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Abstract— In this paper, a fixed-time convergent reinforce-
ment learning (RL) algorithm is developed to realize the secure
tracking control of the unmanned aerial vehicle (UAV) via the
zero-sum game for the first time. To mitigate FDI attack on
actuators that may cause the UAV to deviate from the reference
trajectory, a zero-sum differential game framework is built
in which the secure controller tries to minimize the common
performance function, yet the attacker plays a contrary role.
Obtaining the optimal secure tracking controller depends on
solving the Hamilton-Jacobi-Isaacs (HJI) equation related to the
zero-sum game. Therefore, a critic-only online RL algorithm
is proposed that can converge in a fixed time interval, with
the corresponding convergence proof provided. A simulation
example is given to show the effectiveness of the raised method.

I. INTRODUCTION
Moving towards becoming more intelligent and more

autonomous, the unmanned aerial vehicle (UAV) has received
enormous attention from researchers [1]. The UAV has been
broadly employed in military and civilian fields due to the
advantages of rapid response, flexible deployment and low
cost. To carry out the assigned task, such as tracking refer-
ence trajectory, the UAV needs to accurately execute control
commands launched by the ground control station (GCS). It
is critical to guarantee reliable communication between the
UAV and the GCS. However, once hostile adversaries intrude
on vulnerable communication and inject false data into the
control signal, it will lead to system performance degradation
and mission failure. Therefore, it is significant to design a
secure control scheme to defend against false data injection
(FDI) attack on the UAV.

There are mainly two kinds of secure control methods
against FDI attacks. One refers to fault-tolerant control [2].
The other includes the detection mechanism that uses attack
detectors and secure controllers to compensate for compro-
mised systems [3], [4]. Some researchers have applied these
techniques to UAVs. [5] employed the attack detector and
the linear quadratic Gaussian controller against FDI attack.
An attack detector based on modified sliding innovation
sequences was proposed for the UAV in [6]. In reference
[7], authors investigated the event-based intermittent secure
formation control for the multi-UAV system.
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Most existing references only concentrated on the secure
control problem from attackers’ or defenders’ perspectives.
Nevertheless, attackers and defenders have limited resources
to carry out their policies. Both of them need to evaluate the
impact of policies to be implemented on themselves and their
adversaries. Game theory provides a unified framework that
allows them to study the interaction [8]. [9] developed the
Stackelberg game for describing the attack-defense process
in the switched control system and provided a sufficient
condition for seeking the Stackelberg-Nash equilibrium. [10]
designed an optimal resilient controller for the multi-agent
system in a hybrid game framework, including the zero-sum
and nonzero-sum game.

The reinforcement learning (RL) technique provides a
learning scheme to solve the optimization-based problem by
designing adaptive policies [11]. It also refers to a feasible
scheme for solving the game in the secure control problem
[12]. [13] investigated the relationship between FDI attack
probability and the existence of the solution to the Hamilton-
Jacobi-Isaacs (HJI) equation and designed an optimal secure
controller using Q-learning. Authors in [14] proposed a novel
FDI attack detection mechanism based on a threat-detection
level function and developed an attack mitigation strategy by
the off-policy algorithm. A model-free algorithm was applied
to design the secure controller for the Markov jump system in
[15]. In reference [16], authors proposed a resilient controller
for the leader-follower multi-agent system, where the off-
policy algorithm was developed to solve the game Riccati
equation.

Although existing references investigated secure control
by game theory and RL approach, few focused on improving
the convergence of RL algorithms. It inspires us to conduct
this work. We propose a fixed-time convergent RL algorithm
based on the critic-only neural network (NN) structure. Con-
vergence and stability are discussed successively. Moreover,
to our best knowledge, it is the first time that the fixed-time
convergent RL algorithm has been applied to solve the secure
control problem.

The rest of this paper is arranged as follows. Section II
introduces the UAV model under FDI attack. Section III
formulates the attack-defense process between the attacker
and the secure controller as a zero-sum game. Section IV
presents a fixed-time convergent RL algorithm based on the
critic-only NN structure and analyzes the algorithm conver-
gence and system stability. Section V provides a simulation
example. Section VI draws a conclusion.

