
An Integral Sliding–Mode–based Robust Interval
Predictive Control for Perturbed Unicycle Mobile

Robots
Héctor Ríos†,?, Manuel Mera‡, Tarek Raïssi∗ and Denis Efimov§,�

Abstract—This paper contributes to the design of a robust
control strategy for the trajectory tracking problem in per-
turbed unicycle mobile robots. The proposed strategy comprises
the design of a robust control law, which is based on an
Integral Sliding–Mode Control (ISMC) approach together with
an interval predictor–based state–feedback controller and a
Model Predictive Control (MPC) scheme. The robust controller
deals with some perturbations in the kinematic model, and with
state and input constraints that are related to restrictions on the
workspace and saturated actuators, respectively. The proposed
approach guarantees the exponential convergence to zero of the
tracking error. Furthermore, the performance of the proposed
approach is validated through some simulations.

Index Terms—Unicycle Mobile Robots, Sliding–Mode Con-
trol, Model Predictive Control.

I. INTRODUCTION

THE unicycle mobile robots (UMRs) have been widely
studied during the last decades due to their capability

of moving freely from one point to another one and to the
broad diversity of possible real applications (see, e.g., [1]).
One of the main difficulties regarding the control design is
the fact that the kinematic model of this class of systems does
not fulfill Brockett’s necessary condition for smooth state–
feedback stabilization [2]. Therefore, the design of non–
smooth or time–varying feedback controllers is a requirement
for this class of mobile robots. Moreover, as it is highlighted
in [3], even if external forces cannot be considered in the
kinematic model, there exist some other signals or non–
modeled phenomena, e.g., the skidding and slipping of the
wheels and corrupt control signals, that must be taken into
account for the design of a controller. Additionally, it is well–
known that such UMRs must move in restricted work–spaces
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and have energy limitations. These effects can be seen as
state and input constraints, and should also be considered
in the control design. In this sense, the trajectory tracking
control design, considering the non–holonomic constraints,
external perturbations and system constraints, is still a chal-
lenging problem.

Regarding the literature taking into account external distur-
bances in the kinematic model, in [4], a first–order sliding–
mode control (SMC) approach is proposed to deal with
the trajectory tracking problem in perturbed UMRs. This
approach considers some skidding and slipping effects on
the wheels, input saturation constraints and guarantees the
asymptotic convergence to zero of the tracking error. A
robust controller, based on the Super–Twisting algorithm,
was presented in [5], and guarantees asymptotic convergence
of the tracking error to zero, despite the presence of some
skidding and slipping effects. The proposed controller is
continuous but local. However, these works do not consider
state constraints.

In the context of trajectory tracking control for constrained
UMRs, the Model Predictive Control (MPC) approach (see,
e.g., [6] and [7]) is quite popular. For instance, in [8], a
neural network–based robust MPC is proposed to stabilize
a state and input constrained mobile robot in the presence
of some additive disturbances. In the same sense, a couple
of MPC approaches; namely, tube–MPC and nominal robust
MPC, are proposed in [9] for tracking unicycle robots.
Such approaches are able to deal with input constraints and
bounded additive disturbances. In [10], the authors propose
a trajectory tracking controller for UMRs based on an MPC
approach with adaptive prediction horizon. The proposed
controller is able to deal with some additive disturbances
and some system constraints. However, for all of the above–
mentioned works, the considered additive disturbances lack
physical meaning since the skidding and slipping effects
cannot be represented by additive disturbances but by multi-
plicative disturbances. Moreover, all of the above–mentioned
works only provide some input–to–state stability properties.

Motivated by the above–mentioned issues, i.e., meaningful
external disturbances and system constraints, in this paper,
a robust control strategy is proposed to solve the trajectory
tracking problem in perturbed unicycle mobile robots, tak-
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ing into account state and input constraints. The proposed
strategy comprises the design of a robust control law, which
is based on an ISMC approach together with an inter-
val predictor–based state–feedback controller and an MPC
scheme1. The robust controller deals with some perturbations
in the kinematic model, and with state and input constraints
that are related to restrictions on the workspace and saturated
actuators, respectively. The proposed approach guarantees the
exponential convergence to zero of the tracking error despite
the considered perturbations and the system constraints, and
the computational burden is relaxed due to the switching
structure of the controller.

