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Abstract— We study the problem of representation learning
for control from partial and potentially high-dimensional ob-
servations. We approach this problem via direct latent model
learning, where one directly learns a dynamical model in
some latent state space by predicting costs. In particular, we
establish finite-sample guarantees of finding a near-optimal
representation function and a near-optimal controller using the
directly learned latent model for infinite-horizon time-invariant
Linear Quadratic Gaussian (LQG) control. A part of our
approach to latent model learning closely resembles MuZero,
a recent breakthrough in empirical reinforcement learning, in
that it learns latent dynamics implicitly by predicting cumulative
costs. A key technical contribution of this work is to prove
persistency of excitation for a new stochastic process that arises
from the analysis of quadratic regression in our approach.

I. INTRODUCTION

Control with a learned latent model is state-of-the-art in
several reinforcement learning (RL) benchmarks, including
board games, Atari games, and visuomotor control [18, 25,
6]. To better understand this modern machinery, we introduce
it to a classical optimal control problem, namely Linear
Quadratic Gaussian (LQG) control, and study its theoretical,
finite-sample performance. Essential to this approach is the
learning of two components: a state representation function
that maps an observed history to some latent state, and a
latent model that predicts the transition and cost in the latent
state space. The latent model is usually a Markov decision
process, using which we obtain a policy in the latent space
or execute online planning.

What is the correct objective to optimize for learning
a latent model? One popular choice is to learn a
function that reconstructs the observation from the latent
state [3–6]. A latent model learned this way is agnos-
tic to control tasks and retains all the information about
the environment. This class of approaches can achieve
satisfactory performance, but are prone to background
distraction and control-irrelevant information [2]. The
second class of methods learn an inverse model that infers
actions from latent states at different time steps [16, 11].
A latent model learned with this methodology is also
task agnostic but extracts control-relevant information. In
contrast, task-relevant representations can be learned by
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predicting costs in the control task [14, 26, 18]. The concept
that a good latent state should be able to predict costs
is intuitive, and the costs are directly relevant to optimal
control. Hence, [24] refers to this class of methods as “direct
latent model learning”, which is the focus of this work.

The direct latent model learning method of particular
interest to us is that of MuZero [18]. Announced by
DeepMind in 2019, MuZero extends the line of works
including AlphaGo [19] and AlphaZero [20] by not
requiring knowledge of the game rules. MuZero matches
the superhuman performance of AlphaZero in Go, shogi
and chess, while outperforming model-free RL algorithms
in Atari games. MuZero builds upon the powerful planning
procedure of Monte Carlo Tree Search, with the major
innovation being learning a latent model. The latent model
replaces the rule-based simulator during planning, and avoids
the burdensome planning in pixel space for Atari games.

The latent model learning of MuZero features three
ingredients: 1) stacking frames, i.e., observations, as input
to the representation function; 2) predicting costs, “optimal”
values, and “optimal” actions from latent states; and 3)
implicit learning of latent dynamics by predicting these
quantities from latent states at future time steps. These are
the defining characteristics of the MuZero-style algorithm
that we shall consider. In MuZero, the “optimal” values
and actions are found by the powerful online planning
procedure. In this work, we simplify the setup by considering
data collected using random actions, which are known to
suffice for identifying a partially observable linear dynamical
system [15]. In this setup, the values become those associated
with this trivial policy and we do not predict actions since
they are random noises anyway. Note that although our study
of the above ingredients is directly motivated by MuZero,
previous empirical works have also explored them. For
example, frame stacking has been a widely used technique
to handle partial observability [12, 13]; predicting values for
learning a latent model has been studied in [14], which also
learns the latent state transition implicitly.

Closely related to our work, [24] also considers
provable direct latent model learning in LQG, but for the
finite-horizon time-varying setting. Our work builds upon
it and complements it in two ways: 1) we extend their
algorithm to the time-invariant setting with a stationary
representation function and latent model, which is closer
to what has been deployed in practice; 2) we present and
analyze a new, MuZero-style latent model learning algorithm.
Both 1) and 2) introduce new technical challenges to be
addressed. We summarize our contributions as follows.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6160



• We show that two direct latent model learning methods
provably solve infinite-horizon time-invariant LQG
control by establishing finite-sample guarantees. Both
methods only need a single trajectory; one resembles
the method in [24], and the other resembles MuZero.