Notations: The m×n dimensional zero matrix and m×m
dimensional identity matrix are denoted by 0m×n and Im,
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respectively. The minimum singular value and the minimum
eigenvalue are denoted by σmin(·) and λmin(·), respectively.
The operator d·c represents sgn(·)|·|, where sgn(·) is the sign
function and | · | is the absolute value function. The operator
∇ represents gradient computation. The Euclidean norm is
denoted by ‖ ·‖2. We define the set Bς [x0] as the closed-ball
with radius ς and center x0. The Cartesian product of two
sets S1 and S2 is denoted by S1 × S2.

II. PROBLEM FORMULATION

The dynamics of the UAV can be described by

ṗ = v

v̇ = −cg + u (1)

where p = [px py pz]
T and v = [vx vy vz]

T represent
the position vector and velocity vector, respectively. g is
gravity acceleration, c = [0 0 1]T, and u is the controller.
For simplicity, define the system state as x = [pT vT]T.
The UAV dynamics becomes

ẋ = Ax+Bu+ Cg (2)

where A =

[
03×3 I3
03×3 03×3

]
, B =

[
03×3

I3

]
, C =

[01×5 − 1]T. Tracking control aims to design a controller
to make the UAV reach the reference trajectory. Given the
reference trajectory function pr, the position and velocity
tracking error can be defined by ep = p− pr, ev = v − ṗr,
respectively. The error dynamics can be written as

ė = Ae+Bu+ Cg + f (3)

where e = [eT
p eT

v ]T is the tracking error state and f =
[01×3 − p̈T

r ]T. Obviously, the UAV reaches the desired
trajectory if e → 0. Consider that the adversarial attacker
tries to inject false data into the control signal to deteriorate
the system performance, resulting in the UAV deviating from
the desired trajectory. For the attacker, we have the following
assumption.

Assumption 1: The attacker knows the system dynamics
and the control objective.

According to Assumption 1, the compromised control
signal can be rewritten as

u = us + ua (4)

where ua is the FDI attack signal, and us is the secure
tracking controller to be designed.

Note that there exist the constant term g and the time-
dependent term f in the error system. We can eliminate
them by introducing their opposite terms. Thus, design the
following secure tracking controller

us = uc + ue (5)

where ue = cg + p̈r, uc is the controller to be further
designed to mitigate FDI attack and stabilize the error
system. Substituting (4) and (5) into (3), one has

ė = Ae+Buc +Bua. (6)

Furthermore, define the following performance function
for the error system (6)

J(e(0), uc, ua) =

∫ ∞
0

U(e(t), uc(t), ua(t))dt

=

∫ ∞
0

(eTQe+ uT
c Ruc − γ2uT

a Tua)dt

(7)

where symmetric weight matrices Q > 0, R > 0, T > 0,
and the attack attenuation level γ > 0.

III. SECURE ZERO-SUM GAME

Regarding the secure controller uc and the FDI attacker
ua as zero-sum game players, in which the secure controller
intends to minimize the performance function (7) but the
attacker aims to maximize it. Hence, we can obtain the game
value as follows

V (e(0)) = min
uc

max
ua

J(e(0), uc, ua). (8)

In addition, the saddle point (u∗c , u
∗
a) of the game is the Nash

equilibrium if the following condition is satisfied

J(e(0), uc, u
∗
a) ≥ J(e(0), u∗c , u

∗
a) ≥ J(e(0), u∗c , ua). (9)

With the value function V (e), define the Hamiltonian
function as

H(e, uc, ua) = U(e(t), uc(t), ua(t)) +∇V T(e)ė (10)

where ∇V (e) = ∂V (e)/∂e. Employing the stationary condi-
tions in (10), we can obtain the optimal secure control policy
and the optimal attack policy

∂H

∂uc
= 0⇒ u∗c = −1

2
R−1BT∇V (e) (11)

∂H

∂ua
= 0⇒ u∗a =

1

2γ2
T−1BT∇V (e). (12)

Substituting (11) and (12) into (10), one has the HJI
equation below

1

4
∇V T(e)BR−1BT∇V (e)− 1

4γ2
∇V T(e)BT−1BT∇V (e)

+ eTQe+∇V T(e)(Ae+Buc +Bua) = 0. (13)

We can acquire the following theorem for ensuring fixed-
time stability with existence of the Nash equilibrium.

