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Abstract— This paper studies the learning-to-control problem
under process and sensing uncertainties for dynamical systems.
In our previous work, we developed a data-based generalization
of the iterative linear quadratic regulator (iLQR) to design
closed-loop feedback control for high-dimensional dynamical
systems with partial state observation. This method required
perfect simulation rollouts which are not realistic in real
applications. In this work, we briefly introduce this method and
explore its efficacy under process and sensing uncertainties. We
prove that in the fully observed case where the system dynamics
are corrupted with noise but the measurements are perfect, it
still converges to the global minimum. However, in the partially
observed case where both process and measurement noise exist
in the system, this method converges to a biased “optimum”.
Thus multiple rollouts need to be averaged to retrieve the
true optimum. The analysis is verified in two nonlinear robotic
examples simulated in the above cases.

Index Terms— Learning under noise, partial-state observa-
tion, data-based control, robotic motion planning.

I. INTRODUCTION

The optimal control of a nonlinear dynamical system is
computationally intractable for complex high-dimensional
systems owing to the “curse of dimensionality” [1] and the
problem becomes even more formidable when the system
has no known analytical model and is under partial state
observation. In fact, most real-world problems are partially
observed, which has been recognized as one of the major
gaps that keep controllers designed in simulation from being
applied successfully to real-world applications [2].

There has been significant work in the field of learning
to control unknown dynamical systems using Reinforcement
Learning (RL), with great progress in creating accurate mod-
els for complex robots [3]. Despite excellent performance
on several tasks [4], most of the work is in simulation,
and applying RL to real robots remains challenging [2].
The performance of policies trained in simulation directly
applied to real robots can be poor due to the “sim-to-real”
gap for numerous reasons. First, it is impossible to capture
all the physics with the process and sensing uncertainties in a
simulation model and the simulated sensor data can be very
different from its real-world counterpart. Most importantly,
as full-state measurements may not be available in real-world
robots, the policy has to be trained with partial observation,
which poses challenges to the RL algorithms.
Related Work: RL researchers have made progress in apply-
ing RL to the real world in both sim-to-real and learning
on real robot directions. Previous work such as [5] adopted
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domain randomization to address uncertainty and latency,
which improves the robustness, but harms the optimality. [6]
parallelized the simulations on multiple agents to decrease
total training time and improve the robustness. Also, adapter
networks are used to make simulated images more similar to
their real-world counterparts [7] or the other way around [8].
With these improvements, the trained policy can be directly
applied to real robots with comparable performance [9].

In the direction of on-robot training, multiple learning
processes can be run with different hyper-parameters on the
same robot [10], which greatly shorten the tuning process.
To tackle the resetting issue, a controller can be designed to
reset the robot [11] at the end of each rollout. This method
requires expert knowledge to design the resetting controller,
which could be challenging for complex robots. In fact, on-
robot training requires resetting heavily due to the finite time
rollouts needed by RL algorithms. To take advantage of both
simulation and on-robot training, one can prototype a policy
in simulation and improve it with a relatively small amount
of online training [12].

We proposed a data-based learning-to-control approach in
our previous work [13] for partially observed applications. In
this paper, we focus on the problem of learning to control un-
der uncertainty using the aforementioned partially observed
data-based iLQR (POD-iLQR) algorithm. POD-iLQR is a
data-based generalization of iLQR for partially observed
problems. It converts partially observed problems to “fully
observed” problems using a suitably defined information
state and achieves high training efficiency by decoupling the
open-loop and feedback design [14]. The information state-
based Linear Time-Varying (LTV) Autoregressive–Moving-
Average (ARMA) system identification method is used to
estimate the “fully observed” linearized information state
model, which allows us to solve the optimal control problem
while the system model is unknown. We have shown that our
generalized iLQR method tackles the challenge of partial
observation in a highly efficient fashion. In this paper, its
performance under process and sensing uncertainties will
be studied. The primary contributions of this paper are as
follows. We study the learning under noise problem with
the generalized iLQR method mentioned above. We analyze
its efficacy when the training is carried out under process
and measurement noise. We prove its convergence to the
global minimum in the full state observation case, i.e., when
the state is measured perfectly but the system dynamics
are corrupted with noise. We show that it constructs biased
LTV systems and can not converge to the true optimum in
the noisy partially observed case and that multiple rollouts
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need to be averaged to recover global optimality. The reason
we use the POD-iLQR is that we have already shown that
the basic fully observed approach is superior to state-of-
the-art RL techniques [14], while at the same time, there
are no generalizations of typical RL approaches to partially
observed problems [13]. Albeit we test in simulations on
relatively simple systems, nonetheless, this work allows us
to clearly show the challenges of learning under uncertainty
in the partially observed case, which we can only expect to
be aggravated when trying to learn on a real system. Also, the
analysis of the simulation results helps us further understand
the convergence of POD-iLQR under uncertainty, which
could help the development of the modified POD-iLQR
algorithm and its deployment on real systems eventually.