• By analyzing the MuZero-style algorithm, we notice the
potential issue of coordinate misalignment; that is, costs
can be invariant to certain transformations of the latent
states, and implicit dynamics learning by predicting
one-step transition may not recover the latent state
coordinates consistently. This insight suggests the need
of predicting multi-step transition or other coordinate
alignment procedures in implicit dynamics learning.

• Technically, we overcome the difficulty of having de-
pendent data samples in a single trajectory for latent
model learning, by proving a new result about the
persistency of excitation for a stochastic process that
arises from the analysis of the quadratic regression
subroutine in both of our methods.

Notation. Let a∧ b denote the minimum between scalars
a and b. Given vector v ∈ Rd , let ‖v‖ denote its `2 norm
and ‖v‖P := (v>Pv)1/2 for positive semidefinite P ∈ Rd×d .
Semicolon “;” denotes stacking vectors or matrices vertically.
For a collection of d-dimensional vectors (vt)

j
t=i, let vi: j :=

[vi;vi+1; . . . ;v j] ∈ Rd( j−i+1) denote the concatenation along
the column. For random variable x, let ‖x‖ψ1 denote its
subexponential norm. Let svec(·) denote the operator of
flattening a symmetric matrix by stacking its columns; it
does not repeat the off-diagonal elements, but scales them
by
√

2 [17].

II. PROBLEM SETUP

A partially observable linear time-invariant (LTI)
dynamical system is described by

xt+1 = A∗xt +B∗ut +wt , yt =C∗xt + vt , (1)

with state xt ∈ Rdx , observation yt ∈ Rdy , and control ut ∈
Rdu for all t ≥ 0. Process noises (wt)t≥0 and observation
noises (vt)t≥0 are i.i.d. zero-mean Gaussian random vectors
with covariance matrices Σw and Σv, respectively, and the
two sequences are mutually independent. Let initial state x0
be sampled from N (0,Σ0). The quadratic cost function is
given by

c(x,u) = ‖x‖2
Q∗ +‖u‖2

R∗ , (2)

where Q∗ < 0 and R∗ � 0.
A policy/controller π determines an action/control input

ut at time step t based on the history [y0:t ;u0:(t−1)] up to this
time step. For t ≥ 0, ct := c(xt ,ut) denotes the cost at time
step t. Given a policy π , let

Jπ := limsup
T→∞

E
[

1
T ∑

T−1
t=0 ct

]
(3)

denote the time-average expected cost. The objective of LQG
control is to find a policy π such that Jπ is minimized.

In the fully observable setting, known as the linear
quadratic regulator (LQR), yt = xt . A linear controller with

feedback gain K ∈ Rdu×dx determines action ut = Kxt at
time step t. Let JK(A∗,B∗,Q∗,R∗) denote the time-average
expected cost (3) in the LQR problem (A∗,B∗,Q∗,R∗)
under feedback gain K and define J∗(A∗,B∗,Q∗,R∗) :=
minK JK(A∗,B∗,Q∗,R∗).

We make the following standard assumptions.
Assumption 1: System dynamics (1) and cost (2) satisfy:
1) The system is stable, that is, ρ(A∗)< 1.
2) (A∗,B∗) is ν-controllable for some ν > 0, that

is, the controllability matrix Φc(A∗,B∗) :=
[B∗,A∗B∗, . . . ,(A∗)dx−1B∗] has rank dx and
σmin(Φc(A∗,B∗))≥ ν .

3) (A∗,C∗) is ω-observable for some ω > 0,
that is, the observability matrix Φo(A∗,C∗) :=
[C∗;C∗A∗; . . . ;C∗(A∗)dx−1] has rank dx and
σmin(Φo(A∗,C∗))≥ ω .

4) (A∗,Σ1/2
w ) is η-controllable for some η > 0.

5) (A∗,(Q∗)1/2) is µ-observable for some µ > 0.
6) Σv < σ2

v I for some σv > 0; this can always be achieved
by inserting Gaussian noises with full-rank covariance
matrices to the observations.