Theorem 1: Consider the error system (6) with the perfor-
mance function (7) and the given attack attenuation level γ.
Assume that there exist a radially unbounded, continuously
differentiable, positive function V (e) : R6 → R, V (0) = 0
and real numbers c1 > 0, c2 > 0, 0 < q̄ < 1, r̄ > 1 satisfying

∇V T(e)ė ≤ −c1(V (e))q̄ − c2(V (e))r̄. (14)

Then the system (6) with optimal policies uc = u∗c , ua = u∗a
is globally fixed-time stable, and the settling time is upper
bounded by

T̃ ≤ 1

c1(1− q̄)
+

1

c2(r̄ − 1)
. (15)
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Furthermore, the saddle point (u∗c , u
∗
a) is the Nash equilib-

rium and the game value is V (e(0)).
Proof: By virtue of [17], we can obtain the settling-time

function (15) directly.
The performance function (7) can be rewritten as

J(e(0), uc, ua) =

∫ ∞
0

(
U(e, uc, ua) +∇V T(e)ė

)
dt

+ V (e(0))− V (e(∞)). (16)

Since limt→T̃ e(t) = limt→∞ e(t) = 0, one has V (e(∞)) =
V (0) = 0.

Now consider that the secure control policy and the
attack policy are given by (11) and (12), respectively. By
completing the squares for (16), one yields

J(e(0), uc, ua) =V (e(0)) +

∫ ∞
0

(uc − u∗c)TR(uc − u∗c)dt

−
∫ ∞

0

γ2(ua − u∗a)TT (ua − u∗a)dt.

(17)

If uc = u∗c , one has

J(e(0), u∗c , ua) =−
∫ ∞

0

γ2(ua − u∗a)TT (ua − u∗a)dt

+ V (e(0)). (18)

Similarly, if ua = u∗a, we can obtain

J(e(0), uc, u
∗
a) =

∫ ∞
0

(uc − u∗c)TR(uc − u∗c)dt

+ V (e(0)). (19)

Combining (18) and (19), it yields

J(e(0), uc, u
∗
a) ≥ J(e(0), u∗c , u

∗
a) ≥ J(e(0), u∗c , ua).

Note that the Nash equilibrium condition (9) holds. Further-
more, one has

J(e(0), u∗c , u
∗
a) = V (e(0)) (20)

which gives the zero-sum game value. �
Remark 1: Once the attacker and secure controller reach

the Nash equilibrium, the attacker can not gain more income
by adjusting its policy if the secure control policy remains
unchanged. The same is true for the secure controller.

IV. FIXED-TIME CONVERGENT RL ALGORITHM

According to the Weierstrass higher-order approximation
theorem, the value function can be approximated by the NN.
Consider the following critic NN to approximate the value
function

V (e) = WTφ(e) + ε(e), e ∈ E (21)

where W ∈ RN , φ(·), ε(·), E ⊆ R6 represent the expected
NN weights, activation function, approximation error of the
critic NN and error state set, respectively. Thereby, the
optimal policies can be approximated by

u∗c = −1

2
R−1BT(∇φT(e)W +∇ε(e)) (22)

u∗a =
1

2γ2
T−1BT(∇φT(e)W +∇ε(e)). (23)

Remark 2: The secure game can be viewed as a determin-
istic Markov decision process. The controller and attacker
implement policies on the UAV system, which can be re-
garded as an interaction with the environment. Combined
with the response from the system, the value function is
utilized to evaluate the current policies. Then, the controller
and attacker can improve their policies. It indicates that we
can use RL to study the secure game problem.