The rest of the paper is organized as follows: Section II
provides the optimal control problem formulation. Section III
briefly introduces our generalized iLQR approach. Section
IV is the main focus of this paper and generalizes the
POD-iLQR to the fully observed and partially observed
cases under noise. Section V analyzes the performance of
POD-iLQR directly applied in fully observed and partially
observed problems under uncertainty. Empirical results are
shown to support the results in Section VI.

II. PARTIALLY OBSERVED DATA-BASED ILQR
(POD-ILQR)

Let us start by writing the stochastic nonlinear dynamics in
discrete time state space form as follows: xt+1 = f(xt, ut)+
ωt, where xt is the state, ut is the control input of the system
and ωt is the process noise. Let us assume the observation
model to be of the form: zt = h(xt) + vt, where zt is the
measurement and vt is the sensor noise. Let us now define
a finite horizon objective function as:
J(z0) = E

[∑T−1
t=0 c(zt, ut) + cT (zT )

]
, where c(zt, ut)

denotes a running incremental cost and cT (zT ) denotes a
terminal cost function. The POD-iLQR was proposed to find
the control policy to minimize the cost function above with
deterministic system dynamics and measurements, i.e., ωt

and zt are zero. The goal of this work is to apply POD-
iLQR under uncertainty and analyze its efficacy.

In this section, we briefly introduce the main components
of the POD-iLQR generalization to data-based partially
observed problems and present the algorithm that we will
analyze “under noise” in the next section. The detailed
algorithm and the global optimal solution analysis can be
found in our previous work [13].

A. The Global Optimal Solution for the Partially Observed
Problem

Let Zq
t = [zTt−q, z

T
t−q+1, · · · , zTt ]T and Uq

t =
[uT

t−q, u
T
t−q+1, · · · , uT

t−1]
T , where q is the number of out-

puts/inputs included in the information state. We make the
following assumption:

Assumption 1: Observability: We assume that there exists
a finite q̄, such that for all q ≥ q̄, equation xt−q = f̄(Zq

t , U
q
t )

has a unique solution for xt−q , regardless of (Zq
t , U

q
t ), where

f̄ is the system dynamics w.r.t. Zq
t and Uq

t .

Let us now define the “Information State” Zq
t at time t

as: Zq
t =

[
zTt , z

T
t−1, · · · , zTt−q, u

T
t−1, · · · , uT

t−q

]T
. Under

Assumption 1, by taking the special case of a discrete system
that is affine in control dynamics and transforming it into
the information state form, the original partially observed
optimal control problem can be equivalently posed as the
following “fully observed” optimal control problem in terms
of the information state:

ūt = argmin
ut

T−1∑
t=0

c(zt, ut) + cT (zT ), (1)

s.t. Zq
t+1 = Zq

t + F(Zq
t )∆t+ G(Zq

t )ut∆t,

where the constraint is the system dynamics in the infor-
mation state form. The full development can be found in
[13]. Then, we can extend our recent result on the globally
optimal solution for the fully observed case [15] to the above
problem as shown in our companion work [13].

