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Abstract—Trajectory planning for a swarm of UAVs is known
as a challenging nonconvex optimization problem, particularly
due to a large number of collision avoidance constraints
required for individual pairs of UAVs in the swarm. In this
paper, we tackle this nonconvexity by leveraging the difference
of convex function (DC) programming. We introduce the slack
variables to relax and reformulate the collision avoidance
conditions and employ the penalty function term to equivalently
convert the problem into the DC form. Consequently, we
construct a penalty DC algorithm in which we sequentially solve
a set of convex optimization problems obtained by linearizing
the collision avoidance constraint. The algorithm iteratively
tightens the safety condition and reduces the objective cost of the
planning problem and the additional penalty term. Numerical
results demonstrate the effectiveness of the proposed approach
in planning a large number of UAVs in congested space.

Keywords—Trajectory planning, DC programming, penalty
DC algorithm, collision avoidance, non-convex optimization

NOMENCLATURE
A. Set and Indices

N,i Set and index of vehicles, i € N
T,k Set and index of time steps, k = 1,2,..., K € T
S Set of initial states, including starting position

S(mf,yf, zf) starting velocity S(vf, vf.’, Uf) and
starting force S(ff, 7, ff) of vehicle ¢

G Set of goal states, including goal position G (z{,y7, 27),
goal velocity G (v¥,vY,v7?), and goal force

G(f%, f¥, f7) of vehicle i

K3

B. Parameters

Vi Maximum velocity of vehicle ¢
F; Maximum force of vehicle 7
d Minimum distance between two vehicles to avoid a
R collision
A; State-space matrix of vehicle ¢
B; Input matrix of vehicle 4
pf Penalty for Oy of objective function
ok Penalty for O4 of objective function
T, Wy € Parameters used in DCA
C. Variables
Tk z-coordinate of position of vehicle ¢ at time step k
Yik y-coordinate of position of vehicle ¢ at time step &
Zik z-coordinate of position of vehicle 7 at time step k
vy z-component of velocity vector of vehicle 4 at time step k&
U;-d,k y-component of velocity vector of vehicle ¢ at time step &
vi & z-component of velocity vector of vehicle ¢ at time step k
\_/;-7 k velocity vector of vehicle 7 at time step k
: b z-component of force vector of vehicle ¢ at time step &

This work was supported by DOE Sandia National Laboratories under
contract 281247.

979-8-3503-0123-6/23/$31.00 ©2023 IEEE

l.y b y-component of force vector of vehicle 7 at time step k
Tk z-component of force vector of vehicle ¢ at time step k
P_’;‘,k force vector of vehicle 4 at time step k

I. INTRODUCTION

The trajectory planning problem concerns finding an op-
timal solution of the trajectory for a single aircraft or a
group of aircraft to travel from a given starting state over
a map of the environment to a goal state. Mixed-integer
linear programming (MILP) is the standard method used to
solve the trajectory generation problem for many decades [1].
MILP is a powerful optimization method that allows the in-
clusion of integer variables and discrete logic of linearization
for non-convex constraints in a continuous linear trajectory
optimization [2]-[4]. These mixed-integer and continuous
variables can be used to model logical constraints such as
obstacle avoidance and vehicle separation, while the dynamic
and kinematic settings of individual aircrafts are bounded
by continuous constraints. Concurrently, the magnitudes of
the velocity and force vectors are modeled by the spherical
geometry-based sampling approximation technique for a 3-D
environment, or the edges of an N-sided polygon approxima-
tion technique for a 2-D environment [4]. To this extent, the
MILP method uses many auxiliary variables and constraints
to formulate the trajectory optimization problem.

Recent improvements in aircraft’s capabilities, especially
for unnamed aerial vehicles (UAVs), facilitate them to carry
out longer and more complex missions in dynamic envi-
ronments. Moreover, as more vehicles and more targets
are involved in a mission, the size of the trajectory opti-
mization problem based on MILP increases exponentially.
Consequently, the computation time of the problem to obtain
the optimal solution becomes much more expensive. Convex
optimization methods can handle well the conic constraints
such as bounds on the magnitude of velocity and force
vectors without incorporating the approximation techniques
(2], [5].

