ∈ N>1}.

In order to construct a symbolic model for Tτ (Σ), we
introduce the following assumptions and lemmas.

Assumption 4.3: Consider impulsive system
Σ = (Rn,W,W,U,Uτ , f, g,Y , h,Ω). Assume that there
exist a locally Lipschitz function V : Rn × Rn → R>0,
K∞ functions α, α, ρωc , ρωd , ρuc , ρud , and constants
κc ∈ R, κd ∈ R, such that the following hold,
• ∀x, x̂ ∈ Rn,

α(‖x− x̂‖) 6 V (x, x̂) 6 α(‖x− x̂‖); (IV.5)
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• ∀x, x̂ ∈ Rn a.e, ∀ω, ω̂ ∈W , and ∀u, û ∈ U,

∂V (x, x̂)

∂x
f(x, ω, u)+

∂V (x, x̂)

∂x̂
f(x̂, ω̂, û) (IV.6)

6−κcV (x, x̂)+ρωc(‖w−ω̂‖)+ρuc(‖u−û‖);

• ∀x, x̂ ∈ Rn,∀ω, ω̂ ∈W , and ∀u, û ∈ U,

V (g(x, ω, u), g(x̂, ω̂, û)) (IV.7)
6κdV (x, x̂) + ρωd(‖ω−ω̂‖) + ρud(‖u−û‖).

Assumption 4.4: There exist K∞ function γ̂ such that for
all x, y, z ∈ Rn,

V (x, y) 6 V (x, z) + γ̂(‖y − z‖). (IV.8)
We now have all the ingredients to construct a symbolic

model T̂τ (Σ) of transition system Tτ (Σ) associated with the
impulsive system Σ admitting a function V that satisfies
Assumption 4.3 as follows.

Definition 4.5: Consider a transition system Tτ (Σ) =
(X,X0,W,W, U,U ,F , Y,H), associated to the impul-
sive system Σ = (Rn,W,W,U,Uτ , f, g,Y , h,Ω). As-
sume Σ admits a function V that satisfies Assump-
tion 4.3. One can construct symbolic model T̂τ (Σ) =
(X̂, X̂0, Ŵ , Ŵ, Û , Û , F̂ , Ŷ , Ĥ) where:
• X̂ = R̂n × {0, . . . , z}, where R̂n = [Rn]ηx and ηx is

the state set quantization parameter;
• X̂0 = X̂ × {0};
• Ŵ = [W ]ηω , where ηω is the internal input set quanti-

zation parameter;
• Ŵ = {ω̂ : [0, τ ]→ Ŵ |ω̂ ∈ Wτ |[0,τ ]};
• Û = [U ]ηu , where ηu is the external input set quanti-

zation parameter;
• Û = {û : [0, τ ]→ Û |û ∈ U|[0,τ ]};
• (x̂+, c+) ∈ F̂((x̂, c), ω̂, û) iff one of the following

scenarios hold:
– Flow scenario: 0 6 c 6 z−1, |x̂+−xx̂,ω̂,ν̂(τ)| 6 ηx,

and c+ = c+ 1;
– Jump scenario: z 6 c 6 z, |x̂+− g(x̂, ω̂(0), û(0))| 6
ηx, and c+ = 0;

• Ŷ = Y ;
• Ĥ = H.

In the definition of the transition function, and in the remain-
der of the paper, we abuse notation by identifying û (respec-
tively ω̂) with the constant external (respectively internal)
input curve with domain [0, τ) and value û (respectively
ω̂). Now, we establish the relation from Tτ (Σ) to T̂τ (Σ),
introduced above, via the notion of alternating simulation
function as in Definition 2.7.

Theorem 4.6: Consider an impulsive system Σ =
(Rn,W,W,U,U, f, g,Y , h,Ω) with its associated transition
system Tτ (Σ) = (X,X0,W,W, U,U ,F , Y,H). Suppose
Assumptions 4.3, 4.4, and 4.1 hold. Consider symbolic model
T̂τ (Σ) = (X̂, X̂0, ω̂, Ŵ, Û , Û , F̂ , Ŷ , Ĥ) constructed as in
Definition 4.5. If inequality,

ln(κd)− κcτc < 0, (IV.9)

holds for c ∈ {z, z}, then function V defined as,

V((x, c), (x̂, c)):=



V (x, x̂) if κd < 1 & κc > 0,

V (x, x̂)

e−κcτεc
if κd > 1 & κc > 0,

V (x, x̂)

κ
− cδ
d

if κd < 1 & κc 6 0,

(IV.10)

for some 0 < ε < 1 and δ > z, is an alternating simulation
function from T̂τ (Σ) to Tτ (Σ).

V. CASE STUDY

Consider the exchange problems between N intercon-
nected warehouses of a storage-delivery process. Denote by
xi ∈ R≥0, the number of goods in the warehouse i. The
interconnections between the warehouses is supposed to be
circular.

Under the flow mode: When t ∈ R>0\Ωi, for each ware-
house the state xi is continuously controlled through a
delivery and picking-up process with a quantity di and input
signal νi(t) ∈ {−1, 1}, t ∈ [0, τ).

Under the jump mode: At each time t ∈ Ωi ={
tik
}
k∈N,i=1,2,3

, with tik+1 − tik ∈ {ziτi, . . . , z̄iτi} for fixed
jump parameters τi ∈ R>0 and zi, z̄i ∈ N≥1, zi ≤ z̄i,, a
truck enters warehouse i and the state xi becomes controlled
through a delivery and picking-up process with a quantity d̄i
and input signal νi(t) ∈ {−1, 1}, t ∈ [0, τ).

