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Abstract— We present a novel method to approximate reach-
able sets at time points, of continuous-time LTI systems, in
which initial states are subject to compact convex uncertainty
and the input may arbitrarily vary over time within a zonotopic
uncertainty set. We prove a priori bounds on the approximation
error, which are of second order depending on a discretization
parameter and can be used to subsequently obtain over-
and under-approximations rather than mere approximations.
In contrast to competing approaches, our method does not
iteratively propagate over- or under-approximations, and it does
not reduce the complexity of any of the zonotopes internally
produced at intermediate stages. We compare the performance
of our method to that of competing approaches on examples.

I. INTRODUCTION

Reachable sets represent a central concept in systems and

control theory and have applications in numerous fields; see,

e.g. [1]–[5] and the references given there. This is why the

problem of efficiently and accurately approximating these

sets has been generating research interest for decades. In

this note, we consider continuous-time LTI systems of the

form

ẋ(t) = Ax(t) + u(t), (1)

where A ∈ R
n×n, x(0) ∈ X0 and the input signal u may

arbitrarily vary over time within the set U . The matrix A,

the uncertainty sets X0, U ⊆ R
n as well as a duration T are

given. The form of the system (1) covers the variant ẋ(t) =
Ax(t)+ c+Bu(t) for a vector c and a matrix B of suitable

dimensions, with obvious correspondence between the two

problem data. Assuming that X0 is nonempty compact and

convex, U is a zonotope, and T > 0, we seek to approximate

the reachable set of (1) at time T . For a definition of

reachable sets, we refer to Section II-C.

Early attempts have approximated reachable sets by in-

tersections of supporting half-spaces and by convex hulls

of support points [1], [6]. VELIOV has proposed to use

Minkowski sums of linearly transformed copies of the un-

certainty set U instead [7]. His method can be interpreted as

numerically approximating the set-valued integral represent-

ing reachable sets. It applies to reachable sets at time points

of LTV systems and to any compact convex uncertainty

set U . The method shows second order convergence, i.e.,

the approximation error is of second order depending on a

discretization parameter, and this is best possible for linear

quadrature methods unless the uncertainty set U is smooth
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[7], [8]. While the aforementioned research has focused on

qualitative, asymptotic results, specific error bounds allowing

to obtain under- and over-approximations have also been

presented [7], [9]. The thesis [10] provides an excellent

survey of research in linear systems reachability up to the

year 1995.

In an influential paper, GIRARD has proposed a method to

over-approximate reachable sets over compact time intervals

(reachable tubes), which applies to LTI systems under zono-

topic uncertainties [11]. Important variants and extensions

have been proposed in, e.g. [5], [12]–[16]; see the surveys

[17], [18]. The method has been extended to LTV systems

[19]. An effective method to automatically tune the various

algorithm parameters to the reachability problem at hand has

been presented in [20] and has been implemented in the

software CORA [21]. Other variants of GIRARD’s original

method have also been implemented [16], [22]–[24].

All the aforementioned contributions [5], [11]–[16], [19]

show first order convergence and follow, at the algorithmic

level, a two-step procedure, in which a reachable set over

a small time interval is over-approximated and subsequently

and iteratively propagated and extended to obtain a sequence

of over-approximations over longer time intervals. Extremely

complex intermediate results may be produced which are

subsequently reduced to remove information not needed in

the approximation that is actually sought.

Ellipsoidal techniques use intersections and unions of

ellipsoids to enclose reachable sets at time points [3]. In

theory, arbitrarily accurate under- and over-approximations

can be obtained by increasing the number of ellipsoids.

However, error estimates are not available, numerical errors

are neglected, and in practice, neither over-approximations

nor under-approximations can be guaranteed. See, e.g. [3,

Sec. 7.2, Fig. 4.3]. The methods in [4], [25]–[28] compute

interval over-approximations and are not convergent. Finally,

some methods numerically solve partial differential equations

characterizing reachable sets [3], which requires discretizing

the state space and so the computational effort would scale

exponentially with the state space dimension.