The most key challenge in solving trajectory optimization
models with convex cost functions and affine vehicle dy-
namics is that we often encounter the nonconvex collision
avoidance requirement [6], [7]. This nonconvex requirement
is enforced for all individual pairs of UAVs in the swarm,
thus making the problem computationally challenging. This
research proposes the use of the difference of convex function
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(DC) programming [8] to tackle the nonconvexity of the
planning problem for a swarm of a large number of UAVs.
First, we relax the collision avoidance constraints by slack
variables and add the sum of slack variables as a penalty
function to the original objective function. Consequently, we
obtain the equivalent reformulation of the original problem.
We then sequentially linearize the relaxed non-convex colli-
sion avoidance constraints while minimizing the reformulated
problem with an increasing penalty term. The algorithm is
called the penalty DCA [9] or penalty convex-concave pro-
cedure [10], which aims to tighten the convexified problem
of the original nonconvex one. This paper is organized as
follows. Section II presents the mathematical model of the
generic trajectory planning problem for a swarm of multiple
UAVs. Section III reformulates the problem into Mixed-
Integer Convex Program (MICP) and DC forms, respectively.
Section IV presents the penalty DCA. The numerical results
are shown in Section V, and Section VI concludes the paper.

II. MULTI-UAV TRAJECTORY PLANNING PROBLEM

A. State-space model of a single UAV

Fig. 1. Velocity and Force vectors in body and fixed axes coordinate system

We consider a fixed-wing UAV modeled as a point mass
flying in a predetermined 3-dimensional space with the
(x,y, z) coordinates (i.e., forward, side, and vertical direc-
tions, respectively) as shown in Figure 1 where ¢ denotes the
UAV index in the swarm, (xz;,¥;, 2;) is its location, and m;
is its constant mass. The UAV’s velocity Vi, by definition,
represents the change of the UAV’s location and can be

dz; . dy;
decomposed into 77 = d—xt (the forward velocity), v = dzi
dz; . .
(the side velocity), and v} = d—i (the vertical velocity) as
follows:

_ de;  dy;  dz;

V, =07 7Y g7 = . 1

R R T TR M

The force F; as the control input alternates the UAV accel-
eration following Newton’s second law:

L AWy o (dw ai | di
E (dt+dt+dt ’ @

’L_ml dt _ml

L dvE doy
which is also decomposed into f* = ;tz = m (;}tl ’

o do? . . .
and f7 = m;—> (i.e., forward, side, vertical forces).
Equations (1)-(2) together form the following UAV’s kin-
odynamic state-space model:

dx;
d);:AXi‘f'Bui 3)
where x; = [l'hyiazivvavgvvﬂ—r?

x ZT

ui:[iaiyafi]’
000100 000
000 0T10 000
000001 1 10 0 0
A=lo 0000 o B=m 1 0 o0
000000 010
000000 0 0 1

Here, x; denotes the vector of state variables, u; denotes the
control input, A; denotes the state matrix, and B; denotes
the input matrix of UAV <. The kinodynamic model (3) can
be converted into the discrete time-variant form as follows:

Xigp1 = Aixip + Biwg g, Vie N VEeK, 4

where A; = I+ ATA;, B, = ATB,, particularly:
0

1 0 0 AT 0 000
010 0 AT 0 000
A_|001 0 0 AT| 5 AT 0 0 0
iZloo o 1 0o o |"TT, 100
000 0 1 0 010
000 0 0 1 00 1
T
and Xik = xi,kayi,]mZi,k7v2k7v$/’k7vf’k and W =

[Fis Pl S
ables and control inputs of UAV i at time step k, and AT is
the length of the time step.