7) R∗ < r2I for some r > 0.
8) The operator norms of A∗, B∗, C∗, Q∗, R∗, Σw, Σv, Σ0

are O(1) and the singular value lower bounds ν , ω ,
ν , η , σv, r are Ω(1).

If the system parameters (A∗,B∗,C∗,Q∗,R∗,Σw,Σv) are
known, the optimal policy is obtained by combining the
Kalman filter

z∗t+1 = A∗z∗t +B∗ut +L∗(yt+1−C∗(A∗z∗t +B∗ut)) (4)

with the optimal feedback gain K∗ of the linear quadratic
regulator (LQR) such that ut =K∗z∗t , where L∗ is the Kalman
gain, and at the initial time step, we can set, e.g., z∗0 = L∗y0.
This fact is known as the separation principle, and the
Kalman gain and optimal feedback gain are given by

L∗ = S∗(C∗)>(C∗S∗(C∗)>+Σv)
−1, (5)

K∗ = − ((B∗)>P∗B∗+R)−1(B∗)>P∗A∗, (6)

where S∗ and P∗ are determined by their respective
discrete-time algebraic Riccati equations (DAREs):

S∗ = A∗
(
S∗−S∗(C∗)>(C∗S∗(C∗)>+Σv)

−1C∗S∗
)
(A∗)>+Σw,

(7)

P∗ = (A∗)>
(
P∗−P∗B∗((B∗)>P∗B∗+R∗)−1(B∗)>P∗

)
A∗+Q∗.

(8)

Assumptions 1.1 guarantees that the system does not
explode under the excitation of random control inputs.
Assumptions 1.2 to 1.7 guarantee the existence and
uniqueness of positive definite solutions S∗ and P∗;
Assumption 1.8 further guarantees that their operator norms
are O(1) and minimum singular values are Ω(1).

We consider the data-driven control setting, where
the LQG model (A∗,B∗,C∗,Q∗,Σw,Σv) is unknown. For
simplicity, we assume R∗ is known, though our approaches
can be readily extended to the case where it is unknown by
learning it from predicting costs.
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A. Latent model of LQG

The stationary Kalman filter (4) asymptotically produces
the optimal state estimation in the sense of minimum mean
squared errors. With a finite horizon, however, the optimal
state estimator is time-varying, given by

z∗t+1 = A∗z∗t +B∗ut +L∗t+1(yt+1−C∗(A∗z∗t +B∗ut)), (9)

where L∗t is the time-varying Kalman gain, converging to
L∗ as t → ∞. This convergence is equivalent to that of
error covariance matrix E[(xt−z∗t )(xt−z∗t )

>], which happens
exponentially fast [8]. Hence, for simplicity, we assume this
error covariance matrix is stationary at the initial time step
by the choice of z∗0 so that L∗t = L∗ for t ≥ 1; this assumption
is common in the literature [9, 10, 7]. The innovation term
it+1 := yt+1−C∗(A∗z∗t +B∗ut) is independent of the history
(y0,u0,y1,u1, . . . ,yt+1) and (it)t≥1 are mutually independent.
The following proposition taken from [24, Proposition 1]
represents the system in terms of the state estimates obtained
by the Kalman filter, which we refer to as the latent model.

Proposition 1: Let (z∗t )t≥1 be state estimates given by the
time-varying Kalman filter. Then, for t ≥ 0,

z∗t+1 = A∗z∗t +B∗ut +L∗it+1,

where L∗it+1 is independent of z∗t and ut , i.e., the state
estimates follow the same linear dynamics with noises L∗it+1.
The cost at step t can be reformulated as functions of the
state estimates by

ct = ‖z∗t ‖2
Q∗ +‖ut‖2

R∗ +b∗+ γt +ηt ,

where b∗ > 0, and γt = ‖z∗t − xt‖2
Q∗ − b∗, ηt =

〈
z∗t ,xt −

z∗t
〉

Q∗ are both zero-mean subexponential random variables.