In this paper, we present a novel method to over-

approximate reachable sets of the system (1) at time points.

Similar to VELIOV [7], we interpret the problem as one

of approximating a set-valued integral, and we approach

it using the set-valued analog of the Trapezoidal Method.

The resulting method converges quadratically depending on a

discretization parameter, as proved in Section III, and avoids

propagating over-approximations and reducing zonotopes.

Our convergence result is based on two contributions which

may be of independent interest, namely, a novel error bound
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for the (classical, real-valued) Trapezoidal Method, and a

novel result regarding the structure of set-valued integrands

arising in linear reachability problems. In Section IV we

compare the performance of our method to that of competing

approaches on several examples.

II. PRELIMINARIES

A. Notation

The relative complement of the set A in the set B is

denoted by B \ A. R, R+, Z and Z+ denote the sets of

real numbers, non-negative real numbers, integers and non-

negative integers, respectively, and N = Z+ \ {0}. [a, b],
]a, b[, [a, b[, and ]a, b] denote closed, open and half-open,

respectively, intervals with end points a and b, e.g. [0,∞[ =
R+. [a; b], ]a; b[, [a; b[, and ]a; b] stand for discrete intervals,

e.g. [a; b] = [a, b]∩Z, [1; 4[ = {1, 2, 3}, and [0; 0[ = ∅. For a

nonempty subset M of the extended reals [−∞,∞], maxM ,

minM , supM and infM denote the maximum, minimum,

supremum and infimum, respectively, of M and we adopt

the convention that sup ∅ = 0.

A×B is the Cartesian product of sets A and B. f : A → B
denotes a map from A into B, and the image of a subset

C ⊆ A under f is denoted f(C), f(C) =
⋃

a∈C f(a).

Arithmetic operations involving subsets of a linear space

X are defined pointwise, e.g. αM = {αy | y ∈ M} and

M + N = {y + z | y ∈ M, z ∈ N} whenever α ∈ R

and M,N ⊆ X . If X is endowed with a norm ‖ · ‖,

the norm of a nonempty subset M ⊆ X is defined by

‖M‖ = supx∈M ‖x‖, rad(M) is the (Chebyshev) radius of

M , the closed ball with radius r > 0 centered at c ∈ X
is denoted B̄(c, r) = {x ∈ X | ‖x− c‖ ≤ r}, and we shall

abbreviate B̄ = B̄(0, 1). See [34]. The notation is used

without change in the case X = R
n, but if ‖ · ‖ is the

usual p-norm, we add p ∈ [1,∞] as a subscript, e.g. ‖ · ‖p,

radp, and B̄p. 〈x|y〉 denotes the standard Euclidean inner

product of x, y ∈ X , 〈x|y〉 =
∑n

k=1 xkyk. The support

function σ(·,M) of a nonempty subset M ⊆ X is defined

by σ(v,M) = sup {〈v|x〉 |x ∈ M} for all v ∈ X . If

additionally Y = R
m, the set of linear maps X → Y is

identified with the set of real m×n matrices and is denoted

R
m×n. L∗ ∈ R

n×m is the transpose of L ∈ R
m×n. Given

norms on X and Y , Rm×n is endowed with the norm given

by ‖L‖ = max
{
‖Lx‖

∣∣x ∈ B̄ ⊆ X
}

, and if the norms on X
and Y are the respective p-norms, we denote ‖L‖p = ‖L‖.

A map is of class Ck if it is continuous and k times

continuously differentiable, k ∈ Z+. The class of maps in

Ck with locally Lipschitz kth derivative is denoted Ck,1.

B. Functions of Bounded Variation and Related Concepts

Integration and measure are always understood in the

sense of Lebesgue, and a.e. is to abbreviate both almost every

and almost everywhere. For the concepts in this section, we

refer to [35], [36].