respectively represent vectors of state vari-

B. Problem Formulation

We consider the trajectory planning problem for a swarm
of N UAVs in which each UAV needs to travel from its initial
position to its final destination without colliding with other
UAVs. In other words, for each UAV ¢ € 7 in the swarm, we
need to determine a sequence of positions (z; k, Yi k» %i,k)
forming the UAV’s trajectory and the sequence of control
action u; j, at each time step &k such that the UAV reaches its
final destination without colliding with others in the swarm.
This can mathematically be formulated as the following
large-scale non-convex optimization problem:

N K
win Y>> (o 07+ L T G

i=1 k=1

Oy (u)

+p* x \/(mlt — xf)Q + (yie — yf)2 + (21, — zf)2>, (5)

Oy (%)

7362



subject to:

(xi,u3) € Q; = {Xi7k+1 = Axip +Biug, VE,  (6a)
(xi17yi17zil)—r:(xfayfazf)—r7 (6b)
(U 17 1 1 7, I)T = (viﬂi7$7viy,37v7}275)T7 (60)
(szayzK,ZzK)T2(951971/?72?)—'—, (6d)
( zKa zK? zK)T:(Uim’gavg’gvviZ’g)Ta (66)

xT z T C z
(fzK’ zK?fzK) :(fil7g7 iygnfi’g)—ra (6f)

2 2 27—
V)7 + (00)" + (07,)" < Vi, vk (60)
2 v 22 2 = )
(fe)” + ()" + (ffr)” < Fi,Vk 5, Y. (6h)
\/(fi,k — k)% + Wik — k)2 + (Zig — 2j8)2 > d,

Vi, Yk ()

The objective function (11) aims to minimize the control
effort and the traveling time of UAVs to reach their final
destination. The objective consists of two terms, Oy penalizes
the force supplying to the vehicle ¢ at time ¢ with a unit fuel
cost p/ whereas O, penalizes the remaining distance of each
vehicle 7 to its goal position multiplying with the value p*.
Typically, p* is set as an increasing function of the time
indexes, e.g., pf == axk, a > 0, so Oy urges UAVs to
reach their goal points as soon as possible. The objective
function is subject to two sets of constraints, as follows.

Constraint (6) encapsulates all local constraints of state
variables and control inputs of individual UAVs ¢ =1,..., N
in their corresponding feasible set £2;. In particular, the
dynamics of each vehicle following discrete-time and linear
state-space equation (4) now acts as a linear constraint (6a).
The starting position is expressed in (6b)-(6¢c) whereas the
set of final conditions including the goal position, velocity,
and force of vehicle are introduced in (6d)-(6f). The physical
limits of the UAV’s velocity and driving force are captured
in (6g) and (6h). The feasible set €2; is convex, and (6) is a
convex constraint.

The constraint (7) represents the collision avoidance
among UAVs in the pair. In particular, the Euclidean sep-
aration distance between all pairs of vehicles i £ j must be
equal to or greater than the safety margin d at every time step
k=1,..., K. The number of collision avoidance conditions
is W x K. Since the Euclidean distance norm is a
convex function, (7), is a non-convex constraint.

Overall, the multi UAVs’ trajectory planning problem can
be summarized in the following form:

Of(u) + O4(x)
S.t. (Xi7 ui) € Q;, Vi,
non-convex collision avoidance (7).

[P] min

It is worth mentioning that the problem P is generic, as
we can tailor €2; or the objective function for different

application requirements, e.g., the UAV’s trajectory must visit
certain locations or stay close as much as possible for certain
predetermined paths. Such modifications generally do not
affect the convexity of €2;, thus not affecting computational
performance. The complexity of P stems from a large number
of nonconvex collision avoidance conditions (7). However,
such a constraint is critical for safety requirements and
cannot be ignored. The aim of this paper is to tackle this
convex constraint set, thus facilitating the computation of
UAV swarm coordination in the form of P.