Moreover, b∗ = O(1) and ‖γt‖ψ1 = O(d1/2
x ); if control ut ∼

N (0,σ2
u I) for t ≥ 0, then we have ‖ηt‖ψ1 = O(d1/2

x ).
Proposition 1 shows that the dynamics of the state estimates
computed by the time-varying Kalman filter is the same
as the original system up to noises; the costs are also the
same, up to constants and noises. Hence, a latent model
can be parameterized by (A,B,Q,R∗), with the constant b∗

and noises neglected due to their irrelevance to planning.
A stationary latent policy is a linear controller ut = Kzt on
latent state zt , parameterized by feedback gain K ∈ Rdu×dx .

The latent model enables us to find a good latent policy. To
learn such a latent model and to deploy a latent policy in the
original partially observable system, we need a representation
function. Let A∗ := (I − L∗C∗)A∗ and B∗ := (I − L∗C∗)B∗.
Then, the Kalman filter can be written as z∗t+1 = A∗z∗t +
B∗ut +L∗yt+1. For t ≥ 0, unrolling the recursion gives

z∗t = A∗(A∗z∗t−2 +B∗ut−2 +L∗yt−1)+B∗ut−1 +L∗yt

= [(A∗)t−1L∗, . . . ,L∗]y1:t +[(A∗)t−1B∗, . . . ,B∗]u0:(t−1)+(A∗)tz∗0
=: M∗t [y1:t ;u0:(t−1);z∗0],

where M∗t ∈ Rdx×(tdy+tdu+dx). This means the representation
function can be parameterized as linear mappings for full
histories (with y0 replaced by z∗0). Despite the simplicity,
the input dimension of the function grows linearly in time,
making it intractable to estimate the state using the full

history for large t; nor is it necessary, since the impact
of old data decreases exponentially. Under Assumption 1,
ρ(A∗) < 1 [1, Appendix E.4]. With an H-step truncated
history, the state estimate can be written as

z∗t = [(A∗)H−1L∗, . . . ,L∗]y(t−H+1):t

+[(A∗)H−1B∗, . . . ,B∗]u(t−H):(t−1)+δt

=: M∗[y(t−H+1):t ;u(t−H):(t−1)]+δt ,

where δt = (A∗)Hz∗t−H , whose impact decays exponentially
in H and can be neglected for sufficiently large H, since z∗t−H
converges to a stationary distribution and its norm is bounded
with high probability. Hence, the representation function that
we aim to recover is M∗ ∈Rdx×H(dy+du), which takes as input
the H-step history ht = [y(t−H+1):t ;u(t−H):(t−1)]. Henceforth,
we let dh := H(dy + du). Then, a representation function is
parameterized by matrix M ∈ Rdx×dh .

Overall, a policy is a combination of a representation
function M and a feedback gain K in the latent model,
denoted by π = (M,K). Learning to solve LQG control
in this framework can thus be achieved by: 1) learning
representation function M; 2) extracting latent model
(A,B,Q,R∗); and 3) finding the optimal K by planning in
the latent model. Next, we introduce our approach following
this pipeline.

III. METHOD

In practice, latent model learning methods collect
trajectories by interacting with the system online using some
policy; the trajectories are used to improve the learned latent
model, which in turn improves the policy. In LQG control, it
is known that the simple setup allows us to learn a good latent
model from a single trajectory, collected using zero-mean
Gaussian inputs; see e.g., [15]. This is also how we assume
the data are collected. We note that our results also apply to
data from multiple independent trajectories using the same
zero-mean Gaussian inputs.

In direct latent model learning, state representations
are learned by predicting costs. To learn the transition
function in the latent model, two approaches are explored
in the literature. The first approach explicitly minimizes
transition prediction errors [23, 3]. Algorithmically, the
overall loss is a combination of cost and transition
prediction errors. The second approach, which MuZero
takes, learns transition implicitly, by minimizing cost pre-
diction errors at future states generated from the transition
function [14, 18]. Algorithmically, the overall loss aggregates
the cost prediction errors across multiple time steps. In
both approaches, the coupling of different terms in the loss
makes finite-sample analysis difficult. As observed in [24],
the structure of LQG allows us to learn the representation
function independently of learning the transition function.
This allows us to formulate both approaches under the same
direct latent model learning framework (Algorithm 1).