Let I ⊆ R be nonempty and f : I → R. The variation var(f)

of f is defined by

var(f) = sup
k∑

i=1

|f(ti)− f(ti−1)|, (2)

where the supremum in (2) is taken over all k ∈ N and all

t0, . . . , tk ∈ I satisfying ti−1 < ti whenever i ∈ [1; k], and

f is of bounded variation (b.v.) if var(f) < ∞.

The function f is absolutely continuous (a.c.) if I = [a, b],
a, b ∈ R, a < b, and f is the indefinite integral of an

integrable function [a, b] → R. In this case, the derivative

f ′(t) exists for a.e. t ∈ [a, b], i.e., f ′ : [a, b] \ E → R for

a well-defined null set E ⊆ [a, b]. In particular, if f is a.c.,

then var(f ′) is well-defined and coincides with the essential

variation in the sense of [36] of any extension of f ′ to [a, b].

C. Reachable Sets

Let I ⊆ R be an interval containing the origin. If u : I →
R

n is locally integrable, we denote by ϕ(·, p, u) the unique

solution of (1) defined on I and satisfying ϕ(0, p, u) = p for

all p ∈ R
n,

ϕ(t, p, u) = eAtp+

∫ t

0

eA(t−s)u(s) ds for all t ∈ I . (3)

If t ∈ R and X,U ⊆ R
n, then

R(t,X, U) = {ϕ(t, p, u) | p ∈ X,u : R → U loc. int.}

is the reachable set at time t of the system (1). If X
and U are nonempty, compact and convex, then so are the

reachable sets, which are conveniently written using a set-

valued integral,

R(t,X, U) = eAtX +

∫ t

0

eAsU ds (t ≥ 0). (4)

See, e.g. [37].

III. MAIN RESULTS

Consider the system (1), where both the initial state x(0)
and the input u are subject to uncertainty as detailed in

Section I. We assume the following.

(H1) The uncertainty set U ⊆ R
n is a zonotope,

U = Z̄(u0, G),

where u0 ∈ R
n, G ∈ R

n×m, and m ∈ Z+. The uncertainty

set X0 ⊆ R
n is nonempty, compact and convex, T > 0, and

A ∈ R
n×n, where n ∈ N.

We propose to approximate the reachable set R(T,X0, U)
as follows. Given a discretization parameter N ∈ N, we

produce a sequence Ω0, . . . ,ΩN of subsets Ωk given by

Ω0 = X0 and by

Ωk = ΦkX0 + ξ +
h

2

(
U0 +ΦkU0

)
+

k−1∑

i=1

Φi(ξ + hU0) (5)

for all k ∈ [1;N ], where h = T/N , U0 = Z̄(0, G), and

ξ ∈ R
n and Φ ∈ R

n×n are given by the identity
(
Φ ξ
0 1

)
= exp

(
Ah u0h
0 0

)
. (6)
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We here assume the ability to compute the set ΦkX0. By

suitably representing X0 and possibly requiring X0 to belong

to a specific class of sets, the right hand side of (5) can be

evaluated on a computer. In addition, we assume throughout

that the exponential of a matrix can be computed exactly,

and we note that (6) implies

Φ = exp(Ah) and ξ =

∫ h

0

exp(As)u0 ds. (7)

As it will turn out, each set Ωk approximates R(kh,X0, U),
and in particular, ΩN is an approximation of R(T,X0, U).
We emphasize that, in contrast to existing methods [11],

[13], [19], the sets Ωk are not, in general, over- or under-

approximations. Over-approximations Ω̂k will be produced

from Ωk only later, see (9), and will never be propagated.

In order to quantify the approximation error, we shall rely

on the bound

‖ exp(At)‖∞ ≤ M exp(ηt). (8)

We summarize our assumptions as follows.

(H2) N ∈ N and h = T/N . The constants M,η ∈ R satisfy

(8) for all t ∈ [0, T ], and the sequence Ω0, . . . ,ΩN is given

by Ω0 = X0 and by (5) for all k ∈ [1;N ].