Notation: Denote the trigonometric functions sin(θ), cos(θ)
and sinc(θ) as s(θ), c(θ) and sc(θ), respectively. Let us
denote a sequence of integers 1, ..., n as 1, n, for any n ∈ N.
The absolute value is represented as | · | while the Euclidian
norm of a vector z ∈ Rn is denoted as ||z||, and for
a matrix A ∈ Rm×n, the induced norm is the spectral
norm, i.e., ||A|| =

√
λmax(A>A). The set of all inputs

u : R≥0 → Rp such that its L∞ norm on [0,∞] is less that
infinity, i.e., ||u||∞ := ||u||[0,∞] = esssupt≥0‖u(t)‖ < ∞,
is denoted as L∞. For a couple of vectors x1, x2 ∈ Rn

and a couple of matrices A1, A2 ∈ Rn×n, the relations
x1 ≤ x2 and A1 ≤ A2 are understood in the component–
wise sense. In the same sense, for a matrix A ∈ Rn×n, define
A+ = max{0, A}, A− = A+ − A and |A| = A+ + A−,
similarly for a vector. For a symmetric matrix P ∈ Rn×n, the
notation P ≺ 0 (P � 0) means that P is negative (positive)
definite. A matrix A ∈ Rn×n is called Metzler when all its
non–diagonal elements are non–negative. The term He(A)
denotes A+A>, for a matrix A ∈ Rn×n.

II. PROBLEM STATEMENT

Consider the perturbed kinematic model of an UMR:

θ̇ = [1 + d1(t)]ω, (1a)
ẋ = [1 + d2(t)]c(θ)v, (1b)
ẏ = [1 + d2(t)]s(θ)v, (1c)

where x ∈ R and y ∈ R denote the midpoint between the
wheels and θ ∈ R represents the orientation angle of the
UMR. The terms v and ω contain the linear and angular
velocities of the UMR, and represent the control inputs. The
terms d1 and d2 represent some time–varying perturbations,
which are multiplicative to the inputs and that may come
from the settling time of the internal controller that translates
the velocity commands in current/voltage inputs and sends
them to the motors [15] or non–modeled kinematics phe-
nomena proportional to the control inputs, such as skidding
and slipping of the wheels [3]. It is assumed that such time–
varying perturbations di(t) are unknown but bounded, i.e.,

1In the literature, there have been several proposals for the combination
of MPC and ISMC. For instance, one can see [11], [12], [13], and [14].
However, these works are not applied to UMRs and most of them only
provide ISS properties.

−1 < di(t) ≤ dmax < 1, for i = 1, 2, with a known positive
constant dmax. Note that the constraint di(t) > −1 ensures
that the perturbations do not cause a change of sign in the
control inputs.

The aim of this work is to design a trajectory tracking
control for the UMR able to compensate some multiplicative
perturbations and reach the desired trajectory taking into
account some state and input constraints, i.e., x(t) ∈ X =
[xmin, xmax] ⊂ R, y(t) ∈ Y = [ymin, ymax] ⊂ R, v(t) ∈ V =
[−vmax, vmax] ⊂ R and ω(t) ∈ W = [−ωmax, ωmax] ⊂ R,
for all t ≥ t0, for some given sets X, Y, V and W.

III. LPV TRACKING ERROR DYNAMICS

Let us define the tracking errors as follows

e1 = θd − θ, (2a)
e2 = c(θ)(xd − x) + s(θ)(yd − y), (2b)
e3 = c(θ)(yd − y)− s(θ)(xd − x), (2c)

where xd, yd and θd come from a reference kinematic model
for the UMR, i.e.,

θ̇d = ωd, (3a)
ẋd = c(θd)vd, (3b)
ẏd = s(θd)vd, (3c)

where vd and ωd are the linear and angular reference
velocities, respectively. These are assumed continuous and
bounded by some positive constants vd, vd and ωd, i.e.,
0 < vd < vd(t) ≤ vd, and ||ωd||∞ ≤ ωd, and such
that vd(t) ∈ V and ωd(t) ∈ W, for all t ≥ 0. Moreover,
the trajectories of the reference model also hold the state
constraints, i.e., xd(t) ∈ X and yd(t) ∈ Y, for all t ≥ 0.