The full state of each warehouse xi is observable and
we assume that the interconnected system is realisable. The
dynamic motion of this process in the case N = 3 is modeled
by,

Σi :


ẋi(t) = aixi(t) + bixī(t) + diνi(t), t ∈ R≥0\Ωi,
xi(t) = rixi(t

−) + qixī(t) + d̄iνi(t), t ∈ Ωi,

yi(t) = xi(t).

with i = 1, . . . , N and ī =

{
i− 1 i > 1

N i = 1
. In order to

construct a symbolic model for the interconnected impulsive
systems, we have to check Assumptions 3.1, 4.3, 4.4 and
4.1.

In the sequel, we will only detail the shell for the case
N = 3. It can be shown that conditions (IV.5), (IV.6)
and (IV.7) hold for each subsystem Σi with Vi (xi, x

′
i) =

‖xi − x′i‖ , i = 1, 2, 3, with, αi = ᾱi = Id, κci =
−ai, κdi = |ri|, ρuc,1 = |d1|, ρud,1 = |d̄1|, ρωc,1 = |b1|,
ρωd,1 = |q1|, ρuc,2 = |d2|, ρud,2 = |d̄2|, ρωc,2 = |b2|,
ρωq,2 = |q2|, ρuc,3 = |d3|, ρud,3 = |d̄3|, ρωc,3 = |b3|
and ρωd,3 = |q3|. From these functions, we can drive the
expressions of the γij functions in Assumption 3.1. Thus,
γ31 = max {|b1|, |q1|}, γ12 = max {|b2|, |q2|} and γ23 =
max {|b3|, |q3|}.

Assumption 4.4 holds with γ̂ = Id and Assumption 4.1,
is satisfied with L = 1. Now, given τi and ci satisfying
(IV.9) for ci ∈ {zi, z̄i}, and, with a proper choices of
εi and δi, functions Vi(xi, x̂i) given by (IV.10) are local
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TABLE I: Abstraction Computation Time Comparison [s]

Abstraction
Number of subsys. 2 3 4 5

Monolithic 0.3107 1.2285 13.0902 5453.65
Compositional 0.2108 0.3147 2.2348 975.4288
ratio 1.4739 3.9037 5.8574 5.5910

alternating simulation functions from T̂τ (Σi), constructed
as in Definition 4.5 for each ith subsystem i = 1, 2, 3, to
Tτ (Σi). In particular, each Vi satisfies conditions (II.14) and
(II.15) with functions αi, ρ̄ωi , ρ̄ui , and constants σ̄i, εi given
below based on the values of ai and ri, with ψ = 0.99.
• |ri| < 1 & ai < 0 : αi = Id, σ̃i =

max {eaiτi , ri} , ρ̄ωi = max {bi, qi} , ρui = 0, εi = ϕ̂i.
• |ri| > 1 & ai < 0 : αi = Id, ρui = ρωi = 0, σ̄i =

max
{
eaiτi(1+εici), eaiτiεici |ri|

}
, εi =eκcτε(z+1)ϕ̂.

• |ri| < 1 & ai > 0 : αi = Id, ρui = ρωi = 0, σ̄i =

max
{
eaiτi |ri|

ci
δi , |ri|

δi+ci
δi

}
, εi = ϕ̂i.

The control objective is to maintain the number of items
of each warehouse i in a desired range Oi given by Oi =
[	min,	min] (a safety specification). We set up the system
with the following parameters a1 = −1, b1 = 0.4, d1 =
1, r1 = 0.05, q1 = 0.4, d̄1 = 1, a2 = −1.5, b2 =
0.5, d2 = 1, r2 = 0.03, q2 = 0.5, d̄2 = 1, a3 =
−2, b3 = 0.5, d3 = 0.5, r3 = 0.08, q3 = 0.5, d̄3 =
1, and consider the following, for i = 1, . . . , 3, Ωi =[
1 2 3 4 5 6 7 8 9 10

]
; Each system state is

expected to operate around an equilibrium point within the
range of

[
−5 5

]
. With the defined system parameters, the

sampling period for the controller to be designed is set τ =
0.2, which satisfies condition (IV.9) for all the subsystems.
We discretize the state by nx = 0.6667. We conducted both
monolithic and compositional abstractions, with the former
taking 3589 seconds and the latter taking 1546 seconds to
compute. Figure 1 displays the state trajectories using the
designed fixed-point controller [1]. It is evident from the
figure that the designed controller successfully keeps the
states within the required safe region.
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Fig. 1: State trajectories
under fixed point con-
troller.

We compared computation
times between monolithic and
compositional abstractions for
varying subsystem numbers (Ta-
ble I). Results show compu-
tation times in seconds for
each abstraction and subsystem
count, at a discretization pa-
rameter nx = 2.5. Composi-
tional abstraction generally re-
quires less time than monolithic,
even as subsystems increase.

The time difference remains significant; for instance, with
five subsystems, compositional abstraction is almost six
times faster. This makes it more computationally efficient,
particularly when dealing with numerous subsystems.

VI. CONCLUSION

To conclude, this paper introduces a novel compositional
technique for building symbolic models in interconnected

impulsive systems using the concept of approximate alter-
nating simulation function. With certain small gain-type con-
ditions, our method compositionally establishes an overall
alternating simulation function, connecting interconnection
symbolic models and original impulsive subsystems. More-
over, we present a method, guided by stability and forward
completeness, to create symbolic models with corresponding
alternating simulation functions for impulsive subsystems.

Future work involves extending this approach to stochastic
impulsive systems, integrating probabilistic distributions for
characterizing flow and jump mode functions.
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