III. TRADITIONAL MIXED-INTEGER CONVEX
PROGRAMMING APPROACH

We can use mixed integer linear programming to cap-
ture the nonconvex collision constraint (7). Theoretically,
a generic nonconvex constraint can be written in the form
x ¢ C where C is a convex set of variables z. If we
can polyhedrally outer approximate C by a set of L linear
constraints [11], [12]

Poly(C) = {x la)x <b,, v= 1,2,...,L}, (8)

then the condition = ¢ C will be attained by letting at least
one constraint in (8) be violated using the auxiliary binary
variable wu,,, as follows:

a)x>b,+e—Tu,, u, € {0,1}, Ym=1,2,... M,
M
d-w)>1 9
v=1

where U is a sufficient large number and ¢ is a small number.
Constraint (9) means that at least one value of u, = 0,
consequently, one inequality a,) z > b, + € activates, forcing
x ¢ C (the term e is used to prevent the equality a, z = b,).

We are now applying (9) to the case of the collision
avoidance constraint. Note that we can approximate the 2-
D Lorentz cone:

L2 — {(@,g,d) € R? x R+‘\/§32 T2 < d}

by the following linear inequalities of variables «, 3:

ap > &, ag > =, fo =79, Bo= (102)

{ﬂ,,_H > —sin (271- ) o, + cos (27) Bl,, (10b)

Bu+1 > sin (; ) v, — COS (Tr> By, (10c)

Q41 = COS (27T>oz +sm( )By,} (10d)
v=0,....,L—1,

arp <d, B <tan (2%)0%. (10e)

The approximation (10) basically forms a regular 2”-sided
polygon with 2(L + 1) additional variables «,,f3,,v
1,..., L as follows:

Poly(L?) = {(asy a,B) € R? x R2E+D|(104) — (106)}.
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Note also that the collision condition, i.e., the distance
between two UAV is less than d, is in the form of 3-dimension
Lorentz cone L3 as follows

L? = {(2,9,2,d) € R® x Ry |/ + 7 + 22 < d},
which can be captured by two second-order cone constraints:
B4 <ad? 0+ 22 < >0,

each is indeed L2 and can be polyhedrally approximated
using (10). Consequently, we can combine (9) and (10) to
construct a set of MILP constraints enforcing the distance
between two UAVs outside the collision range d. In particular,
we need to write two sets of linear constraints (10) associated
with the polyhedral approximation Poly(IL?) of two 2-D
Lorentz cones and then apply the MILP reformulation trick
(9). Due to page limitation, we omit the presentation of the
general case with arbitrary L. In the special case L = 2, we
can compact the set of constraints as follows:

77,1 77,2
Tik — Tk > d—Uu; ;. —xi) > d—Uuj ;. (112)

Yik — Yjk = d — UU?,j,;@7 Yik — Yik = d— UUf,j,k (11b)
Zik — 2k > d —Uuij’t, Zjgk — Zigk > d —Uu?,j’k (11¢)
6
> uf iy <5,V Vi # j. (11d)
v=1
which enforces the distance of two UAVs 7 and j outside the
cubic outerly approximating the collision sphere of radius d,
ie., |z x—2; k] > dOR |y; x—y; k] > dOR |z; p—2j 1| > d,
Vk,Vi # j(e in (9) is chosen as zero since the distance d
satisfies the minimum requirement of safety).

(a) 6 sides (b) 24 sides

0

-1 -1
(c) 96 sides

(d) 384 sides

Fig. 2. A polyhedral approximation of the 3-D ball

Remark: Figure 2 represents a polyhedral approximation of
the 3-D ball with radius d. While the approximation error

reduces as L increases, the computational demand increases
significantly as the number of constraints and binary variables
employed increases. Indeed, our examination shows that only
L = 2 is computationally feasible given that the number of
collision avoidance conditions that we need to approximate is
w x K. However, the MILP reformulation with L = 2
is very conservative, which might result in infeasibility if we

coordinate a large swarm of UAVs in a small space.
IV. DC PROGRAMMING APPROACH

A. Problem Reformulation in DC form

Let g; ;1 (x) denote the distance between two UAVs ¢ and
7 in the time step k:

Gijk(X) = \/(%k — x5 1)% + Wik — Yik)? + (zig — 251)2,
so the collision avoidance constraints can be rewritten as
d — gijx(x) <0,Vi# j,Vk (12)

We employ the penalty function transformation method to
bring the nonconvex constraint (12) into an objective function
of the problem P as follows:

[P;] min Of(u) + Oy(x) +7 Z Sijk (13)
fo(ux) B klizs

s.t. (xi,u;) € Q;, Vi, (14)

(d—gijr(x)) < sijr, Vi# 4, Ve (15)

where P represents the penalty problem of P with the penalty
coefficient 7 > 0 and s represent the relax term for original
nonconvex constraint (12). There exists 7 > 0 such that
for all 7 > 7*, P and P, have the same optimal solutions
and optimal values [9], i.e., s* = 0 and (12) satisfies. The
problem P is indeed a difference of the convex function
(DC) programming problem, i.e., the left-hand side of (15)
can be considered as the difference of two convex functions
on x: d and g; ; 1 (%).

B. The DC Algorithm

We solve the problem P using the enhanced DCA, namely
penalty DCA or DCA2 [9], or penalty convex-concave pro-
cedure [10], for tackling nonconvexity appearing in (15). In
particular, we sequentially (i) solve a set of convex functions
constructed by linearizing the concave term, particularly
—¢;.;,k(x) in (15) and (ii) increase the penalty coefficient
7 until the nonconvex condition is satisfied. The detailed
description of the algorithm is as follows:

Step 1: Choose the initial point X9, 79 > 0, 7 > 0, and
i > 1. Set the iteration m = 0. Initialize the set O := {X¢}.
Step 2: Solve the following optimization problem:

[P'] min  objective (13)

s.t. constraint (14) (16)

d— gijx(%) = V' giju(®)(x — %) < sin
Vi # j,Vk, ¥k € O, 17)
Sigk = 0,Vi # j,Vk (18)
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to obtain the optimal solution x*. Mathematically, we replace
(15) by a set of linear approximations at a set of points X
obtained so far.

Step 3: Let X, = x*. Update the set O := O U X,,, and
update penalty coefficient 7,11 = min{u7r,,,7}.

Step 4: Stop if the following criteria satisfy:

o the maximum penalty coefficient reaches
Tm =T

« the gap between optimal objectives found between two
consecutive iterations is small

Om = (fo(UTn Xi) £ T Y st,k,m>—
i,5,k|i#]
<f0( W,,_1,X )+Tm 1 Z

*k
Si,j,k,ml) <e¢,
i,4,k|i#]

where € is a very small number acting as the tolerance. Note
also that uj,,x},, s’ ok are optimal solutions of u,x,s
found by solvmg P . If the stopping conditions are not
satisfied, update m = m + 1 and go back to Step 1.

The iterative algorithm consists of 4 steps. The key point is
that for each iteration we replace the distance between UAV
i and j at time k by its linearization at X,,,

9.3k (X) = Gi ik (Zm) + Vg1 5.0 (X ) (X — Kp)

and consequently obtain the linear approximation of (15) at
X, as follows:
d—gijkZm) = V' gijkFm)(x — %) < 555Vi # §,Vk
Consequently, we obtain the convex optimization problem
P’ in Step 2. Over iterations, the set of linearized constraints
(17) expands to tighten the convexification of the constraint
(15) whereas the increasing 7™ due to p > 1 enforce the
slack variables s converge to zero. Together, they try to
enforce the feasibility of the obtained solution, i.e., the non-
convex collision avoidance (12) is satisfied and the optimal
values of P”" converge to the sub-optimal values of P. Thus,
we obtain an upper bound of P with a feasible solution x*.
Remark: Unlike the MICP formulation, which is NP-hard, in
the DC programming approach we sequentially solve a set
of convex programs P!, each can be addressed efficiently
by matured convex optimization algorithms such as interior
point methods. Thus, the computational performance can
be improved significantly. Mathematically, MICP requires
approximating the non-convex feasible set (7) beforehand by
employing a set of a large number of MILP constraints (11).
Many constraints in this set are non-binding at optimum and
can be ignored. In contrast, in DC programming, we sequen-
tially add the linearization of the nonconvex constraints at
explored points found after each iteration.