Algorithm 1 consists of three main steps. Lines 3 to 5
correspond to cost-driven representation learning. Lines 6
to 8 correspond to latent model learning, where the system
dynamics can be identified either explicitly, by ordinary least
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squares (SYSID), or implicitly, by future cost prediction
(COSYSID, Algorithm 2). Line 8 corresponds to latent policy
optimization; in LQG this amounts to solving a DARE.
Below we elaborate on cost-driven representation learning,
SYSID, and COSYSID in order.

A. Cost-driven representation learning

The procedure of cost-driven representation learning is
almost identical to that in [24]. The main idea is to perform
quadratic regression (11) to the dx-step cumulative costs;
these correspond to the value prediction in MuZero. By the
µ-observability of (A∗,(Q∗)1/2) (Assumption 1.5), the cost
observability Gramian Q∗ := ∑

dx−1
t=0 ((A∗)t)>Q∗(A∗)t < µ2I.

Under zero control and zero noise, starting from x, the dx-step
cumulative cost is precisely ‖x‖2

Q∗
. Hence, N̂ estimates

N∗ = (M∗)>Q∗M∗; up to an orthonormal transformation, M̂
recovers M∗′ :=(Q∗)1/2M∗, the representation function under
an equivalent parameterization, termed as the normalized
parameterization in [24], where

A∗′ = (Q∗)1/2A∗(Q∗)−1/2, B∗′ = (Q∗)1/2B, C∗′ =C∗(Q∗)−1/2,

w′t = (Q∗)1/2wt , Q∗′ = (Q∗)−1/2Q∗(Q∗)−1/2.

Due to the following proposition, the algorithm does not need
to know the dimension dx of the latent model; it can discover
dx from the eigenvalues of N̂.

Proposition 2: Under i.i.d. control inputs ut ∼N (0,σ2
u I)

for t ≥ 0, λmin(Cov(z∗t )) = Ω(ν2) for t ≥ dx, where ν

Algorithm 1 Direct latent model learning for LQG control
1: Input: length T , history length H, noise magnitude σu
2: Collect a trajectories of length T + H using ut ∼

N (0,σ2
u I), for t ≥ 0, to obtain Draw:

(y0,u0,c0,y1,u1,c1, . . . ,yT+H) (10)

3: Estimate the state representation function and cost
constants by solving

N̂, b̂0 ∈ argmin
N=N>,b0

∑
T+H−1
t=H

(∥∥ht
∥∥2

N +b0− ct
)2
, (11)

where ct := ∑
t+dx−1
τ=t (cτ −‖uτ‖2

R∗)
4: Find M̂ ∈ argminM∈Rdx×H(dy+du) ‖M>M− N̂‖F

5: Compute ẑt = M̂[y(t−H+1):t ;u(t−H):(t−1)] for all t ≥H, so
that the data are converted to Dstate:

(ẑH ,uH ,cH , . . . , ẑT+H−1,uT+H−1,cT+H−1, ẑT+H)

6: Run SYSID (12) or COSYSID (Algorithm 2) to obtain
dynamics matrices (Â, B̂)

7: Estimate the cost function by solving

Q̃, b̂ ∈ argmin
Q=Q>,b

∑
T+H−1
t=H (‖ẑt‖2

Q +b− ct)
2,

8: Truncate negative eigenvalues of Q̃ to 0 to obtain Q̂ < 0
9: Find feedback gain K̂ from (Â, B̂, Q̂,R∗) by (8) and (6)

10: Return: policy π̂ = (M̂, K̂)

is defined in Assumption 1.3. As long as H ≥ a for
some dimension-free constant a > 0, M∗ has rank dx and
σmin(M∗)≥Ω(νH−1/2).

Proposition 2 is an adaption of [24, Proposition 2] to the
infinite-horizon LTI setting. Necessarily, this implies that by
our choice of H, dh =H(dy+du)≥ dx. Moreover, since Q∗<
µ2I, N∗ = (M∗)>Q∗M∗ is a dh×dh matrix with rank dx, and
λ
+
min(N

∗)≥ λmin(Q
∗
)λ 2

min(M
∗) = Ω(µ2ν2H−1). Hence, if N̂

is sufficiently close to N∗, by setting an appropriate threshold
on the eigenvalues of N̂, the dimension of the latent model
equals the number of eigenvalues above it.