We next present the main result of this note.

III.1 Theorem. Assume (H1) and (H2), denote by ‖ · ‖ the

infinity norm, and let the radius rad, the Hausdorff distance

dH and the closed unit ball B̄ be defined w.r.t. this norm.

Define

ϑ =
M‖A‖ rad(U)

24
, ε(t) = ‖A‖

∫ t

0

eηs ds, δ(t) = 1 + eηt

for all t ∈ R, and define

Ω̂k = Ωk + 2ϑε(kh)h2B̄ (9)

for all k ∈ [1;N ]. Then we have

R(kh) ⊆ Ω̂k, (10)

Ωk ⊆ R(kh) + ϑ (3δ(kh) + 5ε(kh))h2B̄, (11)

dH(R(kh), Ω̂k) ≤ ϑ (3δ(kh) + 7ε(kh))h2 (12)

for all k ∈ [1;N ], where we have denoted R(kh) =
R(kh,X0, U).

We briefly discuss the result. The only non-trivial assump-

tion is the growth bound (8), which is satisfied, e.g. by any

pair of constants

(M,η) ∈
{
(n, µ1(A)), (n

1/2, µ2(A)), (1, µ∞(A))
}
, (13)

where µp(A) denotes the logarithmic norm of A w.r.t. the

p-norm [38]. The quantities ϑ, ε(t) and δ(t) in the theorem

depend of our choice of M and η and define the amount by

which the set Ωk is enlarged to obtain the over-approximation

Ω̂k of R(kh,X0, U). Importantly, for any choice of M and η,

the functions ε and δ are bounded on the interval [0, T ], and

hence, the bound (12) on the approximation error is of order

h2 as h → 0, uniformly for k ∈ [0;N ]. While in this paper

we focus on over-approximations, under-approximations of

second order accuracy may be obtained from the inclusion

(11) in a similar fashion.

Theorem III.1 has been established with the help of two

contributions presented in Sections III-A and III-B.

A. Error bounds for the Trapezoidal Method

We consider integrable functions f : [a, a+ T ] → R for

some a ∈ R and some T > 0. To approximate the integral∫ a+T

a
f(t) dt, we divide the interval [a, a+ T ] into N ∈ N

sub-intervals of length h and apply the Trapezoidal Method

QN
a,T defined by

QN
a,T (f) =

h

2
(f(a) + f(a+ T )) + h

N−1∑

k=1

f(a+ kh), (14)

where h = T/N is the step size. The error functional EN
a,T

for this quadrature method is defined by

EN
a,T (f) =

∫ a+T

a

f(t) dt−QN
a,T (f).

In our proof of Theorem III.1, f will be the integrand in the

identity

σ(v,R(T,X0, U)) =

∫ T

0

σ(v, eAtU) dt, (15)

which is why we are interested in accurate bounds on

the quadrature error EN
a,T (f) for functions f satisfying an

exponential growth bound similar to the one in (8).

III.2 Proposition. Let a, η,M ∈ R, T > 0 and N ∈ N,

and denote h = T/N . Then the following holds for every

function f : [a, a+ T ] → R.

(i) EN
a,T (f) ≤ 0 whenever f is convex.

(ii) |EN
a,T (f)| ≤ εh2MT/12 whenever f is of class C1,1

and |f ′′(t)| ≤ Meη(t−a) for a.e. t, where ε = 1 if η = 0
and otherwise

ε =
eηT − 1

ηT
·

12

(ηh)2

(
ηh

2 tanh(ηh/2)
− 1

)
. (16)

(iii) |EN
a,T (f)| ≤ h2 var(f ′)/8 whenever f ′ is of b.v..

The bounds given in (i) through (iii) are attained. Moreover,

we have ε ≤ T−1
∫ T

0
exp(ηt) dt ≤ (1 + exp(ηT ))/2 in (ii).