5 vehicles

rrrrrrrrrr

ey

2l

1000 -

Distance unit

=l

d=5 5

Time steps
Fig. 3. Distance between vehicles DCA Model

V. NUMERICAL RESULTS

We implemented the DC programming approach on a
PC configured with an Intel Xeon and 32GB of RAM. To
benchmark the performance of both models, we verify their
formulation for 5, 10, and 15 vehicles with the GUROBI
solver. Consequently, the number of collision avoidance
conditions needed to be satisfied at each time step is 10, 45,
and 105. In the three numerical experiments, the minimum
safety distance between vehicles is d = 5 distance units, and
the number of time steps is 7 = 30 time units. We compare
the DC programming results with the ones obtained by using
MICP model with the cubic approximation (11) of collision
avoidance.

Fig. 3 shows the results of the distance between vehicles
at each time step k obtained by solving the UAV planning
problem using DC programming approaches. It shows that
there is no crash between vehicles throughout the time steps
in the DC model in all three experiments. In other words, the
DC programming approach guarantees the satisfaction of a
large number of nonconvex collision avoidance conditions.

Fig. 4 demonstrates the numerical convergence for penalty
DCA used to solve the DC programs in all test cases.
The maximum value among all slack variables s7 ., > 0
converges to zero, which means all collision avoidance con-
straints are also satisfied at the optimum and the objective
value is equal to the original one, i.e., the penalty term
Ty s; ik = 0. Additionally, the gap between the ob-
jectjivel: ;félinction found between two consecutive iterations d,,
converges to zero, which means we reach the local optimum
(sub-optimal solution). In our experiment, the optimal solu-
tions of 5-vehicle, 10-vehicle, and 15-vehicle experiments are
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5 vehicles

Gap 5,

Max slack variable

5 10 15 20 25 30 34
10 vehicles

T T T

Gap §,

Max slack variable

50 100 150 200 250 300 350 400 470

Gap §, |
Max slack variable | ]

25 50 75 100 125 150 175
Iteration

200 219

Fig. 4. Convergence analysis of DCA for experiments

converged at iterations 34, 470, and 219, respectively.

The obtained sub-optimal solution of DC program gener-
ally has a very good performance, even surpassing the MICP
approach. This is because the DC programming approach
employs a less conservative approximation of the nonconvex
collision condition, as shown in Fig. 5. In the DCA model,
we can utilize the full collision-free space outside the radius
sphere d (safety distance). In contrast, the cubic approxima-
tion (11) used in the MICP is more conservative. Therefore,
the fuel cost of the DC model is lower than that of MICP,
as shown in the Table. I. Note also that, while increasing
the size of the polyhedral approximation (as shown in Fig.
2) can reduce the conservatives, the MICP easily becomes
intractable. Indeed, only the cubic approximation (11) [3]
widely used in the literature is computationally feasible in
our experiments.

TABLE I
GRAND TOTAL FUEL COST OF VEHICLES IN MICP AND DCA

MICP DCP A( MICP — DCP )
5 vehicles 326.18 323.17 3.01
10 vehicles  1594.11  1592.32 1.79
15 vehicles 285525  2839.97 15.28

VI. CONCLUSION

This paper presents the DC programming approach to
solve the planning problem of a UAV swarm considering the
nonconvex collision avoidance requirement. We sequentially
approximate this nonconvex constraint by its linearization
and adopt the penalty reformulation with slack variables.
Thus, the problem is effectively tackled by sequentially solv-
ing a set of computationally manageable convex programs.
Compared to the traditional mixed integer optimization model
with the cubic approximation of collision avoidance con-
straint, the obtained solution satisfies the safety condition
while achieving better cost savings thanks to its less con-
servative approach.

Vehicle @

Z-axis
& & b own s o

Yoaxis -10

(a) Three-dimensional view

e,
- ————

R

5 0 5 10
| —=Vehicle 182 in MICP —= Vehicle 182 in DCA |

(b) Top view
Fig. 5. Tllustration of the collision avoidance constraint in MICP model and
DCA model for trajectory planning of two vehicles
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