B. Open-Loop Optimal Trajectory Design using POD-ILQR

POD-iLQR takes advantage of iLQR in that the equa-
tions involved are given explicitly in terms of the LTV
dynamics, which can be calculated in the information state
form using a data-based LTV-ARMA identification method
shown below. Let us denote the nominal state and con-
trol trajectory by {x̄t, ūt} and the deviations from the
nominal trajectory as δxt and δut, the LTV system lin-
earized around the nominal trajectory can be modeled as:
δxt = At−1δxt−1 + Bt−1δut−1, δzt = Ctδxt. Let us
denote the nominal information state and deviations as Z̄t

and δZt = (δzt, δzt−1, · · · , δzt−q+1, δut−1, · · · , δut−q+1),
where δzt = zt − z̄t is the deviations from the nominal
observation at time t. Then we can show the following result:

Proposition 2.1: An ARMA model of the order q
given by: δzt = αt−1δzt−1 + · · · + αt−qδzt−q +
βt−1δut−1 + · · · + βt−qδut−q, exactly fits the
LTV system given in Eq. (II-B) if matrix Oq =[
AT

t−q...A
T
t−2C

T
t−1, · · · , AT

t−qC
T
t−q+1, CT

t−q

]T
is full column rank. The exact ARMA parameters
that match the LTV system can then be written as:
[αt−1 | αt−2 | · · · | αt−q] = CtAt−1...At−qO

q+ ,

[βt−1 | βt−2 | · · · | βt−q] = −CtAt−1...At−qO
q+Gq

+
[
CtBt−1CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
.

Thus with a q that satisfies Assumption 1, there always exists
an exact fit for the ARMA model. This allows us to write
linearized models at each step along the nominal trajectory
in terms of the ARMA parameters. The proof is in [13].

With the above result, iLQR can be generalized into the
proposed POD-iLQR method in the following:
Forward Pass: Given the initial information state Z0 and the
nominal control sequence {ut}T−1

t=0 of the current iteration,
the system can be simulated for one rollout to get the nominal
information state trajectory (Z̄t, ūt) of the current iteration.
LTV System Identification: Next, we can find the local
LTV information state system around the nominal trajectory,
which can be written as: δZt+1 = AtδZt+Btδut, where At

and Bt are the linearization of the information state dynamics
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δzt
δzt−1

δzt−2

...
δzt−q+1

δut−1

δut−2

δut−3

...
δut−q+1


︸ ︷︷ ︸

δZt

=



αt−1 αt−2 · · · αt−q+1 αt−q βt−2 βt−3 · · · βt−q+1 βt−q

1 0 · · · 0 0 0 0 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0
...

. . .
...

...
. . .

... 0
0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...

. . .
...

...
. . .

...
0 0 · · · 0 0 0 0 · · · 1 0


︸ ︷︷ ︸

At−1



δzt−1

δzt−2

...
δzt−q+1

δzt−q

δut−2

δut−3

...
δut−q+1

δut−q


︸ ︷︷ ︸

δZt−1

+



βt−1

0
...
0
0
1
0
...
0
0


︸ ︷︷ ︸
Bt−1

δut−1 (4)

as shown in Eq. (4). To estimate At and Bt, input-output
data can be collected from simulated rollouts with control
perturbation about the nominal trajectory. The LTV system
can be written in ARMA parameters as δz(j)t = αt−1δz

(j)
t−1+

· · · + αt−qδz
(j)
t−q + βt−1δu

(j)
t−1 + · · · + βt−qδu

(j)
t−q, where

δu
(j)
t ∼ N (0, σI) is the control perturbation at step t for the

jth rollout. The ARMA parameters can be solved using linear
least squares. Next, At and Bt can be obtained using the
ARMA parameters. Note that the original partially observed
system is transformed into a fully observed information state
system. Please check [16] for more details.
Backward Pass: Given the LTV system identified above,
POD-iLQR computes a local optimal control by solving
the discrete-time Riccati equation: δut = R−1BT

t (−vt+1 −
Vt+1(AtδZt + Btδut)) − ūt, which can be written in the
linear feedback form δut = −kt − KtδZt, where kt =
(R + BT

t Vt+1Bt)
−1(Rūt + BT

t vt+1) and Kt = (R +
BT
t Vt+1Bt)

−1BT
t Vt+1At, and

vt = lt,Z +AT
t vt+1 −AT

t Vt+1Bt(R+ BT
t Vt+1Bt)