To find an approximate factorization of N̂, let N̂ =UΛU>

be its eigenvalue decomposition, where the diagonal elements
of Λ are listed in a descending order, and U is an orthonormal
matrix. Let Λdx be the left-top block of Λ and Udx be the
left dx columns of U . By the Eckart-Young-Mirsky theorem,
M̂ = max(Λdx ,0)

1/2U>dx
, where “max” applies elementwise,

is the solution to Line 4 of Algorithm 1, that is, the best
approximate factorization of N̂ among dx× dh matrices in
terms of the Frobenius norm approximation error.

In the next two subsections, we move on to discuss
learning latent dynamics, including the explicit approach
SYSID and the implicit approach COSYSID.

B. Explicit learning of system dynamics

Explicit learning of the system dynamics simply
minimizes the transition prediction error in the latent
space [23], or more generally, the statistical distances
between the predicted and estimated distributions of the next
latent state, like the KL divergence [3]. In linear systems,
it suffices to use the ordinary least squares as the SYSID
procedure, that is, to solve

(Â, B̂) ∈ argmin
A,B

∑
T+H−1
t=H ‖Aẑt +But − ẑt+1‖2. (12)

In this linear regression, if (ẑt)t≥H are the optimal state
estimates (z∗t )t≥H (9), then [21] has shown finite-sample
guarantees for (Â, B̂). Here, ẑt contains errors resulting
from the representation function M̂ and the residual
error δt , but as long as T and H are large enough,
SYSID still has a finite-sample guarantee. We refer to
the algorithm that instantiates Algorithm 1 with SYSID as
COREL (COst-driven state REpresentation Learning). As the
time-varying counterpart in [24], it provably solves learning
for LQG control, as will be shown in Theorem 1.

C. Implicit learning of system dynamics (MuZero-style)

An important ingredient of latent model learning in
MuZero [18] is to implicitly learn the transition function by
minimizing the cost prediction error at future latent states
generated from the transition function. Let zt = Mht denote
the latent state given by representation function M at step t.
Let zt,0 = zt and zt,i =Azt,i−1+But+i−1 for i≥ 1 be the future
latent state predicted by dynamics (A,B) from zt after i steps
of transition. For a trajectory of length T +H like (10), the
loss that considers ` steps into the future is given by

∑
T+H−K−1
t=H ∑

`

i=0(‖zt,i‖2
Q +‖ut‖2

R∗ +b− ct)
2.
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This loss involves powers of A up to A`; with the squared
norm, the powers double, making the minimization over A
hard to solve and analyze for ` ≥ 2. In LQG control, our
finding is that it suffices to take `= 1. As mentioned in §I,
MuZero also predicts optimal values and optimal actions;
in LQG, to handle Q∗ 6� 0, like cost-driven representation
learning (see §III-A), we adopt the cumulative costs and
use the normalized parameterization. Thus, the optimization
problem we aim to solve is given by

min
M,A,B,b

∑
T+H−1
t=H

(
(‖Mht‖2 +b− ct)

2

+(‖AMht +But‖2 +b− ct+1)
2). (13)

To convexify the optimization problem (13), we define N :=
M>M and N′ := [AM,B]>[AM,B]. Then, (13) becomes

min
N,N1,b

∑
T+H−1
t=H

(
(‖ht‖2

N +b− ct)
2 +(‖[ht ;ut ]‖2

N1
+b− ct+1)

2).
(14)

This minimization problem is convex in N, N1 and b, and has
a closed-form solution; essentially, it consists of two linear
regression problems coupled by b. Since constant b is merely
a term accounting for the estimation error and not part of the
representation function, we can decouple the two regression
problems by allowing b to take different values in them. This
further simplifies the algorithm: the first regression problem
is exactly cost-driven representation learning (§III-A), and
the second is cost-driven system identification (COSYSID,
Algorithm 2). The algorithm that instantiates Algorithm 1
with COSYSID is called COREDYL (COst-driven state
REpresentation and DYnamic Learning). Like COREL, this
MuZero-style latent model learning method provably solves
LQG control, as we will show in Theorem 1.