Therefore, the tracking error dynamics can be calculated
as

ė1 = −ωd1(t) + τ1, (4a)
ė2 = [1 + d1(t)]ωe3 − vd2(t) + τ2, (4b)
ė3 = −[1 + d1(t)]ωe2 + vds(e1), (4c)

with the virtual control inputs τ1 and τ2 satisfying

τ1 = ωd − ω, (5a)
τ2 = vdc(e1)− v. (5b)

Note that the tracking error dynamics (4) can be rewritten
as follows:

ė = A(ρ)e+B[τ + F (ρ)d], (6)

where e = (e1, e2, e3)> ∈ R3, τ = (τ1, τ2)> ∈ R2, d =
(d1, d2)> ∈ R2 and

A(ρ) =

 0 0 0
0 0 [1 + d1(t)]ω

vdsc(e1) −[1 + d1(t)]ω 0

 ,

B =

 1 0
0 1
0 0

 , F (ρ) =

(
−ω 0
0 −v

)
,
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with the vector of scheduling variables as ρ = (vdsc(e1), [1+
d1(t)]ω)> ∈ R2, which is bounded due to the physical and
actuator limitations, and the fact that 0 < vd < vd(t) ≤ vd
and ||d1||∞ ≤ dmax < 1. It is clear that system (6) is in an
LPV form and the input and state constraint sets are given
now as follows:

E = {e ∈ R3 : (e1, e2, e3) ∈ R× [−xy, xy]× [−xy, xy]}, (7)

U = {τ ∈ R2 : (τ1, τ2) ∈ [−τ1, τ1]× [−τ2, τ2]}, (8)

where xy = (xmax−xmin)+(ymax−ymin), τ1 = ωd+ωmax

and τ2 = vd+vmax. Moreover, note that there always exist a
Metzler matrix A0 ∈ R3×3, and some matrices Aj ∈ R3×3,
for j = 1, 4, such that the following equations

A(ρ) = A0 +

4∑
j=1

αj(ρ)Aj ,

4∑
j=1

αj(ρ) = 1, (9)

with αj(ρ) ∈ [0, 1], hold for the system (6). Therefore, the
problem now is to design a robust control law τ such that
the trajectories of the system (6) converge to zero despite
the disturbances d taking into account the state and input
constraints (7) and (8), i.e., e(t) ∈ E and τ(t) ∈ U, for all
t ≥ 0.

Thus, the idea is to design a controller in the following
form:

τ = u0 + u1. (10)

The controller (10) is divided into two parts. The nonlinear
element u1 is the ISMC that will compensate the effect of
the matched disturbances, without reaching phase, taking into
account only the input constraints; whereas u0 is the nominal
control part, which is composed of a interval predictor–based
state–feedback controller and the MPC scheme that will deal
with the state and input constraints.

According to (8), ||τ || ≤ τmax, for a given τmax > 0;
then, a specific control effort can be assigned to each part of
the controller (10), i.e., ||u0|| ≤ u0max and ||u1|| ≤ u1max,
with some constants u0max, u1max > 0 such that u0max +
u1max ≤ τmax.

IV. ROBUST CONTROL DESIGN

The proposed controller comprises the design of a robust
control law, which is based on an ISMC approach together
with an interval predictor–based state–feedback controller
and the MPC, which deals with state and input constraints.
The proposed approach will guarantee exponential stability
for the tracking error dynamics. In the following sections,
we describe the proposed methodology.

A. Integral Sliding–Mode Control Design

Let us define the following sliding variable

s(e(t)) = G[e(t)−e(0)]−G
∫ t

0

[A0e(σ)+Bu0(σ)]dσ, (11)

where G ∈ R2×3 is such that det(GB) 6= 0. The optimal
way to design G is G = B> or G = (B>B)−1B>, for more

details see e.g., [16] and [17]. Note that the dynamics of the
sliding variable satisfies

ṡ = GB[u1 + F (ρ)d] +G

4∑
j=1

αj(ρ)Aje. (12)

Then, the ISMC u1 is proposed as

u1 = −ζ(e)
(GB)>s

||(GB)>s||
, (13)

with some positive gain ζ(e) > 0, for all e ∈ E. The
following lemma provides the conditions to ensure the finite–
time convergence of the sliding variable to zero fulfilling the
input constraint.