−1

· (BT
t vt+1 +Rūt) (2)

Vt = lt,ZZ +AT
t (V

−1
t+1 + BtR

−1BT
t )

−1At

= lt,ZZ +AT
t Vt+1At −AT

t Vt+1Bt(R+BT
t Vt+1Bt)

−1

·BT
t Vt+1At. (3)

with the terminal conditions vT (xT ) = ∂cT
∂Z |ZT

= ∂l
∂Z |ZT

and VT (xT ) = ∇2
ZZcT |ZT

. Given the terminal conditions
and (At,Bt), the sequence vt and Vt can be computed in a
backward sweep. Then, the corresponding gains kt and Kt

can be obtained for that trajectory.
Trajectory Update: Given the gains from the backward pass,
we can update the nominal control sequence as ūk+1

t = ūk
t +

αkt+Kt(Zk+1
t −Zk

t ),Zk+1
0 = Zk

0 ,where α is the line search
parameter. By applying the control update at each step in the
forward pass, we can obtain the updated nominal trajectory.

We iterate the above steps till Rūt + BT
t vt+1 ≈ 0 and

obtain the open-loop optimal trajectory.

III. LEARNING UNDER UNCERTAINTY WITH POD-ILQR

In our previous work, the POD-iLQR was tested in simu-
lation without any process noise or measurement noise. The
main focus of this work is to extend POD-iLQR and solve the

partially observed optimal control problem in the presence
of noise and unknown system dynamics.

A. POD-ILQR Extension for Learning Under Uncertainty

In the following, we study the problem of learning under
uncertainty with POD-iLQR in two distinct cases.
1) Fully Observed Case with Process Noise: We assume
that there is process noise in the system dynamics but the
full state measurements are perfect, i.e.,

xt+1 = f(xt, ut) + ωt, zt = xt. (5)

With process noise, the simulation in the system identifi-
cation can deviate from the nominal and adversely affect
the accuracy of the identified model. The inaccurate model
then leads to difficulty in convergence. To keep the trajectory
close to the nominal trajectory, we make the following
modification to POD-iLQR:
LTV System Identification: A feedback term in control is
added using the gain K obtained from the previous backward
pass, i.e., ut = ūt + δut + Kt(δzt), where δzt = zt − z̄t
is the deviated full state measurement and δut is the input
perturbation sampled from a zero-mean i.i.d. process. The
idea is that the feedback should keep the rollouts close to
the nominal to ensure accurate models.
2) Partially Observed Case: We assume that both the
system dynamics and the sensors are corrupted by noise.
In addition, only a subset of the states is measured, i.e.,

xt+1 = f(xt, ut) + ωt, zt = Ctxt + vt, (6)

where Ct ∈ Rnz×nx , nz < nx and nz is the number of
outputs. In this case, we also need to keep the simulated
trajectories close to the nominal and thus we make the
following modifications to POD-iLQR:
LTV System Identification: A feedback term is added in
the ARMA fitting step using the feedback gain from the
last backward pass, i.e., ut = ūt + δut + Kt(δZt), where
δZt = Zt − Z̄t is the deviated information state vector as
shown in Eq. (4) and δut is the input perturbation sampled
from a zero-mean i.i.d. process.
3) Brute Force Averaging: In the following section, we
will show that even when the feedback term is added in the
partially observed case, the modified POD-iLQR algorithm
still gives a biased result instead of the true optimum due
to the partial observation, the process, and the measurement
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noise. To remove this bias, we utilize the assumption that
the process and measurement noise is zero-mean and make
the following modifications to the POD-iLQR algorithm:
Forward Pass: In each iteration, the forward pass simulation
is run for ns number of rollouts. Then we take the average
trajectory of the rollouts as the updated nominal trajectory.
LTV System Identification: For each sequence of control
perturbation {δut}T−1

t=0 , we run the simulations for ns num-
ber of rollouts and take the average. Also, a feedback term is
added in control to keep the trajectories close to the nominal
trajectory. As the noise is assumed to be zero mean, the
averaged trajectories are used in the least square to identify
the ARMA model.