The bounds in (i) and (iii), and their sharpness, are well

known, and the same holds for the one given in (ii) in

the special case η = 0, ε = 1. See [39]. If η 6= 0,

the latter estimate would have to be applied with ε =
max{1, exp(ηT )} instead, which is where our estimate in

(ii) improves upon the known one.

B. Regularity of the integrand in (15)

The integrand in (15) equals 〈v|exp(At)u0〉 +
‖G∗ exp(A∗t)v‖1. Our next result shows that we can

bound the quadrature error resulting from the second

summand, using a combination of (i)-(iii) in Proposition

III.2.
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III.3 Proposition. Let f : [a, b] → R
n ∈ C1,1 and define

V = ‖f ′(a)‖1 + ‖f ′(b)‖1 +

∫ b

a

‖f ′′(t)‖1 dt, (17)

where a, b ∈ R, a < b, and n ∈ N. Then there exist functions

α, β : [a, b] → R satisfying the following conditions.

(i) β is convex and Lipschitz, and β′(b)− β′(a) ≤ V .

(ii) α ∈ C1,1 and |α′′(t)| ≤ ‖f ′′(t)‖1 for a.e. t ∈ [a, b].
(iii) α(t) + β(t) = ‖f(t)‖1 for every t ∈ [a, b], and for

a.e. t ∈ [a, b] we have |α′(t) + β′(t)| ≤ ‖f ′(t)‖1.

The above result implies that

var(g′) ≤ V +

∫ b

a

‖f ′′(t)‖1 dt, (18)

where g is given by g(t) = ‖f(t)‖1, and hence, allows

bounding the error of the Trapezoidal Method applied to∫ b

a
‖f(t)‖1 dt using Proposition III.2(iii). Bounds similar to

(18) are known [8], [40]–[42] and have been applied to bound

quadrature errors [7]–[9], [41]. The main advantage of the

decomposition established in Proposition III.3 is that due to

the convexity of the summand β the corresponding quadra-

ture error can be ignored when we enlarge the approximation

Ωk to obtain the over-approximation Ω̂k in (9). This reduces

the error of our over-approximation of the reachable set and

explains the difference between the upper and lower bounds

in (10) and (11), respectively.

IV. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the four

methods listed in Tab. I. In all examples, the uncertainty set

X0 is a zonotope, and hence, the sets Ωk and Ω̂k in Theorem

III.1 are zonotopes. We over-approximate the reachable set

R = R(T,X0, U) by the set Ω̂N and report the approxima-

tion error, i.e., the Hausdorff distance between R and Ω̂N ,

or a bound on that error, as well as the computational time

to obtain Ω̂N and the number of generators of Ω̂N . We are

particularly interested in the dependence of the error on the

number of generators in the over-approximation, and on the

computational time to obtain the over-approximation.

TABLE I

METHODS COMPARED IN SECTION IV

Method Description

CORAa (�) CORA [21]; automatic parameter tuning; theory in [11], [14],
[15], [20]

CORAs (⋄) CORA [21]; standard algorithm without zonotope reduction,
9 Taylor terms; theory in [11], [14], [15]

KK (◦) method from [9], using [9, equ. (2.1)] to obtain over-
approximation1; theory in [7], [9]; implemented by present
author

GR (•◦) method proposed in present paper

The software CORA (v2024.1.1) [21] is run under MAT-

LAB (R2023a) [43], GR and KK are run under Mathematica

(13.2.1) [44]. All tests are run in serial mode on a computer

equipped with AMD EPYC 7452 32-core processors and 1
TB of RAM under Linux x86 (64-bit).

1We have replaced ‖ exp(AT )‖2 in [9, equ. (2.1)], an obvious misprint,
by exp(‖A‖2T ).

A. Oscillator

Consider the reachability problem from [21, Sect. 9.3.1]

given by

A =

(
−7/10 −2

2 −7/10

)
,

X0 = (10, 5) + [−1/2, 1/2]
2
, U = [3/4, 5/4]

2
, and T = 5.