Remark 3: Since the derivative of the activation function
is required, the differentiable activation function can be se-
lected as polynomial, sigmoid, hyperbolic tangent functions,
etc.

Because the expected NN weights are unknown, the es-
timation critic NN weights are provided for estimating W .
One has

V̂ (e) = ŴTφ(e). (24)

Then the estimated policies become

ûc = −1

2
R−1BT∇φT(e)Ŵ (25)

ûa =
1

2γ2
T−1BT∇φT(e)Ŵ . (26)

Substituting (24), (25) and (26) into Hamiltonian function
(10), one has

H(e, ûc, ûa, Ŵ ) ≡ ξ = ŴT∇φ(e)(Ae+Bûc +Bûa)

+ U(e, ûc, ûa). (27)

Define the following loss function

E(Ŵ )=
1

q + 1

∣∣∣∣ ξ

1 + ψTψ

∣∣∣∣q+1

+
1

r + 1

∣∣∣∣ ξ

1 + ψTψ

∣∣∣∣r+1

(28)

where ψ = ∇φ(e)(Ae+Bûc+Bûa), 0 < q < 1 and r > 1.
The aim of selecting Ŵ is to minimize E(Ŵ ). According

to the gradient descent principle, we can derive the NN
weight update law, which guarantees that NN weights con-
verge in a fixed time. The weight update law is given by

˙̂
W = −α∂E(Ŵ )

∂Ŵ

= −α ψ

1 + ψTψ

(⌈
ξ

1 + ψTψ

⌋q
+

⌈
ξ

1 + ψTψ

⌋r)
(29)

where α is the learning rate of the critic NN.
Define the weight error as W̃ = Ŵ−W . The weight error

dynamics is

˙̃W = −α ψ

1 + ψTψ

(⌈
ψTW̃ + ε

1 + ψTψ

⌋q
+

⌈
ψTW̃ + ε

1 + ψTψ

⌋r)
(30)

where ε = WT∇φ(e)(Ae+Bûc +Bûa) + U(e, ûc, ûa).
Next, the fixed-time convergence of critic weights will

be discussed by the following theorem. Before that, the
following lemmas are necessary.
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Lemma 1 [18] : For any ε̂ > 0, there exist functions
L(ε̂) > 0 and N0(ε̂) > 0 such that sup |ε| < L(ε̂),
N0(ε̂) ≤ N and ε ≡ 0 if N →∞.

Lemma 2 [19] : For η1, η2, · · · , ηn ≥ 0, 0 < q < 1 and
r > 1, then{

(
∑n
i=1 ηi)

q≤(
∑n
i=1 η

q
i )≤n1−q (

∑n
i=1 ηi)

q
,

n1−r (
∑n
i=1 ηi)

r ≤ (
∑n
i=1 ηi

r) ≤ (
∑n
i=1 ηi)

r
.

Theorem 2: Let ψ̄ = ψ
1+ψTψ , Ψ = ψ̄ψ̄T, 0 < θ < 1,

h = (1 − θ)σ
q+1

2

min (Ψ) and h̄ = 21−rσ
r+1

2

min (Ψ). Define µ =( (ε̄qm+ε̄rm)ψ̄m

θσ
(q+1)/2
min (Ψ)

) 1
q with ε̄m > 0, ψ̄m > 0. Then, the solution

to the weight error dynamics (30) is 1) globally fixed-time
stable with the settling time

T ≤ 2

σ
q+1

2

min (Ψ)(2α)
q+1

2 (1− q)
+

2

σ
r+1

2

min (Ψ)(2α)
r+1

2 (r − 1)

if ε ≡ 0, and 2) globally fixed-time uniformly ultimately
bounded (UUB) with the settling time

T ≤ 2
1−q

2 α−
q+1

2 − α−1µ1−q

h(1− q)
+

2
1−r

2 α−
r+1

2

h̄(r − 1)

if ε 6≡ 0.
Proof: Select the following Lyapunov function for the

weight error

Ṽ (W̃ ) =
1

2α
W̃TW̃ . (31)

Calculating the time derivative of (31) along (30), one has

˙̃V (W̃ )=− W̃Tψ

1 + ψTψ

(⌈
ψTW̃ + ε

1 + ψTψ

⌋q
+

⌈
ψTW̃ + ε

1 + ψTψ

⌋r)
.