B. Convergence Analysis of POD-iLQR under Uncertainty

According to the results in our previous work [13], the
POD-iLQR algorithm in the deterministic environment is
guaranteed to find the unique global minimum of the open-
loop problem in Eq. (1). In this section, we analyze the
convergence and optimality of the modified POD-iLQR in
the two cases described above.

1) Global Convergence of POD-iLQR in the Fully Ob-
served Case with Process Noise: As mentioned in Section
III-A, in the system simulations of the LTV system iden-
tification step, we implement a feedback term in control to
ensure that the trajectories are close to the nominal. With this
modified POD-iLQR method, we have the following result:

Lemma 3.1: The ARMA model identified in the fully
observed case using the method described in Section III-A.1
is unbiased with respect to the true LTV model.

Proof: Due to full state observation, the matrix Oq =[
AT

t−q...A
T
t−2C

T
t−1, · · · , AT

t−qC
T
t−q+1, CT

t−q

]T
is full

column rank. Thus an ARMA model with q = 1 can exactly
fit the LTV system in Eq. (II-B) according to Proposition 2.1.
Then Eq. (II-B) and (5) leads to: δzt+1 = (At+BtKt)δzt+
Btδut + ωt. Notice that ωt is uncorrelated with δzt and
δut. Thus using the LTV system identification described in
Section II-B, the noise terms go to zero as the number of
rollouts ns increases and the least square result becomes:[
Ât

... B̂t

]
=

[
At +BtKt

... Bt

]
. As Kt is known from the

last backward pass, it is trivial to recover At, Bt. Thus the
ARMA model equals the true LTV model in Eq. (II-B).

Theorem 3.1: Let the cost functions l(·), cT (·), the drift
f(·) and the input influence function g(·) be C2, i.e., twice
continuously differentiable. Assume f(·) is affine in control.
The POD-iLQR algorithm started at a feasible initial infor-
mation state Z0 converges to the unique global minimum of
the open-loop problem in Eq. (1) when applied to the fully
observed system with process noise in Eq. (5).

Proof: From Lemma 3.1, we know that the identified
LTV model in the fully observed case is the same as in
the noiseless case for small enough noise. Thus the results
from the backward pass are also identical. Let us denote
the update direction calculated in the forward pass under
process noise as ds,t = [δZ ′

t+1 δZ ′
t δu′

t]
′, gradient of the

system dynamics constraint function as: ∇h(Z̄t+1, Z̄t, ūt) =

[I −At −Bt]. Let F t denote the history of the algorithm
till time t. Then, due to the zero mean noise ωt, it is easy
to see that the expected descent direction conditioned on the
history F t: E[ds,t/F t] = d̄s,t, where d̄s,t denotes the true
update direction (without noise). We know from Lemma 2
in [15], that d̄s,t is a descent direction of the cost function,
i.e., d̄′s,t∇J ′

t is always negative. Thus the expected update
direction is a descent direction. Then using the line search
condition of iLQR, similar to Theorem 1 in [15], it can
be shown that: E[Jt+1/F t] ≤ Jt − β̄t||∇Jt||||d̄s,t||, for
some β̄t > 0. Then, using the Supermartingale Convergence
Theorem [17], it follows that, almost surely:

∑
t β̄t||∇Jt|| <

∞, which implies that ∇Jt → 0 almost surely, i.e., the
algorithm converges to a stationary point of the cost function.
Next, using Theorem 2 of [15] and Theorem III.1 of [13],
POD-iLQR is guaranteed to converge to the global minimum
of the open-loop problem in Eq. (1).

2) Biased Nature of POD-iLQR in the Partially Observed
Case: For the partially observed case, process noise ωt is
added to the system dynamics simulation in both the forward
and backward pass. The measurement noise vt is added to the
measured states as shown in Eq. (6). According to Section
II-A, we need to choose a large enough q such that matrix
Oq is full column rank. Also, a feedback term is added in
the ARMA fitting step of the backward pass to keep the
trajectory close to the nominal trajectory. The feedback gain
Kt is obtained from the last backward pass. With these
modifications, we have the following negative result:

Lemma 3.2: If directly applied to the partially observed
system in Eq. (6), the backward pass shown in Section II-B
generates a biased update direction.