For GR, Theorem III.1 is applied with M = 21/2 and η =
µ2(A) = −7/10. The approximation error ε is the Hausdorff

distance w.r.t. the Euclidean norm, which has been computed

with relative error not exceeding 1% using the method from

[10, Sect. 3.1.4]. From the results presented in Fig. 1 we can

clearly distinguish between the two second order methods

GR and KK, and the two first order methods CORAa and

CORAs. In addition, the results for CORAs show the huge

complexity of the over-approximations generated by the

algorithms in CORA [21], which is subsequently reduced

by a post-processing step. For this example, GR shows the

best performance and KK shows the worst, in terms of both

the dependence of the error on the number of generators and

in terms of the dependence on the computational time. The

performance of KK is the result of the conservativeness of

the a priori error bound in [9, equ. (2.1)] that we have used

to obtain over-approximations, and KK would be expected

to outperform CORA only if very accurate approximations

of the reachable set are to be computed.

We would like to add that the relatively large compu-

tational times for CORA compared to GR should not be

interpreted as a deficit of CORA, as CORA additionally

approximates reachable tubes while GR does not. However,

the computational times of CORA for ever stricter error

requirements seem to grow faster than those of both KK

and GR.

B. Platoon of vehicles

We consider a reachability problem proposed in [45],

which is also used in [46], [47]. The system (1) describes a

controlled platoon of three vehicles with a manually driven

leader whose acceleration is uncertain. We focus on the

case without any communication between the vehicles, for

which the matrix A ∈ R
9×9 is given in [45, p. 40], U =

{0} × [−9, 1]× {0}7, X0 = {0}, and T = 20.

We compare GR to CORAa. As for GR, all pairs (M,η)
in (13) lead to overly conservative estimates of the norm of

the exponential matrix, which is why we have resorted to

M = 300 and η = −0.4, which are easily demonstrated to

satisfy the condition (8).

The results presented in Fig. 2 show that for over-

approximations of comparable complexity, the approxima-

tions produced by CORA are more precise than those

produced by GR. The second order method GR can be

expected to outperform the first order method CORAa only if

extremely accurate approximations are required. In addition,

the presentation Fig. 2 gives a slight advantage to GR over

CORAa, since ε̂ is a bound on dH(R, Ω̂N ) w.r.t. the 2-norm

for CORAa and w.r.t. the ∞-norm (GR). Similarly to the case

of KK in Example IV-A, this is due to a very poor a priori
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Fig. 1. Results for the example in Section IV-A. Approximation error ε over the number of generators g in the zonotopic over-approximation Ω̂N of the

reachable set R (left) and over the computational time in seconds (right). ε is the Hausdorff distance between R and Ω̂N w.r.t the Euclidean norm, and
−−− marks rad2(R). See also Tab. I.

bound for the exponential matrix used by GR to obtain over-

approximations. Computational times are comparable, but

again, CORAa additionally approximates reachable tubes.

The computational times of CORAa for ever stricter error

requirements seem to grow faster than those of GR.

V. CONCLUSIONS

We have proposed a novel method to over-approximate

reachable sets of continuous-time LTI systems. Our method

is convergent of second order and outperforms the second

order method from [9] in terms of accuracy and speed

by several orders of magnitude. In general, the proposed

method performs very well, and even extremely well when

highly accurate over-approximations are to be computed,

provided that the norm of the exponential matrix can be

effectively bounded by an a priori estimate. Otherwise,

the method may perform rather poorly, when compared to,

e.g. the excellent performance of CORA [21]. To combine

the proposed method with less conservative, and in particular,

with a posteriori bounds is a subject of our current research.
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Birkhäuser Boston, 2008.

[3] A. B. Kurzhanski and P. Varaiya, Dynamics and control of trajec-

tory tubes, ser. Systems & Control: Foundations & Applications.
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