(32)

1) If ε ≡ 0, suppose that the persistence of excitation
condition is met, then one has

˙̃V (W̃ ) = − W̃Tψ

1 + ψTψ

(⌈
ψTW̃

1 + ψTψ

⌋q
+

⌈
ψTW̃

1 + ψTψ

⌋r)
= −

∣∣∣∣∣ ψTW̃

1 + ψTψ

∣∣∣∣∣
q+1

−

∣∣∣∣∣ ψTW̃

1 + ψTψ

∣∣∣∣∣
r+1

= −

∥∥∥∥∥ ψTW̃

1 + ψTψ

∥∥∥∥∥
2

2


q+1

2

−

∥∥∥∥∥ ψTW̃

1 + ψTψ

∥∥∥∥∥
2

2


r+1

2

≤ −σ
q+1

2

min (Ψ)‖W̃‖q+1
2 − σ

r+1
2

min (Ψ)‖W̃‖r+1
2 . (33)

Moreover, (33) can be rewritten as

˙̃V (W̃ ) ≤− σ
q+1

2

min (Ψ)(2α)
q+1

2 (Ṽ (W̃ ))
q+1

2

− σ
r+1

2

min (Ψ)(2α)
r+1

2 (Ṽ (W̃ ))
r+1

2 .

It shows that the solution W̃ ≡ 0 to (30) is globally fixed-
time stable. The corresponding settling time T satisfies

T ≤ 2

σ
q+1

2

min (Ψ)(2α)
q+1

2 (1− q)
+

2

σ
r+1

2

min (Ψ)(2α)
r+1

2 (r − 1)
.

(34)

2) If ε 6≡ 0, recalling that the time derivative of the
Lyapunov function (31) is given by (32). According to
Lemma 1, one has |ψTW̃ | ≤ |ε|. Then, using Lemma 2,
one obtains

|ψ̄TW̃ |q ≤ |ψ̄TW̃ + ε̄|q + |ε̄|q

|ψ̄TW̃ |r ≤ 2r−1(|ψ̄TW̃ + ε̄|r + |ε̄|r).

Hence, one attains

|ψ̄TW̃ |q − |ε̄|q ≤ |ψ̄TW̃ + ε̄|q (35)

21−r|ψ̄TW̃ |r − |ε̄|r ≤ |ψ̄TW̃ + ε̄|r. (36)

Based on (35) and (36), one can acquire

˙̃V (W̃ ) ≤− σ
q+1

2

min (Ψ)‖W̃‖q+1
2 − 21−rσ

r+1
2

min (Ψ)‖W̃‖r+1
2

+ |ψ̄TW̃ ||ε̄|q + |ψ̄TW̃ ||ε̄|r. (37)

Note that there exist ε̄m and N0 > 0 satisfying sup |ε| < ε̄m
for any N > N0 by Lemma 1. Thereby, we can directly
know |ε̄| < ε̄m. Due to bounded ψ̄, there exists ψ̄m > 0 that
satisfies ‖ψ̄‖2 ≤ ψ̄m. Then (37) becomes

˙̃V (W̃ ) ≤− σ
q+1

2

min (Ψ)‖W̃‖q+1
2 − 21−rσ

r+1
2

min (Ψ)‖W̃‖r+1
2

+ (ε̄qm + ε̄rm)ψ̄m‖W̃‖2

≤− (1− θ)σ
q+1

2

min (Ψ)‖W̃‖q+1
2 − θσ

q+1
2

min (Ψ)‖W̃‖q+1
2

− 21−rσ
r+1

2

min (Ψ)‖W̃‖r+1
2 + (ε̄qm + ε̄rm)ψ̄m‖W̃‖2.