Lemma 1. Let the ISMC (13), with G = B> or G =
(B>B)−1B>, be applied to the system (12), for a given
u1max > 0. If the gain ζ(e) is selected as

ζ(e) = γ + Fmax +Amax||e||, (14)

with Fmax = dmax

√
v2max + ω2

max, Amax =
∑4

j=1 ||Aj ||,
and some γ > 0 such that 0 < γ ≤ u1max − Fmax −
Amaxemax, with emax =

√
π2 + 2xy2, is satisfied for a given

u1max > 0; then, s = 0 is UFTS.

Therefore, the robust controller u1 will deal with the
perturbations F (ρ)d and part of the parametric uncertainty∑n

j=1 αj(ρ)Aje, satisfying the input constraint ||u1|| ≤
u1max. Note that the term F (ρ)d is matched with the
control u1, and hence, it is completely compensated from
the beginning. However, since the parametric uncertainty∑n

j=1 αj(ρ)Aje is not matched with the control u1, only
its projection into the matched space of B>, i.e., the space
directly affected by u1, could be compensated by u1.

Additionally, considering that u0max + u1max ≤ τmax,
it is possible to fix u1max according to the upper bound
of the disturbances, e.g., u1max = 1.1(Fmax + Amaxemax);
and then, to assign the rest of the control effort to u0, i.e.,
u0max ≤ τmax − 1.1(Fmax +Amaxemax).

B. Interval Predictor
Since the sliding–mode takes place, from (12) and recall-

ing that GB = I2, it follows that the equivalent control is

u1eq = −G
4∑

j=1

αj(ρ)Aje− F (ρ)d. (15)

Therefore, taking into account (9) and substituting (15)
in (6), the dynamics of the system on the sliding surface is
given by

ė =

[
A0 +

4∑
j=1

αj(ρ)Ãj

]
e+Bu0, (16)

where Ãj = (I3−BG)Aj . Then, according to [18] and [19],
it follows that

−Ae− −Ae+ ≤
4∑

j=1

αj(ρ)Ãje ≤ Ae+ +Ae−,
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where A =
∑4

j=1 Ã
+
j , A =

∑4
j=1 Ã

−
j and with a couple of

vectors e, e ∈ R3 such that e ≤ e ≤ e. Thus, it is possible to
design the following interval predictor [20] for system (16)

ż = A0z +A1z
+ +A2z

− + Bu0, (17)

where z = (e>, e>)> ∈ R6, and the system matrices given
as follows

A0 =

(
A0 0
0 A0

)
, A1 =

(
0 −A
0 A

)
,

A2 =

(
−A 0
A 0

)
, B =

(
B
B

)
.

Then, in order to stabilize the tracking error dynamics (6),
we need to design a state–feedback u0 to take the trajectories
of the system (17) to zero (see, e.g., [21]).

C. State–Feedback Control Design

The control signal u0 is proposed as

u0(t) =

{
U0(t), z(ti) /∈ Ef ,
ū0(t), z(ti) ∈ Ef ,

(18)

where U0 is the control signal provided by the MPC scheme,
for all t ∈ [ti, ti+h), with h ∈ (0, T ) and T as the application
time and the prediction interval for the MPC, respectively;
and ū0 is the state–feedback controller. The switching set Ef

is defined further on.
The state–feedback controller ū0 is designed, based on

(17), as
ū0 = K0z +K1z

+ +K2z
−, (19)

where K0,K1,K2 ∈ R2×6 are the matrix gains to be
designed. Note that the above controller is nonlinear. The
following lemma provides a constructive way to design the
state–feedback gains in order to ensure the convergence of
the trajectories of the system (17) to zero.