Proof: Starting from Eq. (6), we can write the output
equation for past q timesteps. Assuming that the q we choose
satisfies Assumption 1, we can solve for the unique solution
of δxt−q as: δxt−q = Oq+(δZq

t − GqδUq
t − Gq

ωΩ
q
t − V q

t ).
Now, the system output at time t can be written as:

δzt = CtAt−1...At−qδxt−q

+
[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
δUq

t ,

+
[
Ct CtAt−1 · · · CtAt−1...At−q+1

]
Ωq

t + vt. (7)

Let us denote

αt = CtAt−1...At−qO
q+ ,

βt =
[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
− αtG

q,

βD
t =

[
Ct CtAt−1 · · · CtAt−1...At−q+1

]
− αtG

q
ω,

and the unique solution for δxt−q is substituted to get: δzt =
αtδZ

q
t +βtδU

q
t +βD

t Ωq
t −αtV

q
t + vt. By taking ns number

of rollouts and applying the linear least square as described
in Section III-A.2, the estimated ARMA model parameters
can be written as:[
α̂t β̂t

]
=

[
αt βt

]
+ (βD

t

[
Ω

q,(1)
t Ω

q,(2)
t · · · Ω

q,(ns)
t

]
− αt

[
V

q,(1)
t V

q,(2)
t · · · V

q,(ns)
t

]
+

[
v
(1)
t v

(2)
t · · · v

(ns)
t

]
)XT(XXT)−1, (8)
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where in this case,

X =

[
δZ

q,(1)
t δZ

q,(2)
t . . . δZ

q,(ns)
t

δU
q,(1)
t δU

q,(2)
t . . . δU

q,(ns)
t

]
. (9)

As δZq
t is correlated with Ωq

t and V q
t , the second term on

the RHS of Eq. (8) is nonzero. Thus the estimated ARMA
parameters are biased from the true values in

[
αt βt

]
.

Further, the update direction from Section III-A is biased.

With the biased update direction, the POD-iLQR algorithm
can no longer converge to the true minimum although
the feedback term is added to the backward pass. In this
case, multiple rollouts have to be averaged to recover the
convergence to the true minimum. In the next section, we
show empirical evidence for Theorem 3.1 and Lemma 3.2.

IV. EMPIRICAL RESULTS

We use MuJoCo, a physics engine [18], as a blackbox to
collect the data needed for the open-loop nominal trajectory
design and the closed-loop feedback gain. We verified our
results on two nonlinear systems with their initial config-
uration shown in Fig. 1. All simulations are conducted on
a machine with the following specifications: AMD Ryzen
3700X 8-Core CPU@3.59 GHz, with 16 GB RAM, with no
multi-threading.

Fig. 1: Models simulated in MuJoCo in their initial states.

A. Model Description

Here we provide details of the MuJoCo models used in
our simulations [19].
Pendulum: The single pendulum model is a pole hinged
to a fixed point. There are two state variables: angle and
angular rate of the pole. The task is to swing up and balance
the pole in the upright position.
Cart-Pole: The four-dimensional under-actuated cart-pole
model includes a cart moving on the x-axis and a pole
linked to it with a hinge joint. The only actuation is the
force on the cart. The state comprises the angle of the pole,
the cart’s horizontal position, and their rates. The task is
to swing up and balance the pole in the middle of the rail
within a given horizon.

B. POD-iLQR in the Fully Observed Case

As we assume perfect measurements in the fully ob-
served case, the process noise is the only uncertainty we
add to the dynamics. In addition, we sample the initial
state deviation δx0 from a zero-mean random process. The

Fig. 2: Convergence comparison in fully and partially ob-
served cases.