(38)

We can further obtain
˙̃V (W̃ ) ≤− (1−θ)σ

q+1
2

min (Ψ)‖W̃‖q+1
2

−21−rσ
r+1

2

min (Ψ)‖W̃‖r+1
2 , ‖W̃‖2 ≥ µ. (39)

Hence, the solution to (30) is globally fixed-time UUB with
the bound µ.

Next, we can derive the settling time of (30). Rewrite (39)
as

dt

dṼ (W̃ )
≥ 1

−h(2α)
q+1

2 (Ṽ (W̃ ))
q+1

2 −h̄(2α)
r+1

2 (Ṽ (W̃ ))
r+1

2

,

‖W̃‖2 ≥ µ. (40)

If Ṽ (W̃ (0)) ≤ 1, integrating both sides of (40), it yields

T ≤ − 1

h(2α)
q+1

2

∫ µ2

2α

1

z−
q+1

2 dz

≤ 2
1−q

2 α−
q+1

2 − α−1µ1−q

h(1− q)
, Ta. (41)

If Ṽ (W̃ (0)) > 1, one obtains

T ≤
∫ 1

µ2

2α

1

h(2α)
q+1

2 z
q+1

2

dz +

∫ Ṽ (W̃ (0))

1

1

h̄(2α)
r+1

2 z
r+1

2

dz.

It is obvious that
∫ Ṽ (W̃ (0))

1
(·)dz ≤

∫ +∞
1

(·)dz. Let z̄ =

z1− r+1
2 . One has dz̄ = (1 − r+1

2 )z−
r+1

2 dz. We can further
obtain

1

h̄(2α)
r+1

2

∫ +∞

1

1

z
r+1

2

dz =
1

h̄(2α)
r+1

2

∫ 0

1

1

1− r+1
2

dz̄
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=
2

1−r
2 α−

r+1
2

h̄(r − 1)

and it follows that

T ≤ Ta +
2

1−r
2 α−

r+1
2

h̄(r − 1)
. (42)

Finally, combining (41) and (42), the settling time is

T ≤ 2
1−q

2 α−
q+1

2 − α−1µ1−q

h(1− q)
+

2
1−r

2 α−
r+1

2

h̄(r − 1)
. (43)

�
Substituting policies (25) and (26) into (6), we can analyze

the stability of the closed-loop system with the tracking error
and weight error by the following theorem.

Theorem 3: Consider the error closed-loop system (6)
using policies (25) and (26). Let ε 6≡ 0. Given µ̃ =( ι+(ε̄qm+ε̄rm)ψ̄m

θσ
(q+1)/2
min (Ψ)

) 1
q with proper 0 < θ < 1 and ι > 0, the

augmented state Γ = [W̃T, eT]T ∈ RN × E is fixed-time
UUB with the settling time

T̄ ≤ 2
1−q

2 α−
q+1

2 − α−1µ̃1−q

h(1− q)
+

2
1−r

2 α−
r+1

2

h̄(r − 1)
.

Proof: Select the Lyapunov function as

V̄ (Γ) = V (e) + Ṽ (W̃ ). (44)

Using the optimal policies (22), (23) and the estimated
policies (25), (26), the time derivative of V (e) satisfies

V̇ (e) =∇V T(e)(Ae+Bûc +Bûa)

=∇V T(e)(Ae+Bu∗c +Bu∗a +B(ûc − u∗c)
+B(ûa − u∗a)

≤− c1(V (e))q̄ − c2(V (e))r̄

+
1

2
∇V T(e)BR−1BT (−∇φT(e)W̃ +∇ε(e))

+
1

2γ2
∇V T(e)BT−1BT (∇φT(e)W̃ −∇ε(e)).