Lemma 2. Let the state–feedback control law (19) be applied
to the system (17), i.e., u0(t) = ū0(t). Suppose that there
exist two vectors e0, e0 ∈ R3, such that e0 ≤ e(0) ≤ e0,
that there also exist diagonal matrices 0 < Xl ∈ R6×6,
0 ≤ R1, R2 ∈ R6×6, some diagonal matrices Ql, R0 ∈ R6×6

and some matrices Yl ∈ R2×6, for l = 0, 2, such that the
following LMIs

Ω =

 Ω11 Ω12 Ω13

? Ω22 Ω23

? ? Ω33

 � 0, (20)

Q0 + min{Q1, Q2}+ 2min{R1, R2} > 0, (21)
Ω11 = He(A0X0 + BY0) +Q0,

Ω12 = A1X1 + BY1 +X0A>0 + Y >0 B> +R1,

Ω13 = A2X2 + BY2 −X0A>0 − Y >0 B> −R2,

Ω22 = He(A1X1 + BY1) +Q1,

Ω23 = A2X2 + BY2 −X1A>1 − Y >1 B> +R0,

Ω33 = Q2 −He(A2X2 + BY2),

are feasible. If the state–feedback gains are designed as Kl =
YlX

−1
l , for l = 0, 2; then, the trajectories of the system (17)

exponentially converge to zero.

It is worth saying that the diagonal structure required for
P0 = X−10 is feasible since the existence of a diagonal matrix
P0, as a solution of the Lyapunov equation He(P0Ā0) ≺ 0,
is equivalent to the stability of a Meztler matrix Ā0 = A0 +
BK0.

Therefore, the control (19) provides exponential conver-
gence to zero for the interval predictor (17). Moreover, due
to the fact that A0 is a Metzler matrix and e0 ≤ e(0) ≤ e0,
for two vectors e0, e0 ∈ R3, the inclusion property e(t) ≤
e(t) ≤ e(t) is satisfied (see, for more details, e.g., [21]);
hence, the trajectories of system (4) will also converge to zero
and the considered problem will be properly solved provided
that x(t) ∈ X, y(t) ∈ Y, v(t) ∈ V and ω(t) ∈ W, for all
t ≥ 0, hold.

Now, we are able to define the set Ef as follows

Ef = {z ∈ R6 : Vz(z) ≤ β−1ε}, (22)

where Vz = z>P0z+z>P1z
+−z>P2z

−, ε is a positive con-
stant, and β = min∀i=1,6 λi

[
Φ(P0 + P+

1 + P+
2 )−1

]
, with

Φ = Q̄0 + min{Q̄1, Q̄2} + 2min{R̄1, R̄2}, and Xl = P−1l ,
Q̄l = PlQlPl, R̄l = PlRlPl, for l = 0, 2. It is clear that
for any ε > 0, Ef is an invariant set for the system (17);
and moreover, all the trajectories, outside of Ef , are attracted
inside it and converge to zero. Therefore, it is always possible
to select ε such that Ef ⊂ E × E, i.e., such that x(t) ∈ X
and y(t) ∈ Y hold, for all t ≥ tf ≥ 0.

D. Model Predictive Control Design

Before proceeding with the description of the MPC
scheme, we need to introduce the following assumption.

Assumption 1. There exist ζ(e), K0, K1 and K2, satisfying
the conditions of Lemmas 1 and 2, such that

−ζ(e(t))
(GB)>s(t)

||(GB)>s(t)||
+K0z(t)+K1z

+(t)+K2z
−(t) ∈ U,

for any z ∈ Ef and all t ≥ tf ≥ 0.

The previous assumption implies that there always exists a
controller (10), given by (13) and (19), such that system (6)
is stabilized, and inside Ef , the state and input constraints
hold.

Let us now describe the application of the MPC, which
will deal with the state and input constraints for all z(ti) /∈
Ef . Define T and h ∈ (0, T ) as the prediction interval and
the application time for the MPC, respectively. Therefore,
the optimal control problem for the MPC algorithm is given
as follows (see, e.g., [6], [7], and [20]):
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Problem 1. For given matrices 0 �Wl ∈ R6×6, l = 0, 1, a
matrix 0 � W2 ∈ R2×2, and ti = ih, with i ∈ N+, to find
the control signals

U0 = argmin
u:[ti,ti+T ]→R2

z>(ti + T )W0z(ti + T )

+

∫ ti+T

ti

[
z>(σ)W1z(σ) + u>0 (σ)W2u0(σ)

]
dσ, (23)

such that the following constraints hold: a) z : [ti, ti +T ]→
R6 is a solution of (17); b) z(σ) ∈ E × E and u0(σ) ∈ U
for σ ∈ [ti, ti + T ]; and c) z(ti + T ) ∈ Ef .