COSYSID has similar steps to cost-driven representation
learning (§III-A), except that in Line 5, it requires fitting a
matrix Ŝ0. This is because the approximate factorization steps
recover M∗ and M∗1 up to orthonormal transformations, but
there is no guarantee for the two orthonormal matrices to be
the same; we need to fit Ŝ0 to align their coordinates. We note
that although COSYSID needs the output M̂ from cost-driven
representation learning, the two quadratic regressions (11)
and (15) are not coupled and can be solved in parallel.

Algorithm 2 COSYSID: Cost-driven system identification

1: Input: data Draw, representation function M̂
2: Estimate the system dynamics by

N̂1, b̂1 ∈ argmin
N1=N>1 ,b1

∑
T+H−1
t=H

(
‖[ht ;ut ]‖2

N1
+b1− ct+1

)2

(15)

3: Find M̂1 ∈ argminM1∈Rdx×(Hdy+(H+1)du) ‖M>1 M1− N̂1‖F

4: Split M̂1 to [M̃, B̃] after column H(dy +du) and set Ã =
M̃M̂†.

5: Find alignment matrix Ŝ0 by

Ŝ0 ∈ argmin
S0∈Rdx×dx

∑
T+H−1
t=H ‖S0M̂1[ht ;ut ]− ẑt+1‖2

6: Return: system dynamics estimate (Â, B̂) = (Ŝ0Ã, Ŝ0B̃)

IV. THEORETICAL GUARANTEES

The following Theorem 1 shows that both COREL and
COREDYL are guaranteed to solve unknown LQG control
with a finite number of samples.

Theorem 1: Given an unknown LQG problem satisfying
Assumption 1, let M∗′ and (A∗′,B∗′,Q∗′,R∗) be the
optimal state representation function and the true system
parameters under the normalized parameterization. For
a given p ∈ (0,1), if we run COREL (Algorithm 1
with (12)) or COREDYL (Algorithm 1 with Algorithm 2)
for T ≥ poly(dx,dy,du, log(T/p))), H = Ω(log(H2(dy +
du)T log(T/p))), and σu = Θ(1), then there exists an
orthonormal matrix S ∈ Rdx×dx , such that with probability
at least 1− p, the representation function M̂ satisfies

‖M̂−SM∗′‖2 = O(poly(H,dx,du,dy, log(T/p))T−1/2),

and the feedback gain K̂ satisfies

JK̂(SA∗′S>,SB∗′,SQ∗′S>,R∗)− J∗(SA∗′S>,SB∗′,SQ∗′S>,R∗)

= O(poly(H,dx,du,dy, log(T/p))T−1).

Compared with common system identification methods
based on learning Markov parameters [15, 22], the error
bounds of the system parameters produced by COREDYL
(or COREL) have the same dependence on T , but worse
dependence on system dimensions. Moreover, to establish
persistency of excitation, COREDYL (or COREL) requires
a larger burn-in period. These relative sample inefficiencies
are the price we pay for direct latent model learning, which
is only supervised by scalar-valued costs that are quadratic
in the history, instead of vector-valued observations that
are linear in the history. Hence, we have to address the
more challenging problem of quadratic regression, which
lifts the dimension of the optimization problem. On the
other hand, direct latent model learning avoids learning
the reconstruction function C∗ and can learn task-relevant
representations in more complex settings, as demonstrated
by empirical studies.

We refer the reader to the technical report for the
full proof. Central to the analysis is the finite-sample
characterization of the quadratic regression problem. To
solve (11), notice that ‖ht‖2

N =
〈
svec(N),svec(hth>t )

〉
, so this

quadratic regression is essentially a linear regression problem
in terms of svec(N). A major difficulty in the analysis is
to establish persistency of excitation for (svec(hth>t ))t≥H ,
meaning that the minimum eigenvalue of the design matrix
∑

T+H−1
t=H svec(hth>t )svec(hth>t )

> grows linearly in the size
T of the data. We overcome the difficulty using the
small-ball method [21], originally developed for linear
system identification.
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