Suppose that W , ∇φ(e) and ∇ε(e) have upper bounds Wm,
∇φm and ∇εm, respectively. Then, it follows that

V̇ (e) ≤− c1(V (e))q̄ − c2(V (e))r̄ + (Wm∇φm +∇εm)

·
(1

2
‖B‖22λmin(R) +

1

2γ2
‖B‖22λmin(T )

)
=− c1(V (e))q̄ − c2(V (e))r̄ + m̄(∇φm‖W̃‖2 +∇εm)

where m̄ = (Wm∇φm + ∇εm)( 1
2‖B‖

2
2λmin(R) +

1
2γ2 ‖B‖22λmin(T )). Select ι > 0 such that m̄(∇φm‖W̃‖2 +

∇εm) ≤ ι‖W̃‖2. Let µ̄ = ∇εm
ι
m̄−φm

. One has

V̇ (e)≤−c1(V (e))q̄−c2(V (e))r̄ + ι‖W̃‖2,
W̃ ∈ Bµ̄[0], e ∈ E . (45)

Taking into account (45) and Theorem 2, we can acquire

˙̄V (Γ) ≤− c1(V (e))q̄ − c2(V (e))r̄ − h‖W̃‖q+1
2

− h̄‖W̃‖r+1
2 − θσ

q+1
2

min (Ψ)‖W̃‖q+1
2

+ (ι+ (ε̄qm + ε̄rm)ψ̄m)‖W̃‖2, W̃ ∈ Bµ̄[0], e ∈ E .

Choosing the parameter θ allows
˙̄V (Γ) ≤ −c1(V (e))q̄ − c2(V (e))r̄ − h‖W̃‖q+1

2 − h̄‖W̃‖r+1
2 ,

W̃ ∈ Bµ̃[0], e ∈ E (46)

where Bµ̄[0] ⊆ Bµ̃[0] for sufficiently small θ. Performing the
similar operation as in Theorem 2, we can derive the settling
time as follows

T̄ ≤ 2
1−q

2 α−
q+1

2 − α−1µ̃1−q

h(1− q)
+

2
1−r

2 α−
r+1

2

h̄(r − 1)
. (47)

Therefore, Γ is fixed-time UUB with an upper bound Bµ̃[0]×
E . �

V. SIMULATION EXAMPLE
The reference trajectory is given by pr =

[15 sin(π5 t) 15 cos(π5 t) 2 + 0.2t]T. The gravity acceleration
is g = 9.8m/s2. The attack attenuation level is γ = 8.
The weight matrices Q, R, T are selected as identity
matrices with proper dimensions. The weight update
law’s corresponding parameters are selected as α = 0.1,
q = 0.1, r = 2. Choose the polynomial function as
the activation function. Suppose that the initial state is
x0 = [5 12 4 10 2 1]T. Simulation results are shown as Fig.
1-Fig. 4.
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Fig. 1. Time evolution of critic NN weights by fixed-time convergent RL.
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Fig. 2. Time evolution of critic NN weights by finite-time convergent RL.

Fig. 1 and Fig. 2 depict the time evolution of critic
NN weights by fixed-time convergent RL and finite-time
convergent RL, respectively. In the finite-time convergent
RL, the critic NN update law is given by

˙̂
W = −α ψ

1 + ψTψ

⌈
ξ

1 + ψTψ

⌋q
, 0 < q < 1.
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Fig. 3. The trajectories of the UAV and reference.
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Fig. 4. The velocities of the UAV and reference.

It shows that the proposed approach (t=7.14s) has faster
convergence rate than finite-time convergent RL (t=8.03s).
Fig. 3-Fig. 4 demonstrate the designed optimal controller can
guarantee that the UAV reaches the reference trajectory and
the desired velocity under the optimal FDI attack. It shows
that the UAV can reach the desired trajectory and velocity
in the time of t = 6s with trained NN weights.

VI. CONCLUSION

In this article, we study the secure tracking control in the
presence of FDI attacks for the UAV under the zero-sum
game framework. A fixed-time convergent RL algorithm is
proposed for solving the game and obtaining the optimal
secure tracking controller. Future research will focus on
exploiting the secure control scheme in multi-UAV systems.
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