Thus, if the above–mentioned optimal control problem is
feasible, the trajectories of the system (17) will convergence
to the terminal set Ef , when u0(t) = U0(t); and then, inside
Ef , when u0(t) = ū0(t), the trajectories will converge to
zero satisfying the state and input constraints given in (7)
and (8).

Finally, the statements of Lemmas 1 and 2, and the
solution of the Problem 1 will provide the main result of
this paper, which is described by the following Theorem.

Theorem 1. Let Assumption 1, the conditions of Lemmas 1
and 2 be satisfied and Problem 1 be feasible. If the control
law (10), given by (13) and (18), is applied to the system
(4) and designed according to Lemmas 1, 2 and the solution
of Problem 1; then, the tracking error dynamics (4) is UES
and satisfies the state and input constraints given in (7) and
(8).

V. SIMULATION RESULTS
The initial conditions for the kinematics are x0 = 1.5[m],

y0 = 1.5[m] and θ0 = 1.5[rad], and the state and input con-
straints sets are given as X = [−1.6, 1.6], Y = [−1.6, 1.6],
V = [−5, 5] and W = [−9, 9]. The desired trajectory is given
by ωd(t) = (ẋdÿd − ẏdẍd)/(ẋ2d + ẏ2d), vd(t) =

√
ẋ2d + ẏ2d,

xd(t) = c(0.21t), yd(t) = s(0.42t), and θd(t) =
∫ t

0
ωd(τ)dτ ;

and thus, ωd = 0.3094[rad/s] and vd = 0.6918[m/s]. For
robustness purposes, the external perturbations are taken as
d1(t) = 0.1s(3t)+0.5 and d2(t) = 0.1c(t)+0.5, and hence,
dmax = 0.6. It is possible to fix the matrix A0 as

A0 =

 −1 0 0
0 −1 0

0.3914vd 0 −1

 ,

and then, Ai, with i = 1, 4, can be computed
by a convex polytopic approach, which guarantees the
fulfillment of (9), i.e., such that

∑4
j=1 αj(ρ)Aj =

A(ρ) − A0. For the interval predictor, the initial condi-
tions are z0 = (0.0508,−1.5516, 0.3726)> and z0 =
(0.0908,−1.5116, 0.4126)>. The parameters for the ISMC
are fixed, following the statements of Lemma 1, as Fmax =
0.6177, Amax = 8.1458 and γ = 0.5. The gains of the state–
feedback controller are assessed with the LMIs of Lemma 2,
i.e.,

K0 =

(
−0.05, 0.00,−0.036,−0.05, 0.00,−0.036
0.00,−0.024, 0.00, 0.00,−0.024, 0.00

)
,

K1 =

(
−0.211, 0.00,−0.09,−126.479,−0.055,−0.09
0.00,−0.205, 0.00,−0.059,−116.542, 0.00

)
,

K2 =

(
126.426,−0.078, 0.089, 0.211, 0, 0.089
−0.082, 116.441, 0.00, 0.00, 0.204, 0.00

)
.

The prediction horizon is selected as N = 5, with weight
matrices W0 = I , W1 = 10000I and W2 = 0.1I , and we
compute the corresponding switching set Ef according to
(22), with β = 5.0911 and ε = 0.0011.

All the simulations have been done in MATLAB with
the Euler discretization method, sampling–time equal to
0.001, and the solutions for the corresponding LMIs have
been found by means of SDPT3 solver among YALMIP in
MATLAB while the MPC has been implemented using the
nlmpc toolbox in MATLAB.

The results are shown in Figs. 1 and 2. The results
depicted by Figs. 1 and 2 show that the proposed control
strategy is able to ensure the trajectory tracking task without
transgressing the state and input constraints, respectively.

VI. CONCLUSIONS

In this paper, we propose the design of a robust control
strategy for the trajectory tracking problem in perturbed
unicycle mobile robots, considering state and input con-
straints. The proposed robust controller is based on an
ISMC approach together with an interval predictor–based
state–feedback controller and an MPC scheme. The robust
controller deals with some perturbations in the kinematic
model, and with state and input constraints that are related
to restrictions on the workspace and saturated actuators,
respectively; and it guarantees the exponential convergence
to zero of the tracking error. Moreover, the synthesis of the
proposed controller is constructive since is based on LMIs.
Furthermore, the performance of the proposed approach is
validated through some simulations.
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