standard deviation of the process noise ωt is 10% w.r.t.
the standard deviation of the initial state deviation δx0.
For each system tested, we run POD-iLQR as is in the
noiseless system as well as in the fully observed system
with process noise. Then we run the POD-iLQR with the
modifications proposed in Section III-A. The number of steps
in the horizon is fixed, so in the data collection step, each
rollout takes the same number of steps. In the cost function,
the running cost l(xt) = x′

tQxt, where xt is the error
between the current state and the target state at time t. The
cost parameter Q remains the same throughout the horizon
except for the terminal step. The termination criterion is that
the convergence rate is lower than a threshold or it reaches
the max iteration number. We compare the cost convergence
curves in the first row of Fig. 2. The “nominal” curve shows
the cost convergence of applying POD-iLQR on the full
state noiseless case. The curve labeled “POD-iLQR” shows
the cost convergence in the full state case under process
noise using the original POD-iLQR algorithm. The curve
labeled “POD-iLQR Modified” shows the cost convergence
in the full state case under process noise using the modified
POD-iLQR. From the plot, the original POD-iLQR could
not converge to the true optimum and the other two curves
almost overlap each other and converge to the same result.
The “POD-iLQR Modified” curve in the zoomed-in view has
some ups and downs due to the process noise in the forward
pass. This verifies the proof in Theorem 3.1 which shows that
the expected update direction, not the actual update direction
is a descending direction. Thus in the fully observed case, the
modified POD-iLQR is guaranteed to converge to the global
minimum. Notice that the total number of rollouts needed
under noise is larger than in the noiseless case to make sure
that the correlation goes to zero as shown in Lemma 3.1.

C. POD-iLQR in the Partially Observed Case

In the partially observed case, we only measure the posi-
tions, not their rates. For the pendulum, the observed state is
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the angle of the pole. In the cartpole, we only measure the
position of the cart and the angle of the pole. To simulate the
measurements in simulation, we add sensor noise vt to the
measurements. Thus there are both process and measurement
noise in the simulation. The standard deviations of the
process noise ωt and the measurement noise vt are both 10%
w.r.t. the standard deviation of the initial state deviation δx0.
We found that in this observation setting, q = 2 satisfies
the observability assumption. So in the LTV-ARMA system
identification step, we fit ARMA models with q = 2 for both
the pendulum and cartpole. To evaluate the cost function, we
use the measurements instead of the states. Similar to the
full-state observation case, the cost function is quadratic in
the information state and the control input. Three cost curves
are shown in the second row of Fig. 2. The curve labeled
“nominal” shows the cost convergence of POD-iLQR in the
partially observed but noiseless environment. For the curve
labeled “POD-iLQR”, we directly apply the unmodified
POD-iLQR algorithm and in the “POD-iLQR Modified”
case, we use the modified POD-iLQR. In the case labeled
“POD-iLQR-Avg”, we run multiple rollouts for each set of
control perturbation δut and used the averaged trajectory in
the ARMA model fitting step to average out the noise. From
the plots, it is shown that in both the pendulum and the
cartpole, the cost curves of the averaging method match the
nominal cost curve and they converge to the same result.
The outlier curve is from the experiment where we applied
POD-iLQR or modified POD-iLQR without averaging. Due
to the noise corrupted system dynamics and measurements,
the cost curve has more oscillation and failed to converge
to the true minimum. Thus if directly implemented on real
robots without averaging, POD-iLQR will generate a biased
result even with the modification proposed in Section III-
A. To make sure the noise is averaged out in the averaging
method, the total number of rollouts needed in the ARMA
model fitting is increased from ns to ns×navg , where ns is
the number of rollouts in one ARMA model fitting without
averaging and navg is the number of rollouts needed for
each control perturbation set. And the total time taken during
training will be much higher than the case without averaging.

V. CONCLUSIONS

This paper considers an optimal motion planning trajectory
design algorithm for partially observed systems called the
POD-iLQR introduced in our prior work. The main focus
of this paper is to analyze its performance under uncertainty
and pave the way for future use on real-world robots. The
algorithm is proved to converge to the global minimum
in the fully observed case with only process noise. It is
shown that the algorithm is biased and does not converge
to the global minimum for partially observed systems with
both process and measurement noise. In this case, multiple
rollouts need to be averaged to recover optimality and for
convergence in the ARMA model identification step at the
expense of a longer training time. The empirical results are
shown to verify the analysis. In our opinion, this algorithm
has advantages in optimality and training efficiency when

applied to real-world robots. The actual performance on real
systems will be explored in future work.
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